
æ

Decomposition of Arithmetic Expressions to Improve the
Behavior of Interval Iteration for Nonlinear Systems

Verbesserung der Intervalliteration für nichtlineare
Gleichungssysteme durch Zerlegung arithmetischer Ausdrücke

R. Baker Kearfott

Department of Mathematics
University of Southwestern Louisiana

Abstract. Interval iteration can be used, in conjunction with other tech-
niques, for rigorously bounding all solutions to a nonlinear system of
equations within a given region, or for verifying approximate solutions.
However, because of overestimation which occurs when the interval Ja-
cobian matrix is accumulated and applied, straightforward linearization
of the original nonlinear system sometimes leads to nonconvergent iter-
ation.

In this paper, we examine interval iterations based on an expanded
system obtained from the intermediate quantities in the original system.
In this system, there is no overestimation in entries of the interval Ja-
cobi matrix, and nonlinearities can be taken into account to obtain
sharp bounds. We present an example in detail, algorithms, and de-
tailed experimental results obtained from applying our algorithms to
the example.

Intervalliterationen Können in Verbindung mit anderen Verfahren
verwendet werden, um alle Lösungen eines nichlinearen Gleichungsys-
tems in einem gegebenen Gebiet mit Sicherheit abzuschätzen, und auch
um Approximationen der Lösungen solcher Systeme zu verifizieren. Die
Abschätzungen in den Verfahren sind jedoch manchmal nicht hinre-
ichend genau, da Überschätzungen in der Berechnung und in dem Ge-
brauch der Invervall-Jacobi Matrix auftreten.

In der vorliegenden Arbeit werden Intervalliterationen auf einem
erweiterten Gleichungssystem behandelt. In diesem System gibt es keine
Überschätzungen der Einzelkomponenten der Intervall-Jacobi Matrix,
und für die Nichtlinearitäten können Abschätzungen angegeben wer-
den. Anhand eines Beispiels wird die Wirkungsweise der behandelten
Algorithmen demonstriert.

AMS Subject Classifications: Primary: 65H10; Secondary: 65G10
keywords: nonlinear algebraic systems, interval arithmetic, automatic
differentiation

1. Introduction, Notation, and Goals

Our general goal is to solve the following problem.

Find, with certainty, approximations to all solu-
tions of the nonlinear system

F (X) =







f1(x1, x2, . . . , xn)
...

fn(x1, x2, . . . , xn)





 = 0,

where bounds xi and xi are known such that

xi ≤ xi ≤ xi for 1 ≤ i ≤ n.

We write X = (x1, x2, . . . , xn)T , and we denote the box given by the
inequalities on the variables xi by B.1

In contrast to other techniques, which typically converge rapidly to
an approximation to a particular solution, interval iteration in conjunc-
tion with generalized bisection can be used to solve (1.1) with mathe-
matical rigor, or to verify solutions which have been found by some other
method. In these methods, we first transform F (X) = 0 to the linear
interval system

(1.2) F′(Xk)(X̃k −Xk) 3 −F (Xk),

where F′(Xk) is a suitable interval extension of the Jacobian matrix over
the box Xk (with X0 = B), and where Xk ∈ Xk represents a predictor
or initial guess point. If we then use some technique (such as Gaussian
elimination with interval arithmetic, the interval Gauss–Seidel method,
the Krawczyk method, etc.; cf. [16, ch. 4]), to formally “solve” (1.2),
the mean value theorem and properties of interval arithmetic imply that
the resulting box X̃k will contain all solutions to F (X) = 0 in Xk. We
may then iterate Xk+1 with the formula

(1.3) Xk+1 = Xk ∩ X̃k,

to obtain tighter bounds on all possible roots.
Good introductions to interval arithmetic are [1] or [15]. A thor-

ough treatement of use of interval arithmetic in solving nonlinear systems
of equations is [17].

If the coordinate intervals of Xk+1 are not smaller than those of
Xk, then we may bisect one of these intervals to form two new boxes;

1Throughout the paper, we will denote interval quantities with boldface letters. Vec-
tors and matrices will be denoted with capital letters.

2

we then continue the iteration (1.3) with one of these boxes, and put
the other one on a stack for later consideration. (This procedure was
suggested by Moore and Jones in [14], in [20], and perhaps even ear-
lier.) For a general treatement of this procedure in the abstract, see
[8]; for a more sophisticated version, see [9]. As explained there and
elsewhere, the following fact (from [15, p. 263]) allows such a composite
generalized bisection algorithm to compute all solutions to (1.1(b)) with
mathematical certainty . We have,

(1.4)

for many methods of solving (1.2), if X̃k ⊂ Xk,
then the system of equations in (1.1) has a unique
solution in Xk. Conversely, if X̃k ∩Xk = ∅ then
there are no solutions of the system in (1.1) in Xk.
(cf. [16], theorems 5.1.7, 5.1.8, etc. for specifics.)

For efficiency, repeated bisections are to be avoided. Thus, we wish
to arrange the interval iteration (1.3) so that the image of Xk+1 under
the solution process is as small as we can make it with a reasonable
amount of effort. This is the general task this paper addresses.

We write X = (x1,x2, . . . ,xn) for Xk and we write f ′i,j for the
interval in the i-th row and j-th column of F′ = F′(X). Similarly, we
write2 F (Xk) = F = (f1, f2, . . . , fn)T , and Xk = (x1, x2, . . . , xn)T , so
that (1.2) becomes

(1.5) F′ · (X̃k −Xk) 3 −F.

As explained in [17], the preconditioned interval Gauss–Seidel me-
thod is superior to many ways of iteratively obtaining sharper solution
bounds X̃k (cf. [17], 4.3.5 and 4.3.6 on p. 138). Assuming that the
system has already been preconditioned, the method may be stated as

Algorithm 1.1. (Interval Gauss-Seidel) Do the following for i = 1 to
n.

1. Compute

(1.6) x̃i = xi −





fi +
n

∑

j=1
j 6=i

f ′i,j(xj − xj)







/

f ′i,i

2Though the components of F are, in theory, point values and not intervals, they
must be evaluated in interval arithmetic with directed roundings or else roundoff
error may cause Algorithm 1.1 to miss a root.

3

using interval arithmetic.
2. If x̃i ∩ xi = ∅, then signal that there is no root of F in X, and

continue the generalized bisection algorithm.
3. (Prepare for the next coordinate)

(a) Replace xi by xi ∩ x̃i.
(b) Possibly re-evaluate F′(Xk) to replace F′ by an interval matrix

whose corresponding widths are smaller.

To avoid bisections in generalized bisection algorithms or to enable
Algorithm 1.1 to be applied on its own in as many situations as possible,
we attempt to arrange the computations so that x̃i in (1.6) has small
width. In the past, we have studied two approaches to this. The first
(in common use in one form or another) is to precondition (1.5), i.e., to
multiply both sides of (1.5) on the left by some matrix Y so that the
resulting widths of the intervals x̃i in the interval Gauss–Seidel method
are smaller. (See [10] and [19].) The second approach is to formally solve
for one or more variables (not necessarily xi) in the i-th containment
of (1.5), to use in iteration as in (1.6). (In particular, we may solve for
each variable in each equation.) See [6] or [7] for presentations of this.
This second approach does not force convergence in as many cases as
more general preconditioners Y , but it is less costly per iteration, and
is often effective.

Aside from properties intrinsic to the system of equations F (X) =
0, various phenomena will prevent the bounds x̃i from being smaller
than the original intervals xi. Some of these phenomena are related to
the method of solution of the linear system (1.2) (provided we explicitly
form that system). We refer the reader to the treatise [17] and to our
recent work [6], [7], [10], [11], and [19] for efficient techniques to obtain
reasonably sharp X̃k, given F′(Xk)3.

Other phenomena preventing the bounds x̃i from being small are
related to the fact that component intervals from the expression

(1.7) F (Xk) + F′(Xk)(Xk −Xk)

which is implicit in (1.2) are only bounds on the range of the component
functions of F over Xk, and are not sharp. The following are salient
reasons for this.

(i) The entries of the interval Jacobain matrix F′(Xk) may not be
sharp bounds on the ranges of the corresponding entries of the
scalar Jacobian matrix.

3These techniques are empirically of a fairly low computational complexity, and give
optimal results in a certain sense; see [10], [11], and [19]; computation of the actual
solution set, see results of Rohn, summarized in [17], ch. 6.

4

(ii) (1.7) is only a linear model of a nonlinear function.
(iii) Even if the individual entries of F′(Xk) are sharp bounds, the ac-

tual matrix F′(Xk) may not sharply include the set of operators
{F ′(X) | |X ∈ Xk}.

Item (i) is due in a large part to the fact that interval arithmetic
is only sub-distributive. We remind readers of the problem with the
following example. If

f(x) = x(x− 1)(x− 2),

then the range of f on [−3, 3] is [−60, 6] whereas the straightforward
interval evaluation gives

f([−3, 3]) = [−3, 3][−4, 2][−5, 1] = [−12, 12][−5, 1] = [−60, 60].

Likewise, the range of the derivative

f ′(x) = 3x2 − 6x + 2

is [−1, 47] but its interval value is

[0, 27]− [−18, 18] + [2, 2] = [−16, 47].

The problem is that the three factors x, (x− 1), and (x− 2) do not vary
independently, but the interval arithmetic implicitly assumes that they
do. (This phenomenon is commonly referred to as interval dependency.)
Let us, however define

v1 = x,

then set

v2 − (v1 − 1) = 0,

v3 − (v1 − 2) = 0,

v4 − (v1v2) = 0,

and v3v4 = 0;

then entries of the interval Jacobian matrix for the resulting system of
four equations in v1, v2, v3, and v4 are equal to the corresponding ranges.
Furthermore, if v2, v3, and v4 are initially set via forward substitution,
then the explicit form of the 4 by 4 system can be utilized, whereas
the pre-accumulated derivative value [−16, 47] has lost this information.
(Note that the last equation in this system corresponds to the original

5

equation, and thus does not contain any additional intermediate vari-
ables.)

The above process does not eliminate interval dependencies in the
overall system, but transforms the system to one in which precondition-
ing is more effective.

As an example of (ii), take the very simple equation x2−x2
1 = 0. If

we are doing interval iteration, then the equation corresponding to (1.6)
for x1 in terms of x2 could be

x̃1 = x1 −
[

(x2 − x2
1) + (x2 − x2)

]

/(−2x1).

If we take current interval value for x1 to be [−2, 2] and the current
interval value of x2 to be [0, 1], and if we take the corresponding scalar
values x1 and x2 to equal the midpoints x1 = 0 and x2 = .5, the above
equation becomes

x̃1 = 0− [.5 + [−.5, .5]]/[−4, 4],

so that x̃1 is the entire real line. However, we may explicitly compute the
(multivalued) inverse of the elementary function f(x1) = x2

1 to obtain
x1 ∈ [−1, 0] = −√x2 or x1 ∈ [0, 1] =

√
x2. When this is done, we obtain

the better bounds [−1, 1] for the interval value of x1. Note that this can
be thought of as a nonlinear interval Gauss–Seidel step, and is not the
same as an interval Gauss–Seidel step without preconditioning.

Item (iii) above is due partially to the fact that the matrices

{F ′(X) | X ∈ Xk}

do not fill the box F′(Xk) ∈ Rn×n. To get sharper bounds, we may
use interval slopes in lieu of F′; this is described in [13], [18], and [21].
Though, for simplicity of exposition and implementation, we do not
make use of these techniques in this paper, they may be employed in
conjunction with the techniques we do present.

In this paper, we consider a derived, or expanded system based
on the code list, in which only one elementary operation or only one
elementary function evaluation occurs in each equation. Such a code list
is generated naturally by a compiler as a result of parsing an arithmetic
expression, and has been used as a tool in various contexts. For example,
in [4] Griewank bases an automatic differentiation technique for efficient
computation of steps for the classical Newton method on it. In [2], Böhm
develops a method based on the code list which transforms the problem
of optimally accurate evaluation of arithmetic expressions to optimally

6

accurate solution of a linear system of equations4. Similar uses of the
code list were undoubtedly advocated even earlier by Rall and others.

In our context (that of problem (1.1), considering the intermediate
quantities in the code list to be variables accomplishes the following two
things:
• We explicitly spell out the interval dependencies in the system, so

that each of the new equations is an exact range; though dependen-
cies seemingly are reintroduced during the algorithmic process, the
explicit form of the larger system is more effective in conjunction
with our optimizing preconditioners.

• We use explicit inverses of the elementary functions in a separate
iteration process. This is roughly analogous to a Gauss–Seidel step
without preconditioner on the larger system, but leads to sharper
results, as we do not first do a linearization for interval inclusions,
but compute exact ranges of nonlinear functions.

Additionally, the complexity theory (concerning the number of opera-
tions required to evaluate the Jacobian matrix) in [4] and techniques for
automating the process in [4] (related to automatic differentiation) is
applicable in our context.

The goal of this paper is to present examples and algorithms. In §2,
we introduce a simple example problem which requires extensive gener-
alized bisection to solve if it is not decomposed, but which requires only a
few iterations if the expanded system is utilized appropriately. In §3, we
present our algorithm. In §4, we present experimental results in detail
for our example problem, as well a results on several problems when we
imbed the algorithm in a generalized biection code. In §5, a variant of
our algorithm is pointed out to be at least as good as the similarly pre-
conditioned interval Gauss–Seidel method applied to the original system.
A discussion in the context of the Hansen/Greenberg algorithm appears
in §6. Conclusions and avenues for further work appear in §7.

2. An Example

Here, we present a detailed example to illustrate how decomposition
of the arithmetic expressions can be useful. As above, we note that the
resulting equations do not eliminate interval dependencies in the entire,
coupled system, but allow computation of exact bounds on intermediate
results of the evaluations.

4Unfortunately, Böhm’s techniques are not directly applicable here, since in our
context, the original quantities, in addition to the intermediate ones, must be thought
of as variables.

7

Example 2.1. Define F (X) : R2 → R2 by

f1(x1, x2) = x3
1 + x2

1x2 + x2
2 + 1

f2(x1, x2) = x3
1 − 3x2

1x2 + x2
2 + 1,

set the initial box to

X =
(

x1

x2

)

=
(

[−2, 0]
[−1, 1]

)

,

and initial guess point

X =
(

−1
0

)

.

We note that, within the box, this system of equations has a unique
solution at the initial guess point (−1, 0)T . However, the interval Jaco-
bian matrix is

F′(X) =
(

3x2
1 + 2x1x2 x2

1 + 2x2
3x2

1 − 6x1x2 −3x2
1 + 2x2

)

=
(

[−4, 16] [−2, 6]
[−12, 24] [−14, 2]

)

.

Therefore, since F′(X) contains the zero matrix, Y F′(X) will contain
the zero matrix for any preconditioner Y . Thus, the denominator in
(1.6) will contain zero, regardless of how the function is preconditioned,
and each component of X̃k will be infinite if it is obtained via the interval
Gauss–Seidel method; if, in addition, F (Xk) is small, then

X̃k =
(

R
R

)

.

However, we may use the technique in [4] to rewrite the system in terms
of its component operations as follows.

Example 2.1(b). (Example 2.1 rewritten in terms of its component
operations) Set

(2.1)

v1 = x1 v2 = x2

v3 = v2
1 v4 = v2

2

v5 = v3v2 v6 = v3
1

v7 = v6 + v4 + 1
v7 + v5 = 0

v7 − 3v5 = 0,

8

so that we have the expanded nonlinear system of equations

(2.2) FE(V) =



















v3 − v2
1

v4 − v2
2

v5 − v3v2
v6 − v3

1
v7 − (v6 + v4 + 1)

v7 + v5
v7 − 3v5



















=



















0
0
0
0
0
0
0



















.

Use forward substitution with (2.1), starting with v1 = [−2, 0] and v2 =
[−1, 1] to obtain the initial box

(2.3) V =



















v1
v2

v3

v4
v5

v6

v7



















=



















[−2, 0]
[−1, 1]
[0, 4]
[0, 1]

[−4, 4]
[−8, 0]
[−7, 2]



















and initial guess point

(2.3b) V =



















v1

v2

v3

v4

v5

v6

v7



















=



















−1
0
2
0.5
0

−4
−2.5



















.

Since it is now possible to (formally) solve for any variable in any
equation in which it occurs, we may now use (2.2) directly to compute
tighter bounds in a way not possible in the original system. For example,
we may solve for v5 in equation 6 to obtain

ṽ5 = −v7 = [−2, 7],

and we may replace v5 by v5 ∩ ṽ5 = [−2, 4]. We may then solve for v5

in equation 7 to obtain

ṽ5 = v7/3 = [−7
3
,
2
3
],

9

and we may replace v5 by v5 ∩ ṽ5 = [−2, 2/3]. Finally, we may solve for
v7 in equation 6 to obtain

ṽ7 = −v5 = [−2
3
, 2],

and we may replace v7 by v7 ∩ ṽ7 = [−2/3, 2]. (Note: The above three
computations were equivalent to Gauss–Seidel steps. However, this is in
general not the case. For example, it may have been advantageous to
solve for v1 in the first equation, to obtain

ṽ1 = −
√

v3 ∪
√

v3,

where the right member must represent a smaller set than that obtained
from the corresponding Gauss–Seidel method, which would be

ṽ1 = v1 −
[

(v3 − v2
1) + (v3 − v3)

]

/(−2v1).

The Jacobi matrix of FE is



















−2v1 1
−2v2 1
−v3 −v2 1

−3v2
2 1

−1 −1 1
1 1
−3 1



















,

where blank entries are zero. The initial interval value of this matrix is

F′E(V) =



















[0, 4] 1
[−2, 2] 1
[−4, 0] [−1, 1] 1

[−3, 0] 1
−1 −1 1

1 1
−3 1



















.

Even though the formal determinant detF′E(V) contains zero, man-
y of the entries do not, and optimizing preconditioners as in [9] can still
be effective. For example, if, after making the above substitutions, we
use the width-optimizing preconditioner row

Y5 = (0, 0, 0, 0, 0,−.25, .25),

10

we obtain
Y5F′E(V) = (0, 0, 0, 0,−1, 0, 0).

If we use v5 = m(v5) = (−2 + 2/3)/2 = −4/3 and v7 = m(v7) =
(−2/3 + 2)/2 = 4/3, we obtain the point value

FE(V) = (1, 1/2,−4/3,−3, 23/6, 0, 16/3)T ,

and
Y5FE(V) = (0, 0, 0, 0, 4/3, 0, 0)T .

Using these preconditioned values in place of f ′5,∗ and f5 in (1.6), we
obtain

x̃5 = −4/3− [4/3] /([−1,−1]) = [0, 0],

a substantial improvement over the previous value of [−2/3, 2].
In §4, we indicate how continuation of this process results in prop-

agation of such width improvements in this example back to the original
variables v1 and v2. Such improvements are not possible, even with
optimizing preconditioners, when the original system is used; solution of
the original system would require a more lengthy generalized bisection
process.

3. Algorithms

In this section, we specify two algorithms for performing interval
iterations on expanded systems, corresponding to the two processes il-
lustrated in Example 2.1(b). We view these two algorithms as a single
composite algorithm, with the output of the first algorithm serving as
input to the second.

In the first algorithm, we obtain exact ranges based on solving (non-
linearly) for each variable in each equation; as mentioned, this can be
done because each equation in the expanded system FE(V) = 0 contains
only a single operation or a single elementary function. In the second
algorithm, we employ the optimizing preconditioners from [10] and [19]
to perform a preconditioned interval Gauss–Seidel iteration. Though
the two algorithms are to a large extent analogous, the second algori-
thm is necessary because, even though the nonlinear solution technique
is superior to non-preconditioned Gauss–Seidel iteration, more than one
equation must often simultaneously be considered to obtain width re-
ductions.

11

Algorithm 3.1. (Solution for each variable in each equation, using
exact ranges on the inverses of elementary operations and functions)

0. (Input) Let N be the dimension of the original system (as in Ex-
ample 2.1) and let NE be the dimension of the expanded system
(as in Example 2.1(b)).

a) Input initial interval values vj , 1 ≤ j ≤ N .
b) Via forward substitution using equations analogous to the

third through seventh equation of (2.1), compute vN+1 to
vNE .

c) Input a convergence tolerance ε.
1. (Initial Scan on all variables)

For i = 1 to NE DO:
For each equation index j such that vi occurs in the j-th
equation DO:

a) Compute bounds ṽi on the i-th variable in the j-th equa-
tion by using the analytic solution for it.

b) If ṽi ∩ vi = ∅, then return, indicating that there are no
roots of the function within the box given by (v1, . . . ,vN).

c) If ṽi ∩ vi 6= vi, then
(i) push i onto a stack V of variables which have been

changed.
(ii) Replace vi by ṽi ∩ vi.

END DO
END DO

2. (Return if diameters are small enough) If the widths w(vk)
are each less than ε for k = 1, · · · , N , then return indicating con-
vergence to tight solution bounds5

3. (Adjustment of variables coupled to changed variables)
DO WHILE the stack V is nonempty:

a) Pop an index i from the stack V.
b) For each equation index j such that the j-th equation depends

on the i-th variable DO:
For each variable index l 6= i such that vl appears in the
j-th equation DO:
(i) Compute bounds ṽl on the l-th variable in the j-th

equation by using the analytic solution for it.
(ii) If ṽl ∩vl = ∅, then return, indicating that there are

no roots of the function within the box given by vk,
k = 1, · · · , N .

5Another possibility here is that not enough digits are carried to determine that there
are no solutions.

12

(iii) If ṽl ∩ vl 6= vl, then
(α) push l onto the stack V of variables which have

been changed, provided l is not already on the
stack.

(β) Replace vl by ṽl ∩ vl.
END DO

END DO
END DO

4. Return.

The actual bound computation in Algorithm 3.1 occurs in step 1a)
and step 3b)(i). As an example of this, suppose the function is as in
Example 2.1(b), but suppose we have v4 = [0, 4], and v2 = [−9, 9], and
suppose we enter step 3b)(i) of Algorithm 3.1 with i = 4, j = 2, and
l = 2. Then we would have

ṽ2 = ±
√

v4 = [−2, 0] ∪ [0, 2] = [−2, 2],

so
ṽ2 ∩ v2 = [−2, 2] ∩ [−9, 9] = [−2, 2] 6= v2,

and the step would result in tighter bounds on v2.
We note that, had the current value of v4 been, say, [1, 4], then

ṽ2 = [−2,−1] ∪ [1, 2],

so ṽ2 ∩ v2 would have been a union of two disjoint intervals; this case
can be handled within the generalized bisection framework by pushing
one of the boxes V so obtained onto a stack for later consideration,
just as if it had been produced via generalized bisection. This would
probably result in a reasonable algorithm, but one which is somewhat
more complicated. In our initial investigations, we have replaced such
sets of two disjoint intervals by their convex hull which, though not
representing sharp bounds, results in a somewhat simpler algorithm.
(We could handle division by intervals containing zero similarly, but we
similarly do not allow this case in these initial experiments.)

Step 1 of Algorithm 3.1 is similar to application of the all row pre-
conditioner described in [7] and [11], except that we use sharp functional
inverses instead of solving for the variable in a linearization.

The next algorithm is similar to Algorithm 3.1, except that we use
the preconditioned interval Gauss–Seidel method to compute bounds x̃i
for the i-th variable, instead of solving for it in each equation which
contains it. The preconditioner is functionally identical to that in [10],

13

but is computed with the improvements expounded in [19]. Execution
of this algorithm is usually more costly per loop iteration than that of
Algorithm 3.1, but is reasonable in many cases in which tight bounds
on a variable cannot be obtained by just using a single equation.

Algorithm 3.2. (Using the linear programming preconditioner)
0. (Input) Input as in step 0 of Algorithm 3.1, or else use the output

V of algorithm 3.1.
1. (Initial Scan on all variables)

For i = 1 to NE DO:
a) Compute a new interval ṽi for the i-th variable by using the

preconditioned interval Gauss–Seidel method with LP precon-
ditioner as in [10] and [19].

b) If ṽi ∩ vi = ∅, then return, indicating that there are no roots
of the function within the box given by vk, k = 1, · · · , N .

c) If ṽi ∩ vi 6= vi, then
(i) push i onto a stack V of variables which have been changed.
(ii) Replace vi by ṽi ∩ vi.

END DO
2. (Return if widths are small) If the widths w(vk) are each less

than ε for k = 1, · · · , N , then return indicating convergence to tight
solution bounds.

3. (Adjustment of variables coupled to changed variables)
DO WHILE the stack V is nonempty:

a) Pop an index i from the stack V.
b) (Adjustment with explicit functional inverses) For each

equation index j such that the j-th equation depends on the
i-th variable DO:

For each variable index l 6= i such that vl appears in the
j-th equation DO:
(i) Compute bounds ṽl on the l-th variable in the j-th

equation by using the analytic solution for it.
(ii) If ṽl ∩ vl = ∅, then return, indicating that there

are no roots of the function within the box given by
(v1, · · · ,vN).

(iii) If ṽl ∩ vl 6= vl, then
(α) push l onto a stack V of variables which have

been changed, provided l is not already on the
stack.

(β) Replace vl by ṽl ∩ vl.
END DO

END DO

14

c) (Adjustment of variables coupled to changed variables
via the LP preconditioner; only do the adjustment on
those variables which were not changed in step 3.) For
each index l 6= i which just occurred in step 3b)(i) whose
variable width w(vl) is greater than ε and whose width was
not decreased in step 3b)(iii)(β), DO:
(i) Compute a new interval ṽl for the l-th variable by using

the preconditioned interval Gauss–Seidel method with
LP preconditioner as in [10] and [19].

(ii) If ṽl ∩ vl = ∅, then return, indicating that there are no
roots of the function within the box given by (v1, · · · ,vN).

(iii) If ṽl ∩ vl 6= vl, then
(α) push l onto a stack V of variables which have been

changed, provided l is not already on the stack.
(β) Replace vl by ṽl ∩ vl.

d) (Return if convergence has occurred) If the widths w(vk)
are each less than ε for k = 1, · · · , N , then return indicating
convergence to tight solution bounds.
END DO

END DO
4. Return.

As mentioned, it is usually relatively inexpensive to use functional
inverses in single equations, compared to solving the linear programming
problems, applying the resulting preconditioner row, and then perform-
ing the interval Gauss–Seidel method (or, equivalently, the interval Ja-
cobi method, since we are just examining a single row), as in step 1a)
and 3c)(i) of Algorithm 3.2. Furthermore, due to nonlinearities, there
are cases when the explicit functional inverses could give tighter bounds
than the interval Gauss–Seidel method. This is why we include step
3b) before step 3c) in Algorithm 3.2. Similarly, it is reasonable to first
execute Algorithm 3.1, then immediately execute Algorithm 3.2 in the
overall root-finding process.

The Jacobi matrix of the expanded system is always very sparse;
we highlight this in

Lemma 3.3. Suppose that evaluation of the components fi in the orig-
inal nonlnear system is decomposed in such a way that only a single
unary or binary operation is involved in each equation of the resulting
expanded system. Then the derived system has at most three nonzero
entries in each row of its Jacobi matrix.

To see the validity of lemma 3.3, observe that an equation in the
resulting derived system depends only on the variables in each operand

15

and on the variable defined to be the result of the operation. See also e.
g. [4] for more theory and operations counts.

In some cases, we may wish to allow certain rows of the Jacobi
matrix to be more dense, such as when we consider a dot product to be
a single operation.

Sparse form is necessary for the method to be practical on many
problems. We have found it useful to index the Jacobi matrix both on
its rows and on its columns. Furthermore, sparse linear programming
solvers are applicable for computing the preconditioners.

4. Experimental Results
We have implemented Algorithm 3.1 and Algorithm 3.2 in Fortran

77, and have run them on an IBM PC-compatible after compiling with
the Microsoft Fortran compiler. We linked with the interval arithmetic
package associated with INTBIS ([12]). We first ran Algorithm 3.1 on
Example 2.1(b). We then used the box returned by Algorithm 3.1 as
input to Algorithm 3.2. We obtained the following results.
In step 1 of Algorithm 3.1:

1. Solving for variable i = 5 in equation number j = 6, we obtained

ṽ5 ≈ [−2, 4].

2. Solving for variable i = 5 in equation number j = 7, we obtained

ṽ5 ≈
[

−2,
2
3

]

.

3. Solving for variable i = 7 in equation number j = 6, we obtained

ṽ7 ≈
[

−2
3
, 2

]

.

No bounds were tightened in Step 3 of Algorithm 3.1. Thus we obtained
the following upon return from Algorithm 3.1:

(4.1) V ≈



















[−2, 0]
[−1, 1]
[0, 4]
[0, 1]

[−2, 2/3]
[−8, 0]

[−2/3, 2]



















Consistent with our view of Algorithm 3.1 and Algorithm 3.2 as
a single composite algorithm, we used the bounds (4.1) upon entry to
Algorithm 3.2; we used ε ≈ 10−5, with the following results.

16

In step 1 of Algorithm 3.2:
1. Performing a preconditioned Gauss–Seidel step for variable i = 5,

we obtained
ṽ5 ≈ [−1.8× 10−15, 1.6× 10−15].

2. Performing a preconditioned Gauss–Seidel step for variable i = 6,
we obtained

ṽ6 ≈ [−2,−1].

3. Performing a preconditioned Gauss–Seidel step for variable i = 7,
we obtained

ṽ7 ≈ [−1.2× 10−15, 1.3× 10−15].

In step 3b) of Algorithm 3.2:
4. From changed variable i = 6, using equation j = 4, variable l = 1

was tightened to
ṽ1 ≈ [−1.26,−1].

5. From changed variable i = 1, using equation j = 1, variable l = 3
was tightened to

ṽ3 ≈ [1, 1.587].

6. From changed variable i = 3, using equation j = 3, variable l = 2
was tightened to

ṽ2 ≈ [−1.8× 10−15, 1.6× 10−15].

In step 3c) of Algorithm 3.2:
7. Performing a preconditioned Gauss–Seidel step for variable i = 1,

we obtained
ṽ1 ≈ [−1.037,−1].

In step 3b) of Algorithm 3.2:
8. From changed variable i = 1, using equation j = 1, variable l = 3

was tightened to
ṽ3 ≈ [1, 1.075].

9. From changed variable i = 1, using equation j = 4, variable l = 6
was tightened to

ṽ6 ≈ [−1.115,−1].

In step 3c) of Algorithm 3.2:
10. Performing a preconditioned Gauss–Seidel step for variable i = 3,

we obtained
ṽ3 ≈ [1, 1.002].

17

In step 3b) of Algorithm 3.2:
11. From changed variable i = 6, using equation j = 5, variable l = 4

was tightened to
ṽ4 ≈ [0, .1151].

In step 3c) of Algorithm 3.2:
12. Performing a preconditioned Gauss–Seidel step for variable i = 1,

we obtained
ṽ1 ≈ [−1.001,−1].

In step 3b) of Algorithm 3.2:
13. From changed variable i = 1, using equation j = 1, variable l = 3

was tightened to
ṽ3 ≈ [1, 1.002].

13. From changed variable i = 1, using equation j = 4, variable l = 6
was tightened to

ṽ6 ≈ [−1.003,−1].

In step 3c) of Algorithm 3.2:
14. Performing a preconditioned Gauss–Seidel step for variable i = 3,

we obtained
ṽ3 ≈ [1, 1].

In step 3b) of Algorithm 3.2:
15. From changed variable i = 6, using equation j = 5, variable l = 4

was tightened to
ṽ4 ≈ [0, 2.93× 10−3].

In step 3c) of Algorithm 3.2:
16. Performing a preconditioned Gauss–Seidel step for variable i = 1,

we obtained
ṽ1 ≈ [−1,−1].

It is informative to examine some of the statistics concerning ex-
ecution of the preconditioned Gauss–Seidel steps in Algorithm 3.2. In
some instances step 3c)(i) cannot be completed because the appropriate
preconditioner does not exist. However, in the example, step 3c)(i) was
completed a total of 16 times; of these, we observe that 5 resulted in
successful tightening of the bounds.

Since the Jacobi matrices resulting from the expanded system are
in general extremely sparse, it is of interest to note how many entries
of the preconditioner are nonzero. In particular, if the Jacobi matrix
approximates a point matrix (i.e. if the bounds in the entries are tight),
then the preconditioner vector for the i-th variable may approximate

18

the i-th row of the inverse of this point matrix. Results by Duff et
al ([3]) indicate that we may expect the inverse of an arbitrary sparse
matrix to be dense. However, we observed in the example that most
preconditioner rows had only one or two nonzero entries, as indicated in
the following table

Table 1. Number of Nonzero entries in Preconditioner Row
Results from Example 2.1(b)

No. nonzeros 1 2 3 4 5 6 7
No. preconditioners 8 2 4 0 0 2 0

This observation can save execution time, since preconditioners
with just one non-zero entry correspond to a Gauss–Seidel step which is
an imperfect, linearized version of a step which was already performed
exactly in Step 3b) of the algorithm; that is, it can be proven that none
of the preconditioners with only one non-zero entry would result in tight-
ening of bounds. Thus, in the example, only 8 Gauss–Seidel steps need
have been completed, and 5 of them would have successfully tightened
variable bounds. (We also note that, with improvements in [19], our
preconditioner computations usually represent only a small portion of
the work in the overall Gauss–Seidel step, especially when the resulting
optimal preconditioner has only a few nonzero entries.)

We implemented the function and inverse evaluations in steps 1a)
and 3b) of Algorithm 3.1 and Algorithm 3.2 by table lookup by equa-
tion and variable, so that no redundant function evaluations were done.
However, we explicitly programmed the function and inverse function
evaluations using assembly language-like calls to our interval arithmetic
package; we similarly programmed the function and Jacobi matrix re-
quired for executing the Gauss–Seidel steps.

In another test, we embedded the Algorithm 3.1–3.2 combination
into an update of our generalized bisection code INTBIS of [12]; specif-
ically, we replaced the routine for the interval Gauss–Seidel iteration by
Algorithm 3.1–3.2; we then compared the results to those obtained with
identical input, but with the original system of equations and a hybrid
optimally preconditioned scheme (Algorithm 5.1 in [11]). We tried the
following functions and initial boxes.

1. The example from §2, but with an initial box of

X0 =
(

[−200, 200]
[−200, 200]

)

This problem has only one solution in the box.
This example is simple enough to program by hand, but has a

substantial amount of interval dependency. Thus, the derived system

19

should do well in a generalized bisection algorithm relative to the original
system.

2. The system (previously used as a test problem in generalized bisec-
tion and elsewhere)

f1(x1, x2) = 4x3
1 − 3x1 − x2 = 0

f2(x1, x2) = x2
1 − x2 = 0

with initial box:

X0 =
(

[−2, 2]
[−2, 2]

)

This problem has three solutions in the box.
This system does not exhibit such severe interval dependencies as

the previous example, so the derived system should not do so much
better than the original system.

We obtained the following actual results when we ran the algorithm
on an IBM 3090.

Our Previous Example
Method # Boxes CPU Arith. Ops.
Usual 119 .21 5628
Oper.
Decomp. 1 .06 394

The Cubic–Parabola Problem
Method # Boxes CPU Arith. Ops.
Usual 21 .040 736
Oper.
Decomp. 7 .077 561

Note: The number of arithmetic operations above was computed for-
mally from accumulated numbers of certain subroutine calls, and is
mainly of theoretical importance. CPU time is seconds on the IBM
3090.

More extensive experimentation is dependent upon our automating
creation of the expanded system (as in Example 2.1(b)) from the original
system (as in Example 2.1).

5. On a Theory

Interval methods for bounding solution sets of nonlinear systems of
equations as in (1.1) can have one or more of the following three goals.

20

1. Computationally determine that a solution exists within the initial
box X0.

2. Computationally determine that a solution within the initial box
X0 is unique.

3. Determine new bounds X1 such that X1 is as small as possible
subject to the condition that X ∈ X0 and F (X) = 0 implies X ∈
X1.
Algorithm 3.1–3.2 is based on heuristic considerations for approxi-

mately achieving goal 3, and the numerical experiments above indicate
that it may do this in various contexts. In fact it is not difficult to
show that a variant of Algorithm 3.2 alone will do at least as well as
the optimally preconditioned interval Gauss–Seidel method applied to
the original system alone. To do this, we first recall the width-optimal
preconditioner of formula (3.5) in [11] (also stated more generally as
formula (6) in [19]).

Definition 5.1. Let F be as in (1.1), and assume we are to replace
F by YiF in the computation (1.6), for some row vector Yi. Also let
B = (x1,x2, . . . ,xn)T and let X be the midpoint vector of B. Then the
width optimal LP preconditioner Y C

i is defined to be

Y C
i = (y′1 − y′′1 , y′2 − y′′2 , . . . , y′n − y′′n),

where the y′j and y′′j are defined by

(5.1a) minimize W (y′1, . . . , y
′
n, y′′1 , . . . , y′′n, u1, . . . , ui−1, ui+1, . . . , un) =

n
∑

j=1
j 6=i

(

−
n

∑

l=1

y′lf
′
l,j

+
n

∑

l=1

y′′l f
′
l,j + uj

)

w(xj)

subject to

uj ≥
n

∑

l=1

(y′l − y′′l)
(

f ′
l,j

+ f
′
l,j

)

, 1 ≤ j ≤ n, j 6= i,

(5.1b)

1 =
n

∑

l=1

y′lf
′
l,i
−

n
∑

l=1

y′′l f
′
l,i,

(5.1c)

and

(5.1d) y′l, y
′′
l , uj ≥ 0 for 1 ≤ j ≤ n, j 6= i, l ≤ 1 ≤ n.

21

In [19], conditions are stated under which this preconditioner min-
imizes the width w(x̃i) in (1.6) over all preconditioners Y ; this precon-
ditioner has also been shown superior in practice, as illustrated in [11].

To apply (5.1) theoretically in the context of the expanded system,
we observe that the outer sum in (5.1a) is a sum over the rows of the
interval Jacobi matrix, excluding the i-th row, and the conditions in
(5.1b) also correspond to these rows. Because of this, the linear pro-
gramming problem (5.1) may be reformulated for rectangular systems
with more equations than unknowns. In particular, suppose that there
are n equations fi(x1, . . . , xn) = 0, 1 ≤ i ≤ n in the original system and
N equations fi,E(x1, . . . , xn, vn+1, . . . , vN) = 0, 1 ≤ i ≤ N . Then we
may form the (n + N)×N system

(5.2)





















f1(x1, . . . , xn)
...

fn(x1, . . . , xn)
f1,E(x1, . . . , xn, vn+1, . . . , vN)

...
fN,E(x1, . . . , xn, vn+1, . . . , vN)





















=
(

φ1(v1, . . . , vN)
φn+N (v1, . . . , vN)

)

= 0,

and corresponding linear programming problem

(5.3a) minimize

W (y′1, . . . , y
′
n+N , y′′1 , . . . , y′′n+N , u1, . . . , ui−1, ui+1, . . . , un) =

n
∑

j=1
j 6=i

(

−
n+N
∑

l=1

y′lφ
′
l,j

+
n+N
∑

l=1

y′′l φ
′
l,j + uj

)

w(xj)

subject to

uj ≥
n+N
∑

l=1

(y′l − y′′l)
(

φ′
l,j

+ φ
′
l,j

)

, 1 ≤ j ≤ n + N, j 6= i,

(5.3b)

1 =
n+N
∑

l=1

y′lf
′
l,i
−

n+N
∑

l=1

y′′l f
′
l,i,

(5.3c)

and

(5.3d) y′l, y
′′
l , uj ≥ 0 for 1 ≤ j ≤ n, j 6= i, l ≤ 1 ≤ n + N.

We have

22

Theorem 5.1. Suppose F = (f1, f2, . . . , fn)T and FE = (f1,E , . . . , fN,E)T

are as above. Suppose further that, for some i, 1 ≤ i ≤ n, the conditions
in [19] are met so that

W (y′1, . . . , y
′
n, y′′1 , . . . , y′′n, u1, . . . , ui−1, ui+1, . . . , un) = w(x̃i)

in (5.1), and that this value is minimal over all preconditioner rows. Also
suppose that vn+1 through vN have been assigned through the forward
substitution process explained in §2. Then
(i) If the i-th component of B is replaced by x̃i,E ∩ xi, where x̃i,E =

vi is computed via the preconditioner defined by (5.3), then any
solutions of F = 0 in the old B are in the new B.

(ii) If x̃i,E is computed from the system (5.2) preconditioned with a
solution of (5.3), and x̃i is computed from the original system pre-
conditioned with a solution of (5.1), then w(x̃i,E) ≤ w(x̃i).

Sketch of proof: Assertion (i) follows from an argument similar to
the proof of Theorem 1.4 of [10].

To prove assertion (ii), let Yi = (y1, y2, . . . , yn) be the precondi-
tioner obtained from (5.1), and define Ỹi,E ∈ Rn+N by

Ỹi,E = (ỹ1, ỹ2, . . . , ỹn+N)

= (y1, y2, . . . , yn, 0, 0, . . . , 0).

Then, setting y′l = ỹ+
l and y′′l = ỹ−l , we will see that Ỹi,E corresponds

to a feasible point of (5.3), and the corresponding Gauss–Seidel result is
x̃i, and has the property

W (ỹ′1, . . . , ỹ
′
n+N , ỹ′′1 , . . . , ỹ′′n+N , ũ1, . . . , ũi−1, ũi+1, . . . , ũn+N) = w(x̃i).

Thus the minimum W in (5.3) is at most w(x̃i). Using techniques from
[19], we may then show that this minimum W corresponds to a Yi,E
such that w(x̃i,E) is also at most w(x̃i).

Our experience to date indicates that Theorem 5.1 can probably
be strengthened. In particular, it should not be necessary to include the
original equations, as in

Conjecture 5.2. Let FE = (f1,E , . . . , fN,E)T be as above, and let
1 ≤ i ≤ n. Define x̃i,Ê to be the image of the i−th coordinate under the
preconditioned interval Gauss–Seidel method, when the preconditioner
is computed via (5.1), but where FE replaces F . Then w(x̃i,Ê) ≤ w(x̃i),
where x̃i is computed from the preconditioned interval Gauss–Seidel
method applied to the original F and with preconditioner as in (5.1).

We also state

23

Theorem 5.3. Suppose coordinates X̃ = (x̃1, . . . , x̃n)T have been pro-
duced from application of Algorithm 3.1–3.2, starting with X = (x1,x2, . . . ,xn)T ,
where the intermediate variables vj , n+1 ≤ j ≤ NE have been produced
with the forward substitution process. Then any roots of F in X must
also be in X̃.

Sketch of proof: The components of X are changed only in steps
1c)(ii) and 3b)(iii)(β) of Algorithm 3.1, as well as steps 1c), 3b)(iii), and
3c)(iii) of Algorithm 3.2. The proof can proceed formally by induction
on the number of times one of these four steps is executed. For the
case of steps 1c) and 3b), we use fundamental properties of interval
arithmetic, and the fact that the root must satisfy the relationships
among the intermediate quantities in the equations. For the case of step
3c), we use the fact that the image under the preconditioned interval
Gauss–Seidel method must contain the roots in the original box; this
fact is well-known.

Interval existence tests are often based upon verification of some
contraction mapping principle or, more weakly, on the Brouwer fixed
point theorem. It may be possible to show that such a principle is valid
for the practical algorithm 3.1–3.2, provided ṽi ⊂ vi whenever an ṽi is
computed, but such a condition is probably more likely to occur if the
pure preconditioned Gauss–Seidel algorithm (just step 3c) of Algorithm
3.2) is considered, as we cannot expect all of the individual nonlinear
solution steps to be contractions.

Similarly, interval uniqueness tests are often based upon conver-
gence of a fixed-point iteration, and is related to regularity of the Jacobi
matrix over the box. If just preconditioned Gauss–Seidel is considered,
then the known existence and uniqueness theorems for that method can
be applied to the expanded system. However, relating the precondi-
tioned expanded system to the preconditioned original system and us-
ing the fact that the individual entries of the Jacobi matrix for the
expanded system are exact ranges (to within rounding out), we may be
able to show that existence and uniqueness tests based on the expanded
system are sharper.

6. Comparison with the Hansen–Greenberg Algorithm

We present a practical discussion of the differences between the
implementation just discussed and the interval root-finding algorithm,
explained in [5] and in [20]. That particular root-finding algorithm, in-
corporating years of research, involves a combination of interval Gauss–
Seidel steps, real iteration to obtain point estimates of roots, precondi-
tioned interval Gaussian elimination, and possible generalized bisection.

24

The decomposition technique highlighted in this paper can be thought
of as an additional tool to be included in such an overall algorithm. In-
deed, the implementation in §5 is similar to the Hansen–Greenberg algo-
rithm, but uses only the midpoint vector as a point estimate, and does
only Gauss–Seidel steps (and not interval Gaussian elimination). On
the other hand, the Hansen–Greenberg algorithm as defined in [5] uses
only the inverse midpoint matrix as a preconditioner, and its Gauss–
Seidel step may thus not be as effective. Also, use of point estimates
is more important for interval Gaussian elimination, where small right
hand sides matter, than for interval Gauss–Seidel iteration.

Our implementation in §4 does not include extended interval arith-
metic (and splittings), as does the Hansen–Greenberg algorithm, al-
though we have used this technique effectively in some of our algorithms
([7] and [11]). We omitted it in the experiments in §4 for simplicity
(to reduce programming burden and to study the decomposition tech-
nique in a relatively simple environment), and also because extended
interval arithmetic’s usefulness depends strongly on where and how it is
implemented.

Interval Gaussian elimination as in the Hansen–Greenberg algori-
thm would fail in cases in which we envision using the decomposition
technique (such as Example 2.1(a)), but interval Gaussian elimination
applied to the decomposed system may succeed. However, elimination
of the intermediate variables in a particular order is equivalent to eval-
uation of the original Jacobi matrix! (See [4].) On the other hand, the
decomposition technique may be of less value in cases where interval
Gaussian elimination succeeds.

The underlying algorithm in which we embedded our new tech-
nique is as in [10]; experimental results were reported for the Hansen–
Greenberg method in [5] on a problem reproduced as problem 17 in [10].
The Hansen Greenberg method required 46 Jacobi matrix evaluations
and 88 interval function evaluations, while our underlying method (with-
out the decomposition of this paper) required 38 Jacobi matrix evalu-
ations and 83 interval function evaluations. Since tolerances and other
factors were slightly different, these results can be considered roughly
comparable; similarly, the actual overall speeds are difficult to assess
independently from the machine, programming language, and imple-
mentation.

7. Summary, Applications, and Future Work

With examples and algorithmic descriptions, we have presented
techniques for interval iterations based upon use of the expanded system
derived from the code list. These techniques can sharpen bounds for

25

initial data for which the preconditioned interval Gauss–Seidel method
applied to the original system can not. Furthermore, in the algorithms,
computation-intensive steps (preconditioned interval Gauss–Seidel) are
often replaced by simpler steps (explicit function evaluation) which, in
certain cases, may even lead to faster convergence to a point.

One very promising application is in robust geometric computation.
We have come across various small systems of cubics in that context for
which phenomena (i) and (ii) below (1.7) in §1 seem to play a large rôle.
Thus, solutions to these systems could possibly be rigorously found and
verified much more efficiently with Algorithm 3.1 and Algorithm 3.2
than with traditional interval Newton methods.

The following items point to possible future work on these methods.
1. Complete the theory along the lines of §5 above.
2. Develop an automatic parser to create the expanded system from

the original equations, to enable easier experimentation and appli-
cation. Possibly, this would be done in a language allowing operator
overloading, such as C++ or Fortran 90.

3. Implement the process within an overall generalized bisection code
such as INTBIS.

4. Implement the stacking operation, as mentioned in §2 below Al-
gorithm 3.1, when the interval inverse of one of the elementary
functions consists of a union of two disjoint intervals.

5. Integrate sparse linear programming solvers into the code.
6. Do more extensive experimentation, especially on applications-ori-

ented examples.

Acknowledgement. I wish to thank the referee for the suggestions
for clarification of the ideas in this paper, for help with the German
abstract, and for patient reading of two revisions.

References
1. Alefeld, Götz, and Herzberger, Jürgen: Introduction to Interval

Computations, New York, etc.: Academic Press 1983.
2. Böhm, H.: Evaluation of Arithmetic Expressions with Maximum

Accuracy, in A New Approach to Scientific Computation, Academic
Press, New York, 1983.

3. Duff, I. S., Erisman, A. M., Gear, C. W., and Reid, J. K.: Sparsity
structure and Gaussian elimination. ACM SIGNUM Newsletter 23,
2–8 (1988)

4. Griewank, A.: Direct Calculation of Newton Steps without Accu-
mulating Jacobians. Preprint, Mathematics and Computer Science
Division, Argonne National Laboratories.

26

5. Hansen, E. R., and Greenberg, R. I.: An Interval Newton Method.
Applied Mathematics and Computation 12, 89–98 (1983)

6. Hu, C.-Y., and Kearfott, R. B.: A Width Characterization and Row
Selection Strategy for the Interval Gauss-Seidel Method. Preprint.

7. Hu, C.-Y.: Preconditioners for Interval Newton Methods: Ph. D.
Dissertation, Univ. of Southwestern Louisiana 1990.

8. Kearfott, R. B.: Abstract Generalized Bisection and a Cost Bound.
Math. Comp. 49, 187–202 (1987)

9. Kearfott, R. B.: Interval Newton / Generalized Bisection When
There are Singularities near Roots. Annals of Operations Research
25, 181–196 (1990)

10. Kearfott, R. B.: Preconditioners for the Interval Gauss-Seidel me-
thod: SIAM J. Numer. Anal. 27, 804–822 (1990)

11. R. Baker Kearfott, Chenyi Hu, and Manuel Novoa III: A Review
of Preconditioners for the Interval Gauss–Seidel Method, preprint.

12. Kearfott, R. B., and Novoa, M.: INTBIS, A Portable Interval New-
ton/Bisection Package ACM. Trans. Math. Software 16, 152–157
(1990)

13. Krawczyk, R., and Neumaier, A.: Interval Slopes for Rational Func-
tions and Associated Centered Forms. SIAM J. Numer. Anal. 22,
604–616 (1985)

14. Moore, R. E., and Jones, S. T.: Safe Starting Regions for Iterative
Methods. SIAM J. Numer. Anal. 14, 1051–1065 (1977)

15. Moore, Ramon E.: Methods and Applications of Interval Analysis,
Philadelphia: SIAM 1979.

16. Neumaier, A.: Interval Iteration for Zeros of Systems of Equations.
BIT 25, 256–273 (1985)

17. Neumaier, A.: Interval Methods for Systems of Equations, Cam-
bridge: Cambridge University Press 1990.

18. Neumaier, A., and Z. Shen: The Krawczyk Operator and Kan-
torovich’s Theorem. Mathematical Analysis and Applications (to
appear)

19. Novoa, M.: Linear Programming Preconditioners for the Interval
Gauss–Seidel Method and their Implementation in Generalized Bi-
section. Ph.D. Dissertation, Univ. of Southwestern Louisiana 1990.

20. Ratschek, H., and Rokne, J.: New Computer Methods for Global
Optimization, New York: Wiley 1988

21. Z. Shen and Wolfe, M. A.: A Note on the Comparison of the Kan-
torovich and Moore Theorems: Math. Analysis: Theory, Methods,
and Applications (to appear)

R. Baker Kearfott, Associate professor, Department of Mathematics, University of

27

Southwestern Louisiana, U.S.L Box 4-1010, Lafayette, LA 70504

28

