
INTERVAL MATHEMATICS TECHNIQUES

FOR CONTROL THEORY COMPUTATIONS

R. Baker Kearfott

Department of Mathematics

University of Southwestern Louisiana

Lafayette, Louisiana 70504-1010

1 Introduction and motivation

Various types of nonlinear equations or systems of equations arise in
elementary and advanced control theory. For example, the transfer function
corresponding to a single linear controlled ordinary differential equation is a
rational function (cf. eg., [2], Sect. 1.2.). Stability of such systems depends
on whether there are any roots of the numerator and denominator of the
transfer function in the right half of the complex plane.

Analytical techniques have been used to check this condition. However,
as is indicated below, we may also check it computationally. In particular,
interval methods can find, with the rigor of a mathematical proof, even

on a computer, all roots of a function in the right half of the complex
plane. Thus, if such a method fails to find any root, the condition is valid;
conversely, if the method finds a single such root, then no more computation
is required.

More generally, interval methods can be used to rigorously find all roots
of a nonlinear system of equations within given bounds on the variables.

In optimal control, we may wish to find a control function which opti-
mizes a certain functional subject to a condition. The condition is usually
a differential equation which describes the behavior of the corresponding
physical system. (See [2], Ch. 6.) Such problems have been approached
via calculus of variations techniques. Alternately, we may discretize the
equation and condition to transform the problem into a finite dimensional
nonlinear optimization problem. In theory, interval methods can then be
used to find with mathematical rigor, the global optima. We comment below
on the practicality of this for objective functions with various properties.

We may also wish to check whether a certain quantity (such as an
output or a control) lies within certain bounds. With interval arithmetic,
we can computationally but rigorously determine bounds on the range of a
function over a given domain.

This paper is meant to provide illustrative examples, to indicate where
the methods may be practical in control theory, and to describe some
present research directions. In Section 2, we introduce the elementary
aspects of interval arithmetic, show how these can be used to rigorously

R. B. KEARFOTT

bound the range of a function, and point to references. In Section 3, we
briefly explain how interval arithmetic can solve nonlinear systems of equa-
tions and nonlinear optimization problems, and give references for further
study. In Section 4, we propose interval arithmetic procedures to determine
whether a polynomial has roots in the right half plane. In Section 5, we
comment on the practicality of interval methods and we mention research
which will expand their range of applicability.

2 How interval arithmetic works

Refer to [1] or [16] for a thorough introduction to interval mathemat-
ics. Further references appear in [11], and a list of about 2000 papers on
the subject appears in [4] and [5]. The recent proceedings [17] contains
assessments of the role of interval mathematics in scientific computation.
Here, we will give an elementary explanation of some of the most important
concepts.

We will denote interval quantities throughout with boldface.
Interval arithmetic is based on defining the four elementary arithmetic

operations on intervals. Let a = [al, au] and b = [bl, bu] be intervals. Then,
if op ∈ {+,−, ∗, /}, we define

(2.1) a op b = {x op y | x ∈ a and y ∈ b} .

For example, a + b = [al + bl, au + bu]. In fact, all four operations can
be defined in terms of addition, subtraction, multiplication, and division
of the endpoints of the intervals, although multiplication and division may
require comparison of several results. The result of these operations is an
interval except when we compute a/b and 0 ∈ b . (See eg. [16], pp. 66-68
for a discussion of the latter case.)

A large part of interval mathematics’ power lies in the ability to com-
pute inclusion monotonic interval extensions of functions. If f is a con-
tinuous function of a real variable, then an inclusion monotonic interval
extension f is defined to be a function from the set of intervals to the set
of intervals, such that, if x is an interval in the domain of f ,

{f(x) | x ∈ x} ⊂ f(x)

and such that
x ⊂ y =⇒ f(x) ⊂ f(y).

Inclusion monotonic interval extensions of a polynomial may be ob-
tained by simply replacing the dependent variable by an interval and by
replacing the additions and multiplications by the corresponding interval
operations. For example, if p(x) = x2 − 4, then p([1, 2]) may be defined by

p([1, 2]) = ([1, 2])2 − 4 = ([1, 4])− [4, 4] = [−3, 0].

INTERVAL TECHNIQUES

The result of an elementary interval operation is precisely the range of
values that the usual result attains as we let the operands range over the
two intervals. However, the value of an interval extension of a function is
not precisely the range of the function over its interval operand, but only
contains this range, and different (mathematically equivalent) forms of the
function give rise to different interval extensions. For example, if we write
p above as p(x) = (x− 2)(x+2), then the corresponding interval extension
gives

p([1, 2]) = ([1, 2]− 2)([1, 2] + 2) = [−1, 0][3, 4]

= [−4, 0],

which is not as good as the previous extension.
We may use the mean value theorem or Taylor’s theorem with remain-

der formula to obtain interval extensions of transcendental functions. For
example, suppose x is an interval and a ∈ x. Then, for any y ∈ x, we have

sin(y) = sin(a) + (y − a) cos(a)− (y − a)2/2 sin(c)

for some c between a and y. If a and y are both within a range where the
sine function is non-negative, then we obtain

sin(y) ∈ sin(a) + (x− a) cos(a)−
(x− a)2

2
.

The right side of this relationship gives the value of an interval extension
of sin(x), albeit a somewhat crude one.

See [23] for more techniques of producing interval extensions.
Mathematically rigorous interval extensions can be computed in fi-

nite precision arithmetic via the use of directed roundings. If x and y
are machine-representable numbers and op is one of the four elementary
operations +, −, ∗, or /, then, x op y is not normally representable in
the machine’s memory. In interval arithmetic with directed rounding, if
x op y = [c, d], then we always round the computed value for c down to a
machine number less than the actual value of c, and and we always similarly
round the value for d up. To be completely rigorous, we also first apply
directed rounding to the initial data while storing it.

If interval arithmetic with directed rounding is used to compute an
interval extension f of f , if [c, d] = f([a, b]), and [c, d] does not contain
zero, then this is a rigorous proof (regardless of the machine wordlength,
etc.) that there is no root of f in [a, b]. This concept is also valid if F
is an interval vector-valued function of an interval vector X, and complex
interval arithmetic can also be defined. These facts should enable us to

R. B. KEARFOTT

computationally but rigorously check the stability of systems. (See Section
4 below.)

If available, the language Fortran-SC is a convenient way of program-
ming interval arithmetic computations. This precompiler is available on
IBM mainframe equipment, and requires the ACRITH subroutine package;
see [3] or [27]. There is also Pascal-SC for personal computers; see [22].
For a discussion of other programming languages and packages for interval
arithmetic, see [13].

3 Nonlinear systems and global optimization

We briefly outline the principles which interval arithmetic uses to solve
the problem

(3.1)

Find, with certainty, approximations to all solu-
tions of the nonlinear system

F (X) = (f1(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)) = 0,

where bounds li and ui are known such that

li ≤ xi ≤ ui for 1 ≤ i ≤ n.

and to solve the related problem

(3.2)

Find, with certainty, the global minimum of the
nonlinear objective function

Φ(X)

subject to the constraints

li ≤ xi ≤ ui for 1 ≤ i ≤ n.

We discuss generalized bisection in conjunction with interval Newton
methods for solving (3.1) and (3.2). See chapters 19 and 20 of [1] chapters
5 and 6 of [16]. Early papers on the technique include [6], [20], and [14];
other papers are (but are not limited to) [8], [9], [15], [7], and [21].

We denote the box in n-space described by

{X = (x1, x2, . . . , xn) | li < xi < ui for 1 ≤ i ≤ n}

by X, and we generally use capital boldface letters for vectors whose entries
are intervals. In interval Newton methods, we find a box Xk which contains
all solutions of the interval linear system

(3.3) F′(Xk)(Xk −Xk) = −F (Xk),

where F′(Xk) is an elementwise interval extension of the Jacobian matrix.
We then define the next iterate Xk+1 by

(3.4) Xk+1 = Xk ∩Xk.

INTERVAL TECHNIQUES

The scheme based on solving (3.3) and performing (3.4) is termed an in-

terval Newton method.
If each row of F′ contains all possible vector values that that row of the

scalar Jacobian matrix takes on as X ranges over all vectors in Xk, then it
follows from the mean value theorem that all solutions of (3.1) in Xk must
be in Xk+1. If the coordinate intervals of Xk+1 are smaller than those of
Xk, then we may iterate (3.3) and (3.4) until we obtain an interval vector
the widths of whose components are smaller than a specified tolerance.

If the coordinate intervals of Xk+1 are not smaller than those of Xk,
then we may bisect one of these intervals to form two new boxes; we then
continue the iteration with one of these boxes, and push the other one on
a stack for later consideration. After completion of the current box, we
pop a box from the stack, and apply (3.3) and (3.4) to it; we thus continue
until the stack is exhausted. As is explained in [15], [8], and elsewhere,
such a composite generalized bisection algorithm will reliably compute all
solutions to (3.1) to within a specified tolerance.

Neumaier shows in [19] for many methods of solving (3.3),

(3.5)

if Xk ⊂ Xk, then the system of equations in (3.1)
has a unique solution in Xk. Conversely, if Xk ∩
Xk = ∅ then there are no solutions of the system
in (3.1) in Xk.

In many such cases where Xk ⊂ Xk, we may also conclude that Newton’s
method starting from any point in Xk will converge to that solution. Fur-
thermore, if directed roundings as mentioned in Section 2 are used, such
conclusions are mathematically rigorous.

Iteration with formulas (3.3) and (3.4) should exhibit the quadratic
local convergence properties of Newton’s method, but repeated bisections
are to be avoided if possible. We thus want an good interval extension to
the Jacobian matrix, and we are interested in arranging the computations
so that Xk has coordinate intervals which are as narrow as possible.

The linear interval equation (3.3) may be solved with an interval ver-
sion of the Gauss-Seidel method. In that and other methods for solving
(3.3), we customarily first multiply both sides of (3.3) by a nonsingular
preconditioner matrix Yk to cause or accelerate local convergence;we thus
obtain a related system

(3.6) G(Xk −Xk) = −h,

where YkF (Xk) = h and YkF
′(Xk) = G.

Upon request, the author will send a detailed example of application
of the interval Gauss-Seidel method to solve (3.6), which illustrates the
principle (3.5).

R. B. KEARFOTT

The global nonlinear optimization problem (3.2) can be approached by
solving (3.1), where F = ∇Φ. However, we may use the objective function
directly to increase the algorithm’s efficiency. In particular if X and Y

are interval vectors in the stack described below (3.4), and Φ is an interval
extension to Φ, then, if Φ(Y) > Φ(X), we may discard Y from the stack.
(We say that that p > q if every element of p is greater than every element
of q.)

Walster, Hansen, and Sengupta report performance results on their
interval global optimization algorithm in [26]; see [11] for other references.

4 Testing for nonnegative roots, etc.

Suppose g̃ : C → C, where C is the complex plane, and suppose we
wish to

(4.1)
determine whether g̃ has any roots which occur
in the right half plane {w ∈ C | ℜ(w) > 0}, where
ℜ(w) is the real part of w.

We propose two approaches; details will appear elsewhere. In both, we
define interval arithmetic on complex numbers by identifying a complex
interval c̃ with an ordered pair (a,b) of real intervals; we then define com-
plex interval arithmetic by extending the standard complex operations in
the natural way.

In the first approach to (4.1), we take a conformal map ϕ from the
unit circle to C. (see a reference on complex variables or [25], p. 185.), and
we define

f̃(z) = g̃
(

ϕ(z)
)

.

We make an interval extension f̃ of f̃ , then extend f̃ to complex intervals
z̃ ∈

(

[−1, 1], [−1, 1]
)

by defining

(4.2)

f̃(z̃) = f̃(ũ), where

ũ is the largest interval contained in both z̃ and
(

[−1, 1], [−1, 1]
)

,

and by using extended interval arithmetic for infinite intervals. (See [16],
pp. 66-68.) We then use the techniques described in Section 3 to determine
a root of f̃ (or lack thereof).

The second approach to (4.1), is valid if g̃ is a polynomial. (The basic
idea comes from a conversation the author had with Alexander Morgan.) In
that case, we may reduce the search over the right half plane to a search over
(

[−1, 1], [−1, 1]
)

by homogenizing the equation, then working in complex
projective space. See [25] for details of the homogenization process.

INTERVAL TECHNIQUES

A possible second application of interval mathematics may be in check-
ing the Nyquist criterion for stability of a system, as described in Section
5.3 of [2]. The Nyquist criterion can be checked by computing the topo-
logical degree of the map with respect to the Nyquist locus, while interval
arithmetic allows us to do this rigorously on a computer. We will give
details elsewhere.

5 Are these techniques really practical?

The techniques described above may be easily implemented with For-
tran-SC (in [27]) or Pascal-SC (in [22]). Also, in [12] we describe and
make available well-documented, self-contained, portable Fortran-77 soft-
ware which will solve polynomial systems of equations without program-
ming, and which can solve more general systems if the user is willing to
program interval extensions of the function and Jacobian matrix.

Whether the techniques so implemented will be practical for a given
instance of (3.1) or (3.2) is a more difficult question to answer. Computa-
tional evidence appears in [26] and in [9]. We discuss interval methods vis
á vis alternate techniques in [1], but further work needs to be done.

If a correctly programmed algorithm based on the methods of Section
3 completes, then it cannot give incorrect conclusions. However, for certain
F , the algorithms may take so much computation time that they are im-
practical. For which F this is so depends on interplays between the number
of variables, the nonlinearities of the components of F , the condition num-
ber of the Jacobian matrix near the roots, and how involved the interval
extensions are. We are fairly confident that the methods are practical for
single polynomials of a reasonable degree. However, there are systems of
cubics and quartics in six variables which seem to be very difficult. (We
have at present more personal experience with (3.1) than (3.2); (3.2) may
be a somewhat easier problem in general.)

We suggested above that interval methods might be applicable to dis-
cretizations of optimal control problems. Such discretizations would be
large, sparse nonlinear optimization problems. Largeness per se is not
bad; Schwandt solves nonlinear elliptic problems with the technique in [24].
However, Schwandt limited himself to a somewhat special class of prob-
lems, which exhibit an interval generalization of diagonal dominance. This
obviates the need for preconditioner matrices Yk as described below (3.5).

In practical problems, the function F often requires large programs
and extensive computational effort to evaluate. (For example, in a shoot-
ing method, the function values are the result of integrating a system of
ordinary differential equations.) With state-of-the-art tools, such programs
can use interval arithmetic. In such cases, the interval values may not be
good in the sense that they are only crude bounds on the actual range of

R. B. KEARFOTT

the function. More experience with this type of problem is desirable.
It is clear that we may make improvements to widen the range of

applicability to ill-conditioned problems, large problems, and problems for
which the degree of nonlinearity varies across the components. A promising
approach is to design better preconditioner matrices Yk. An example of this
appears in [10].

References

[1] G. ALEFELD and J. HERZBERGER, Introduction to Interval Com-

putations, Academic Press, New York, etc., 1983.

[2] BARNETT, S., Introduction to Mathematical Control Theory , Claren-
don Press, Oxford, 1975.

[3] J. H. BLEHER, S. M. RUMP, U. KULISCH, M. METZGER, and W.
WALTER, “Fortran-SC – A Study of a Fortran Extension for Engineer-
ing Scientific Computations with Access to ACRITH”, Computing , v.
39, 1987, pp. 93–110.

[4] J. GARLOFF, “Interval Mathematics: A Bibliography”, preprint, In-
stitut für Angewandte Mathematik der Universität Freiburg, Freiburg-
er Intervall-Berichte, v. 85, 1985, pp. 1–222.

[5] J. GARLOFF, “Bibliography on Interval Mathematics, Continuation”
preprint, Institut für Angewandte Mathematik der Universität Frei-
burg, Freiburger Intervall-Berichte, v. 87, 1987, pp. 1–50.

[6] E. R. HANSEN, “On Solving Systems of Equations Using Interval
Arithmetic”, Math. Comp., v. 22, 1968, pp. 374–384.

[7] E. R. HANSEN, “An Overview of Global Optimization Using Interval
Analysis”, in Reliability in Computing , R. E. Moore, Ed., Academic
Press, New York, 1988.

[8] R. B. KEARFOTT, “Abstract Generalized Bisection and a Cost
Bound”, Math. Comp., v. 49, 1987, pp. 187–202.

[9] R. B. KEARFOTT, “Some Tests of Generalized Bisection”, ACM

Trans. Math. Software, v. 13, 1987, pp. 197–220.

[10] R. B. KEARFOTT, “Preconditioners for the Interval Gauss-Seidel Me-
thod”, submitted to SIAM J. Numer. Anal., 1988.

INTERVAL TECHNIQUES

[11] R. B. KEARFOTT, “Interval Arithmetic Techniques in the Computa-
tional Solution of Nonlinear Systems of Equations: Introduction, Ex-
amples, and Comparisons”, to appear in the proceedings of the 1988
AMS-SIAM Summer Seminar in Applied Mathematics, Colorado State
University, July 18-29, 1988.

[12] R. B. KEARFOTT, and M. NOVOA, “A Program for Generalized
Bisection”, submitted to ACM Trans. Math. Software, 1988.

[13] R. B. KEARFOTT, “Interval Arithmetic Methods for Monlinear Sys-
tems and Nonlinear Optimization: An Outline and Status”, to appear
in The Impact of Recent Computer Advances on Operations Research,
Elsevier, New York, 1989.

[14] R. E. MOORE, “A Test for Existence of Solutions to Nonlinear Sys-
tems”, SIAM J. Numer. Anal., v. 14, 1977, pp. 611–615.

[15] R. E. MOORE, and S. T. JONES, “ Safe Starting Regions for Iterative
Methods”, SIAM J. Numer. Anal., v. 14, 1977, pp. 1051–1065.

[16] R. E. MOORE, Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

[17] R. E. MOORE, ed., Reliability in Computing , Academic Press, New
York, etc., 1988.

[18] A. P. MORGAN, Solving Polynomial Systems Using Continuation for

Engineering and Scientific Problems, Prentice-Hall, Englewood Cliffs,
NJ, 1987.

[19] A. NEUMAIER, “Interval Iteration for Zeros of Systems of Equations”,
BIT, v. 25, 1985, pp. 256-273.

[20] K. NICKEL, “On the Newton Method in Interval Analysis”, Technical
Report 1136, Mathematics Research Center, University of Wisconsin,
Madison, 1971.

[21] K. NICKEL, “Optimization Using Interval Mathematics”, preprint,
Institut für Angewandte Mathematik der Universität Freiburg, Frei-
burger Intervall-Berichte, v. 86, 1986, pp. 55–83.

[22] L. B. RALL, “An Introduction to the Scientific Computing Language
Pascal-SC”, Comput. Math. Appl., v. 14, 1987, pp. 53–69.

R. B. KEARFOTT

[23] H. RATSCHEK and J. G. ROKNE, Computer Methods for the Range

of Functions, Horwood, Chichester, England, 1984.

[24] H. SCHWANDT, “An Interval Arithmetic Approach for the Construc-
tion of an Almost Globally Convergent Method for the Solution of
the Nonlinear Poisson Equation”, SIAM J. Sci. Statist. Comput., v.
5,1984, pp. 427–452.

[25] F. STENGER, “Numerical Methods Based on Whittaker Cardinal, or
Sinc Functions”, SIAM Rev., v. 23, 1981, pp. 165–223.

[26] G. W. WALSTER, E. R. HANSEN, and S. SENGUPTA, “Test Re-
sults for a Global Optimization Algorithm”, in Numerical Optimiza-

tion 1984, (Boulder, Colo., June 12–14), SIAM, Philadelphia, 1985,
pp. 272–287.

[27] W. WALTER and M. METZGER, “Fortran-SC, A Fortran Extension
for Engineering/Scientific Computation with Access to ACRITH”, in
Reliability in Computing , R. E. Moore, ed., Academic Press, New
York, etc., 1988.

