
On Verifying Feasibility in Equality Constrained
Optimization Problems

R. Baker Kearfott∗

University of Southwestern Louisiana

December 18, 1996

Abstract

Techniques for verifying feasibility of equality constraints are pre-
sented. The underlying verification procedures are similar to a pro-
posed algorithm of Hansen, but various possibilities, as well as ad-
ditional procedures for handling bound constraints, are investigated.
The overall scheme differs from some algorithms in that it rigorously
verifies exact (rather than approximate) feasibility. The scheme starts
with an approximate feasible point, then constructs a box (i.e. a set of
tolerances) about this point within which it is rigorously verified that a
feasible point exists. Alternate ways of proceeding are compared, and
numerical results on a set of test problems appear.

Key words. constrained global optimization, verified computations,
interval computations, bound constraints.

AMS subject classifications. 65K05, 90C26

1 Introduction and Motivation

The context of our present study is the global optimization problem

minimize φ(X)

subject to ci(X) = 0, i = 1, . . . , m (1)

aij ≤ xij ≤ bij , j = 1, . . . , q,

∗This work was supported in part by National Science Foundation grant CCR-9203730.

1

where X = (x1, . . . , xn)T . A general constrained optimization problem,
including inequality constraints g(X) ≤ 0 can be put into this form by
introducing slack variables s + g(X) = 0 along with the bound constraint
0 ≤ s ≤ ∞. See [14] for a practical discussion of this. See [19] and [6] for
introductions to rigorously verified global optimization algorithms.

The conditions aij ≤ xij ≤ bij , j = 1, . . . , q represent actual bound
constraints intrinsic to the problem formulation. In rigorous branch and
bound algorithms, anoverall search region X0 is generally defined through
similar bounds ai ≤ xi ≤ bi, 1 ≤ i ≤ n; only those bounds corresponding to
the index set {ij}q

j=1 should be treated as actual bound constraints.
In automatic verification techniques (normally using interval computa-

tions), rigorous verification of an approximate answer is usually much faster
(and often more practical) than solution of the global problem with branch
and bound techniques. In turn, a rigorously verified local solution can be
incorporated into a branch and bound algorithm to effectively obtain global
solutions; see, for example [3]. Thus, the verification process is an important
step in both the verification and global search contexts.

In constrained global optimization, an upper bound φ to the global mini-
mum is invaluable in eliminating regions over which the range of φ lies above
φ. See [7] or [3] for recent effective algorithms, as well as [19] or [6] for earlier
examples. A rigorous upper bound φ can be obtained by evaluating φ over
a small region X̂ containing an approximate minimizer, using interval arith-
metic to bound roundoff error. However, in the case of equality-constrained
problems a rigorous upper bound can be obtained only if it is certain that
X̂ contains a feasible point.

Hansen proposes a technique in [6, §12.3 ff.] for determining whether
a particular box1 X contains a feasible point. The underlying technique
advocated in this paper is similar to that one. However, we recommend
using it to verify small boxes around an approximate feasible point that
has been found by a conventional floating-point method. Furthermore, in
addition to Hansen’s recommendation for the choice of coordinates to be
held fixed, we also investigate two alternative schemes: choosing the null
space by directly analyzing the null space of the constraint gradient matrix
and by working directly with the corresponding rectangular system, without
holding coordinates fixed.

Experiments with various practical bound-constrained problems has in-
1Throughout, we will speak of a box X to mean a rectangular parallelepiped; cf. §2

below.

2

dicated that optima often occur on lower-dimensional boundaries, with many
active bound constraints. In contrast, for verification of feasibility of equality
constraints, the dimension of the space in which the optimum occurs should
be greater than or equal to the number of such constraints. In fact, verifica-
tion succeeds most often when the approximate optimum is very accurately
near a feasible point, and when the approximation is at the center of the
box (coordinate bounds) used for verification. For this reason, approximate
optima obtained from conventional floating point optimizers must first be
perturbed away from bound constraints, then adjusted. Two schemes for
this, one employing a heuristic and a more expensive one that is less likely
to fail, are presented.

The next section gives our notational conventions, while §3 contains
three algorithms2 for verifying that a given box X̂ contains a feasible point,
as well as an ε-inflation algorithm. Recommendations for tolerances for
accuracy of the approximate point and for the epsilon-inflation algorithm
also appear. Our techniques for perturbing approximate optima off bound
constraints appear in §4. We describe the problems used in the experiments
in §5, while implementation details appear in §6. The actual experiments
are reported in §7. Some thoughts concerning handling constraints that are
dependent appear in §8, while overall conclusions can be found in §9. The
paper concludes with an acknowledgement.

2 Notation

Throughout, boldface will be used to denote intervals, lower case to denote
scalar quantities, and upper case to denote vectors and matrices. Under-
scores will denote lower bounds of intervals and overscores will denote upper
bounds of intervals. For components of vectors, corresponding lower case
letters will be used. For example, we may have:

X = [x1,x2, . . . ,xn]T ,

where xi = [xi, xi].
The notation x̌ will denote a representative point3 of the interval x, while

X̌ will denote a corresponding representative vector in the interval vector or
“box” X. The The magnitude of an interval is defined as |x| = max {|x|, |x|}.

2one due to Hansen
3often, the midpoint

3

The width of an interval x will be denoted by w(x) = x − x, and the
width of an interval vector X, denoted w(X), will be defined componentwise.
We will use w(X) in the context of ‖w(X)‖ = ‖w(X)‖∞; whenever ‖ · ‖ is
used, it will mean ‖ · ‖∞.

The symbol φ(X) will denote an interval extension of φ over X. Con-
sistent with the above, C(X) = (c1(X), . . . cm(X))T = 0, C : Rn → Rm,
will denote the set of equality constraints, C(X) will denote the set of in-
terval residuals of the equality constraints over X, and ∇C will denote a
componentwise interval extension of the Jacobi matrix of the constraints C.

Brackets [·] will be used to delimit intervals, matrices and vectors. Occa-
sionally, braces {·} will denote vectors and parentheses (·) will denote points
in Rp.

We will use int(X) to denote the topological interior of a box X.
Interval arithmetic will not be reviewed here. The reader may consult

any of the numerous introductions, such as those in [1], [17], [18] or [19].

3 The Primary Algorithms

In the methods in [6, §12.3 ff.] and here, the computations rigorously prove
C(X) = 0 at at least one point within a given box. The methods are based
on applying an interval Newton method to the system ci(x) = 0, i = 1, . . . ,m
with n−m of the components of the box X held fixed.

The first technique proposed here involves computing the null space of
the matrix of constraint gradients at a representative point, then setting
those variables corresponding to coordinate directions most nearly lying in
the null space to constants. This heuristic should maximize the chance that
the linear space in which the interval Newton method is applied contains a
feasible point. This idea is illustrated with m = 1 and n = 2 in figure 1. In
summary, our method is as follows:

Algorithm 1 (Prove feasibility)

1. Input an approximation X̌ to a feasible point, obtained through a con-
ventional algorithm such as that of [4].

2. Compute a basis for the null space to ∇C(X̌), and store it in the
columns of a matrix V .

4

c(x) = 0
HHHHj

�
�

�
�

�
�� Tangent to c at center

has smaller first coordinate
First coordinate is held
fixed at center

��9

@@R

Second coordinate variesS
So

This point is verified

?

6

u
u

Center of boxk

XXz

Figure 1: Verifying a feasible point with Algorithm 1

5

3. Let V = {vi,j}, 1 ≤ i ≤ n, 1 ≤ j ≤ n −m with m ≤ n. Then choose
coordinates {pk}m

k=1 such that

n−m
∑

i=1

|vpk,i| = min
j

n−m
∑

i=1

|vj,i|

.

4. Evaluate C(X̌) and ∇C(X̂) where X̂ has coordinates x̂i = x̌i if i 6= pk
for any k and x̂i = [x̌i − ε, x̌i + ε] for i = pk for some k and for an
appropriately chosen ε. (See below.)

5. Let Y be the inverse of the m × m matrix consisting of columns p1
through pm of the midpoint matrix of ∇C(X̂).

6. Apply an interval Newton method corresponding to Y∇C(X̂)(X −
X̌) = −Y C(X̌), to obtain an image X̂new.

7. If the result X̂new ⊆ intX̂, then the point X̌ is feasible; Find φ(X̌)
and take the upper bound as a rigorous upper bound for a minimum.

End Algorithm 1

We briefly describe our particular implementation of the interval Newton
method in §6. Here, we can consider the interval Newton method to be an
operator N(X̂, F) operating on a box X̂ ∈ Rm and a function F : Rm → Rm

defined over X̂, such that if the set N(X̂, F) is contained in the interior of
X̂, then F (X) = 0 has a unique solution within X̂.

As seen in figure 1, the main idea is to start with a good approximation
X̌ to a feasible point, and to envision a box to be constructed in Rn (the
full parameter space4) around X̌, through which the feasible set, locally an
m−n-manifold, passes. A hyperplane is then chosen in such a way that the
chances that it intersects this manifold within the box are maximized.

The importance of having a good approximation to a feasible point cen-
tered in the box is illustrated in figure 2. It is also important to choose
a sufficiently small box to avoid overestimation of the constraint gradient
ranges by the interval evaluations used to compute N(X̂, F). However, a
sufficiently large box, relative to the tolerance with which the center ap-
proximates the feasible point, is also necessary: otherwise, the picture will
be more like figure 2 than figure 1. In our implementation and experiments

4or the full reduced parameter space, as explained in §4

6

c(x) = 0
HHHHj

�
�

�
�

�
�� Tangent to c at center

has smaller first coordinate
First coordinate is held
fixed at center

��9

@@R

Second coordinate variesS
So

?

6

u
Center of boxk

This line does not
intersect c(x) = 0.

PPPPq

Figure 2: A feasible point should be centered in the box.

7

we input a domain tolerance εd. A conventional optimizer is then used to
compute an approximately feasible approximate local optimum X̌ to the
(heuristic) tolerance εd

1.5. A box X̂ is then constructed about X̌ such that
the i-th coordinate bounds are [x̌i−σ, x̌i+σ], where σ = max{|x̌i|, 1}(εd/2).

Additionally, Algorithm 1 can be executed iteratively: we adjust the
boxes X̂ in step 4 with an ε-inflation procedure 5 from iteration to iteration,
to make it likely that the interval Newton method can verify the root. In
fact, a modification of step 3 of Algorithm 3 in [13], as follows, can be used.
However, our experience indicates that, if the tolerances for X̌ and the
coordinate widths of X̂ are chosen as indicated above, feasibility is usually
proven without inflation, if it is proven at all; see table 2.

Algorithm 2 (ε-inflation: Repeat Algorithm 1 while adjusting X̂)

1. Input X̌. Also input X0, the original search region6 Finally input a
domain tolerance εd.

2. Construct X̂ centered X̌ such that the i-th coordinate is [x̌i− εdσ, x̌i +
εdσ], where σ = max{|x̌i|, 100εm}, where εm is the machine epsilon.

3. (Adjust X̂ until either existence can be proven or the box gets too
big.) DO

(a) Execute Algorithm 1.

(b) IF existence was verified in step 3a,

THEN
EXIT this algorithm with feasibility verified.

ELSE
i. (Expand a coordinate of X̂.) Expand one or more coor-

dinates of X̂, provided the resulting box still lies within
X0. (See equation 3 in §7 below.)

ii. IF a new box could not be generated in step 3(b)i, THEN
EXIT this algorithm with failure to verify feasibility.

END IF

END DO
5ε-inflation first appeared in [20].
6The original search region is used in step 3 to limit the size of the box X̂.

8

End Algorithm 2

Hansen’s technique of [6, §12.3-12.4], as we have implemented it, differs
from Algorithm 1 only in steps 2 and 3. In particular, it is

Algorithm 3 (Hansen’s technique for choosing the coordinates)

Proceed as in Algorithm 1, except replace steps 2 and 3 by

2′ (Do Gaussian elimination with full pivoting)

(a) Compute the midpoint matrix A ∈ Rm×n of ∇C(X̂).

(b) Perform Gaussian elimination with complete row and column piv-
oting on the rectangular matrix A.

3′ Choose the original indices of the columns of A that have been permuted
into the last n − m columns during the elimination process to be the
indices of those variables to be held fixed (i.e. to be replaced by points)
in the interval Newton method. Equivalently, choose {pk}m

k=1 to be the
original indices of the first m columns of the reduced matrix.

In both Algorithm 1 and Algorithm 3, n −m of the coordinates are to
be points. A big advantage of this is that possible overestimation due to
interval dependency in those coordinates is avoided. Also, if these coordi-
nates are not fixed, the interval Newton would need to verify that, for each
value that such parameters can take on within their respective intervals,
there is a unique solution to the m-dimensional system corresponding to
the m coordinates pk considered to be variables. This geometrically limits
the thin-ness of the images of these coordinate intervals under the interval
Newton method, as is illustrated in figure 3. computations. The situation
is analogous to that in in [15] (in which n −m = 1), where we verified the
existence of the entire manifold C(X) = 0 within the box.

Nonetheless, Algorithm 1, and possibly Algorithm 3, may choose coordi-
nates pk for which feasibility cannot be verified, whereas a different choice of
coordinates will allow verification. In such instances, one may work directly
with the rectangular interval system, as in [15]. In particular, the width
optimal preconditioners of [8] and [9] may be used7. The interval Newton

7Width-optimality minimizes the width of the image under the interval Newton
method, and does not necessarily maximize the likelihood that the image is contained
in the original coordinate bounds. Preconditioners satisfying the latter condition can be
implemented, but they are somewhat more expensive to compute, and the two conditions
are similar when the widths of the original coordinate bounds are small.

9

c(x) = 0

u
Center of boxk

HHj

Maximum possible contraction
is to here.

� -

A preconditioning process can implicitly
determine the parameter coordinates.

� -Interval overestimation could preclude
verification of feasibility.

Figure 3: Verification with no coordinates held fixed

10

method is applied to each of the n coordinates, and feasibility is verified
if at least m of the n images are contained in the corresponding original
coordinate bounds. This is summarized in

Algorithm 4 (Verify feasibility using LP preconditioners on the original
system)

1. Input the box X̂ and approximate feasible point as in Algorithm 1 or
Algorithm 3.

2. Compute the m× n interval matrix A = ∇C(X̂).

3. ι ← 0.

4. DO for i = 1 to n.

(a) Compute the optimal LP preconditioner Yi ∈ Rm corresponding
to the i-th coordinate of the system ∇C(X̂)(X − X̌) = −C(X̌).

(b) Do a Gauss-Seidel step (i.e. formally solve for the i−th coordinate
of X) on the preconditioned row Yi∇C(X̂)(X − X̌) = −YiC(X̌),
obtaining new coordinate bounds x̃i.

• IF x̃i ∩ x̂i = ∅ THEN EXIT without verification.
• IF x̃iint(x̂) THEN ι ← ι + 1

END DO

5. IF ι ≥ m THEN mark feasibility as verified.

End Algorithm 4

The actual Fortran 90 code for these procedures, only several pages, is
available from the author upon request.

4 On Bound Constraints

In bound-constrained problems, it is often the rule, rather than the excep-
tion, that bound constraints are active at the optimizers. This is also true of
inequality-constrained problems, which for simplicity and other reasons, we
convert to equality- and bound-constrained problems; cf. [14]. An extreme
case of this is linear programming, in which a maximal number of bound
constraints must be active.

11

Box representing bound constraints

Approximate optimizer gives
this point X̌.

������* This point becomes
the box center.

Z
Z}

� -

This one-dimensional box
is constructed.

HHHHHj

c(x) = 0����9

uu This point is verified.XXXy

�
�

���

Figure 4: Projecting onto coordinate bounds

12

4.1 Projecting onto bound constraints

Good conventional floating-point general optimizers, such as that of [4], will
typically provide an approximate optimizer X̌ that is close to one or more
bound constraint surfaces, as is illustrated in figure 4. We can then project
onto the exact active set of those bound constraints, and construct the
box as in figure 1 within the nr-dimensional subspace defined by the active
constraints. Algorithm 1 then proceeds within this subspace. It is preferable
to work within this subspace, provided its dimension is at least m. This is
because the box corresponding to X̂ of Algorithm 1 can then be centered
about the approximate feasible point, rather than having coordinate bounds
that extend into the feasible region on one side and just a small distance
to the boundary on the other. Interval Newton methods can more easily
verify existence and uniqueness when the approximate feasible point is near
the center, provided the approximate feasible point X̌ is near enough to
an actual feasible point. In fact, the criterion N(X̂, F) ⊂ int(X̂) generally
cannot be satisfied when the root to be verified lies on the boundary of X̂.

This process can be considered a way of pre-selecting coordinate indices
{ik}r

k=1, r ≤ q, whose coordinates are to be held fixed in Algorithm 1,
Algorithm 3 or Algorithm 4. In the case of Algorithms 1 or 3, the remaining
n −m − r coordinate indices to be held fixed are then chosen in step 3 or
3′, while verification proceeds in the subspace. In the case of Algorithm 4,
nr replaces n. (Equivalently, the coordinates to be varied are chosen from
the complement {i}n

i=1 \ {ik}
r
k=1.)

4.2 Moving off bound constraints – moving all coordinates

Despite advantages of working in as small a subspace as possible, a typical
occurrence in our test real-world problems is that the number m of equality
constraints is more than the dimension nr of the space of variables corre-
sponding to inactive bound constraints. In those cases, to rigorously verify
feasibility, we should center a box away from some of the bound constraints.
That is, to allow enough degrees of freedom for verification, we must per-
turb the point X̌ away from some of the bounds. The bounds to be made
non-active can be chosen according to the same criteria used to choose the
variables to be held fixed (as in step 3 of Algorithm 1), except that V is
formed over the entire space, rather than the nr-dimensional reduced space,
and we choose coordinates to vary in an order opposite to the order in which
we would choose coordinates to be fixed. Alternately, we could choose the

13

coordinates to be moved off their bounds according to the column pivoting
criterion of Algorithm 3. In particular, applying Gaussian elimination with
full column pivoting to the full m×n constraint gradient matrix, we simply
choose the coordinates to be perturbed to correspond to those columns that
have been moved into the first m positions of the column pivoting process.
Specifically, the variables encountered first in scanning from left to right
may be moved off their constraints.

When a coordinate of the approximate feasible point is moved off its
bound, the other coordinates should be adjusted in the direction of the null
space of the constraints, so that the perturbed point will remain near the
manifold of feasible points. Because of this, it is not in general sufficient
to perturb only m of the coordinates. Because of this, when m < n, to
obtain enough degrees of freedom to adjust the point tangent to the null
space we choose an additional variable to be perturbed, but to be held fixed
for purposes of the interval Newton method. Let ∇C(X̌) = A ∈ Rm×n, let
the columns of W2 ∈ Rm×m be set to the columns of A corresponding to the
m variables to be perturbed. Furthermore, W1 ∈ R(m)×1 be that column
of A corresponding to the variable to be perturbed but be fixed8. We then
obtain the following system:

W2∆ = −W1δ0, (2)

where the entries of ∆ represent increments in corresponding coordinates of
X̌, and δ0 corresponds to the fixed increment of the variable to be adjusted
but held fixed in the interval Newton method. The system 2 can be uniquely
solved for the increment vector ∆. If this increment vector does not point
into the original box, then verification fails. Otherwise, the perturbation
is made, the appropriate coordinates are marked as not corresponding to
active bound constraints, and the box is constructed as before.

Care should be taken in the choice of δ0. In particular, we have chosen
δ0 to be on the order of the square root of the domain tolerance εd, whereas
the initial box in step 2 of Algorithm 2 is on the order of εd. Thus, although
we have perturbed X̌ in the direction of the null space of ∇C, it may be
necessary to correct it again. This can be done by calling the local opti-
mizer again, using the perturbed point as a starting point while fixing the
coordinate corresponding to W1.

8This variable is chosen to be that variable from among the ones corresponding to
active bound constraints, such that the sum of step 3 of Algorithm 1 is minimized, or
from the last n−m columns of the matrix obtained by full column pivoting.

14

4.3 Moving off bound constraints – one coordinate at a time

Preliminary experience has indicated that neither method of choosing the co-
ordinates to be perturbed described above works universally. In particular,
if the coordinates to be chosen are taken by analysis of the null space matrix
V , then W2 may be singular. Even if W2 is non-singular, and has been cho-
sen from the column pivot information in Gaussian elimination, some of the
coordinates may be perturbed outside of their bound constraints. In such
instances, we can apply the following algorithm.

Algorithm 5 (Move coordinates off their bound constraints one by one)

1. Input X̌ and the domain tolerance εd.

2. (Make sure coordinates not on bound constraints cannot be perturbed
onto them, by redefining the bound constraints for the correction step.)
IF x̌i does not correspond to a bound constraint, THEN set ãi = ai+σ,
b̃i = bi − σ, where [ai, bi] was the original coordinate range and σ =
max{|x̌i|, 1}εd.

3. Choose9 n− nr coordinates {ιj}n−nr
j=1 as candidates for perturbation.

4. DO j = 1 to n− nr.

IF x̌ιj is on its bound coordinate, THEN

(a) Replace x̌ιj by x̌ιj + δ, where δ = max{|x̌ιj |, 1}
√εd if x̌ιj was

on its lower bound and δ = −max{|x̌ιj |, 1}
√εd if x̌ιj was on

its upper bound.
(b) If x̌ιj was originally on its lower bound, redefine the lower

bound for the correction step to be the perturbed value of x̌ιj .
Similarly redefine the upper bound if x̌ιj was originally on its
upper bound.

(c) (Correction Step) Run the local bound-constrained optimizer,
using the temporary bound constraints defined in steps 2 and 4b
to obtain a new X̌.

(d) (Reassess active bound constraints) Recompute which bound
constraints are active, possibly projecting onto bound con-
straints as in figure 4; obtain a new reduced dimension nr.

(e) IF nr ≥ m THEN EXIT with success.
9using one of the two schemes mentioned above

15

END IF

END DO

5. IF nr < m THEN EXIT with failure.

End Algorithm 5

4.4 On an alternative general procedure

Instead of trying to identify active bound constraints and adjust the number
of degrees of freedom, it is possible to include the bound constraints in the
Fritz–John conditions. We then verify feasibility by applying an interval
Newton method to this Fritz–John system in the full-dimensional space.
However, in preliminary experiments we have seen several cases (problems
fpqp3, fppb1 and fphe1 in §5 below) in which feasibility can be verified by
the methods advocated here, but the Fritz–John system is singular. These
are precisely those problems in which perturbation is required. This can be
seen by examining the block structure of the Fritz John system for interval
evaluations over boxes that contain both lower and upper bounds.

Thus, in cases when feasibility can be verified with the Fritz–John sys-
tem, the techniques expounded here are more efficient, while the perturba-
tion techniques expounded here still work in the other cases.

5 The Test Set

Most of the problems in the test set are taken from [5]. We selected these to
be non-trivial problems with a variety of constraint types, as well as differing
numbers of variables and constraints. We also tried the problems from
[23]. Although the latter are relatively simple, [23] contains one of the few
published experimental results for general interval constrained optimization
algorithms. Also, inclusion of these problems allows contrasting the relative
ease of verifying , as done in this paper, with global search algorithms such
as that of [23].

Each problem is identified with a mmemonic, given below.
Basic attributes of the test problems appear in table 1. In each problem,

each non-trivial inequality constraint in the original formulation was re-
placed by an equality constraint and a bound constraint on a slack variable.
The numbers of variables in the table reflect these added slack variables; the

16

Table 1: Summary attributes of the test problems

Problem # vars. # equality # bound type of
name constr. constr. constraints

fpnlp3 6 3 8 linear
fpqp3 23 9 32 linear
fplnp6 4 2 6 degree 4
fppb1 9 6 13 bilinear
fphe1 16 13 28 bilinear

gould 4 2 4 quadratic
bracken 3 2 1 quadratic
wolfe3 3 2 2 quadratic

bound constraints reflect original bound constraints, natural lower bounds
of zero, and lower bounds on the added slack variables.

We now present information on those feasible points analyzed in the
experiments. We list the bound constraints for each problem, along with the
coordinates of the approximate optimum for which feasibility was verified.
The bound constraints are listed as interval vectors, with “·” representing no
constraint. The set of active bound constraints at the approximate optimum
is similarly represented as a vector; components with “A” correspond to
active bound constraints and components with “·” correspond to inactive
bound constraints.

fpnlp3 is the third nonlinear programming test problem, [5, p. 28]. The
bound constraints are

([0, 3], [0, ·], [0, ·], [0, 1], [0, ·], [0, ·])

while the approximate solution of interest is

(
4
3
, 4, 0, 0,

8
3
, 0),

so the active bound constraints at the approximate solution are

(·, ·, A, A, ·, A).

The dimension nr of the reduced space is thus 3, equal to the number of
constraints, so no perturbation of the approximate solution is required
to verify feasibility.

17

fpqp3 is the third quadratic programming test problem, [5, p. 8]. The
bound constraints are

([0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1],
[0, ·], [0, ·], [0, ·], [0, 1],

[0, ·], [0, ·], [0, ·], [0, ·], [0, ·], [0, ·], [0, ·], [0, ·], [0, ·])

while the approximate solution of interest is

(1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 0, 0, 0, 5, 5, 0, 6, 6),

so the active bound constraints at the approximate solution are

(A,A, A, A,A, A, A,A, A, ·, ·, ·, A, A,A, A, ·, ·, ·, A, ·, ·).

The dimension nr of the reduced space is thus 8, while the number
of equality constraints is 9. Thus, perturbation of the approximate
solution is required for verification of feasibility.

fpnlp6 is the sixth nonlinear programming test problem, [5, p. 30]. The
bound constraints are

[0, 3], [0, 4], [0, ·], [0, ·]

while the approximate solution of interest is

(2.3295, 3.1783, 0, 0),

so the active bound constraints at the approximate solution are

(·, ·, A, A).

The dimension nr of the reduced space is thus 2, equal to the number
of constraints, so no perturbation is required.

fppb1 is the first pooling-blending test problem, [5, p. 59]. The bound
constraints are

([0, 100], [0, 200], [0, ·], [0, ·], [0, ·], [0, ·], [0, ·], [0, ·], [0, ·], [0, ·], [0, ·])

while the approximate solution of interest is

(0, 200, 0, 100, 0, 100, 0, 100, 1, 0, 0),

18

so the active bound constraints at the approximate solution are

(A,A,A, ·, A, ·, A, ·, ·, A, A).

The dimension nr of the reduced space is thus 4, while the number
of equality constraints is 6. Thus, perturbation of the approximate
solution is required for verification of feasibility.

fphe1 is the first heat exchanger network test problem, [5, pp. 63–66]. The
bound constraints are

([0, 10], [0, 10], [2.941, 10], [3.158, 10], [0, 10], [0, 10], [150, 240], [150, 190], [250, 490], [210, 340],

[0, 10], [0, 10], [10, ·], [10, ·], [10, ·], [10, ·])

while the approximate solution of interest is

(0, 10, 10, 10, 10, 0, 210, 150, 310, 210, 10, 0, 190, 140, 40, 50),

so the active bound constraints at the approximate solution are

(A,A,A, A, A,A, ·, A, ·, A, A,A, ·, ·, ·, ·).

The dimension nr of the reduced space is thus 6, while the number
of equality constraints is 13. Thus, perturbation of the approximate
solution is required for verification of feasibility.

gould is the first test problem in [23]. The bound constraints are

([13, ·], [0, ·], [0, ·], [0, ·])

while the approximate solution of interest is

(14.095, .842960788, 0, 0),

so the active bound constraints at the approximate solution are

(·, ·, A,A).

The dimension nr of the reduced space is thus 2, equal to the number
of constraints, so no perturbation is required.

bracken is the second test problem in [23]. The bound constraints are

([·, ·], [·, ·], [0, ·]),

19

while the approximate solution of interest is

(0.822875653899075, 0.911437827385507, 0),

so the active bound constraints at the approximate solution are

(·, ·, A).

The dimension nr of the reduced space is thus 2, equal to the number
of constraints, so no perturbation is required.

wolfe3 is the third test problem in [23]. The bound constraints are

([0, ·], [0, ·], [·, ·])

while the approximate solution of interest is

(1.2247448866122757, 1.2247448567842063, 1.7320508069462872).

Thus, no bound constraints are active, nr = n = 3 > m = 2, so no
perturbation is required for feasibility verification.

We feel these problems are representative, particularly from the point of
view of varying numbers of active bound constraints and parameter space
dimensions. We are aware of more extensive test sets, such as the huge
collection described in [2]. The latter problems are in SIF format10. We will
either develop a SIF converter or otherwise investigate these problems11 in
the future.

In particular, it would be of interest to try the techniques on problems
with highly nonlinear, transcendental constraints. However, most of the
problems in [5] involve only mildly nonlinear constraints, or can be easily
put into such a form. Appearance of transcendental functions per se should
not affect verification, but complicated expressions conceivably could12.

10a generalization of MPS format, explained in [4]
11Our system, described in [11], also requires minimal programming work: All that is

necessary is programming the objective and constraints in a natural Fortran syntax.
12although such expressions pose less of an interval dependency problem in the verifi-

cation context, with small boxes, than in the global branch and bound context

20

6 Some Implementation Details

The algorithms in §3 were programmed in the Fortran 90 environment de-
veloped for that purpose and described in [11]. Similarly, the functions
described in §5 were programmed using the same Fortran 90 system, and
an internal symbolic representation of the objective function, constraints
and gradient of the objective function was generated prior to execution of
the numerical tests. In the actual tests, generic routines then interpreted
this single internal representation to obtain both floating point and interval
values and derivative matrices.

The Lancelot package routine “DAUGLG”, described in [4], was used
to obtain the approximate feasible points X̌. We included the objective
functions when we called this routine, since a primary use of verified feasible
points in global optimization algorithms is to obtain good upper bounds on
the global minimum. For convenience, a generic interface to DAUGLG was
used. An unfortunate side effect of this was that no structure information
(linearity information, special separability structure) that DAUGLG could
utilize was passed to DAUGLG. Exact gradients and Hessian matrices were
passed to DAUGLG. We needed to use a starting penalty parameter in
DAUGLG much smaller than the default (

√
εm ≈ 1.49 × 10−8 instead of

.01; cf.[4]), since in several problems DAUGLG did not exhibit convergence,
even when the initial guess was extremely close to a solution.

The interval Newton method was the interval Gauss–Seidel method pre-
conditioned with the inverse midpoint matrix. Interval derivative matrices
were used. Though not optimal, these choices are common. Special precon-
ditioning matrices as in [8] or [9] would be more effective, but should not
give results substantially different from the inverse midpoint preconditioner
when the boxes X̂ have small widths; furthermore, such preconditioners were
originally designed to reduce the widths of boxes, not to verify existence;
a slightly different formulation (to be published elsewhere) is advisable for
verification.

Finally, it is possible to use slope matrices, as described in [22], together
with an idea of Hansen, as in [6, §6.6], for sharper bounds, and hence a
sharper verification test. However, our present implementation of slopes,
following [22], has wide intervals due to roundoff error when the boxes are
small. Also, there is theoretically little difference when the widths of X are
small, so we merely used interval derivative matrices.

21

7 Experimental Results

7.1 Environment and parameters

The NAG Fortran 90 compiler, version 2 was used on a Sparc 20. Execution
times were measured using the routine “DSECND” (as would be used with
the f77 libraries).

In all cases, εd was set to 10−5.
A good initial guess was handed to DAUGLG, which then corrected it.

Afterwords, the procedure of §4.1 was used to determine the active bound
constraints. The procedure in §4.2 was then tried13, provided the number of
inactive bound constraints was less than the number of equality constraints.
If this procedure did not succeed, then Algorithm 5 was tried; the latter
succeeded in all cases in producing an approximate feasible point with a
sufficient number of coordinates off their bound constraints.

After the perturbed feasible point was produced, each of Algorithm 1,
Algorithm 4 and and Algorithm 3 was tried. Success of verification, along
with CPU times and other performance information, was recorded.

7.2 Output and conclusions

Table 2 lists the success of each of the three algorithms, as well as the
number of times the box was expanded in Algorithm 2 before feasibility of a
point within the box was either verified, or until there was failure, with “1”
indicating no expansions. Failure to prove feasibility was due either to failure
to compute an inverse midpoint preconditioner or due to the overlapping of
the region expanded about the approximate solution with the boundary of
the original region. Simultaneous expansion of each coordinate was done
according to:

[new width] = [old width](1.1)nrk, (3)

where k is the number of times step 3a of Algorithm 2 had already been
executed.

From table 2, it is clear that, with our choice of tolerances and expansion
factors, it is not advantageous to expand the box in Algorithm 2: feasibility
was never verified after an expansion. In fact, closer examination of the
experimental output shows that failure to prove feasibility was not due to

13using the null space V , rather than the Gaussian elimination technique. We found no
significant differences in success rates in preliminary experiments.

22

Table 2: Verification success of the three schemes

null space LP elimination
problem verified ninfl verified ninfl verified ninfl
fpnlp3 yes 1 yes 1 yes 1
fpqp3 – 1 – 4 yes 1
fpnlp6 yes 1 yes 1 yes 1
fppb1 yes 1 – 10 yes 1
fphe1 – 4 yes 1 yes 1
gould yes 1 yes 1 yes 1
bracken yes 1 yes 1 yes 1
wolfe3 yes 1 – 7 yes 1

roundoff problems (where increasing the box size would help), but due to
intrinsic properties of the algorithm and problem geometry.

A second conclusion from table 2 is that choosing the coordinates to
be held fixed by Gaussian elimination (advocated by Hansen) is the most
reliable method.

In table 3, we give numbers of interval evaluations of the constraints and
constraint gradients, for each of the three methods and each of the problems.
This can be used for comparison with other results and tasks, such as the
global search algorithm in [23].

In table 4, we list CPU times in seconds for the three verification algo-
rithms.

Tables 2, 3 and 4 indicate that the Hansen variant is both more reliable
and less costly, although most of the difference in cost is attributable to the
fact that the Hansen variant is more reliable, and failure to prove feasibility
cost more14.

An astounding aspect of these experiments is that it took far more effort
to perturb the feasible point (by the procedures in §4.1 and Algorithm 5)
than to verify the feasible point, once perturbed. This is indicated in table 5,
where CPU times are given for the perturbation along the null space and for
Algorithm 5. Perturbation in the direction of the null space of ∇C was tried
(and necessary) only if there were not already a sufficient number of bound
constraints; similarly Algorithm 5 was attempted only if perturbation in the

14because of repeated, but unnecessary, expansion steps

23

Table 3: Interval constraint and constraint gradient evaluations

null space LP elimination
problem C ∇C C ∇C C ∇C
fpnlp3 9 9 6 9 9 9
fpqp3 27 396 72 792 27 396
fpnlp6 6 4 4 4 6 4
fppb1 18 84 120 420 18 84
fphe1 156 832 26 208 39 416
gould 6 4 4 4 6 4
bracken 6 4 4 4 6 4
wolfe3 6 12 28 42 6 12
Totals 234 1345 264 1483 117 929

Table 4: CPU times for the verification steps

problem null space LP elimination
fpnlp3 0.02 0.01 0.01
fpqp3 0.05 0.43 0.05
fpnlp6 0.01 0.01 0.01
fppb1 0.03 0.26 0.03
fphe1 0.33 0.20 0.11
gould 0.01 0.01 0.00
bracken 0.01 0.01 0.01
wolfe3 0.02 0.07 0.01
Totals: 0.48 1.00 0.23

24

Table 5: CPU times for perturbation off the bounds

in null space Algorithm 5
problem necssary? CPU necessary? CPU NCALLS
fpnlp3 no – no – –
fpqp3 yes 0.04 yes 4.99 13
fpnlp6 no – no – –
fppb1 yes 0.19 no – –
fphe1 yes 0.04 yes 292.8 3
gould no – no – –
bracken no – no – –
wolfe3 no – no – –

direction of the null space failed. In addition to CPU times, table 5 contains
the number NCALLS of calls to the floating point optimizer AUGLG for
Algorithm 5; this is equal to the number of single coordinates perturbed.
(The null space perturbation, if successful, required one such call to AUGLG,
and none otherwise.)

Most of the CPU time in these perturbation steps was spent in the
constrained optimizer AUGLG. Some of this was due to excessive iteration
because of tight tolerances and roundoff error. Also, we demanded opti-
mization from AUGLG, not just location of an approximate feasible point.
This is consistent with the idea is that verified feasibility will be used to
get a rigorous but good upper bound on a global optimum. The objective
function in “fphe1” is highly nonlinear, which could have contributed to
the difficulty apparent in the table. The CPU times can undoubtedly be
improved by tuning with respect to stopping tolerances, initial penalty pa-
rameter, method of linear equation solution, etc. In these experiments, we
did not do so beyond what was necessary to get the algorithm to terminate.

8 On Linear Dependence in the Constraints

It is not possible to verify feasibility via the algorithms in §3 if the ci are
linearly dependent at the feasible point. However, approximate feasibility
can be verified in the sense explained in [19, §5.4] and used in [23]. In

25

particular, given ε > 0, it is possible to verify that

∃Xε ∈ X such that ‖C(X)‖ ≤ ε. (4)

In [23], the condition ‖C(X)‖ ≤ ε is used in a global search of X to bound
feasible sets. In contrast, for verifying feasible points, the object of the study
here, the following procedure can be used.

Algorithm 6 (Approximate feasibility for singular problems)

1. Input an approximation X̌ to a feasible point, obtained through a con-
ventional algorithm such as that of [4].

2. Compute the dimension of the null space to ∇C(X̌).

3. IF the (numerical) dimension of the null space to ∇C(X̌) is equal to
m

THEN continue with steps 3 through 7 of Algorithm 1.

ELSE

(a) Check that ‖C(X̌)‖ ≤ ε with interval arithmetic.
(b) IF ‖C(X̌)‖ ≤ ε

THEN
i. Mark that the constraints have only been verified ap-

proximately.
ii. Find φ(X̌) and take the upper bound as a rigorous up-

per bound for a minimum of the relaxed problem (that
is, the problem obtained from the original problem by
replacing C(X) = 0 by C(X) ∈ [−ε, ε]m).

END IF

END IF

End Algorithm 6

We do not recommend applying Algorithm 6 in a general context. In
particular, it is theoretically possible that, even though C(X̌) ∈ [−ε, ε]m,
X̌ is infeasible and the upper bound φ obtained from interval evaluation
of φ(X̌) is smaller than the global optimum actually attained at a feasible
point. In this case, a branch and bound algorithm that did not take account
throughout of the fact that problem 1 has been replaced by the relaxed

26

problem with the equality constraints replaced by conditions 4 could reject
actual global optimizers in favor of the infeasible point. Furthermore, it may
be possible to verify feasibility at other points in the region and thus obtain
rigorous but useful φ.

Nonetheless, rigorous branch and bound algorithms can be devised a
priori completely around the relaxed problem. This approach would make
sense if it were difficult to verify feasibility with the techniques in §3; be-
cause a good φ would then not be available, the overall branch and bound
algorithm would then became impractically expensive unless the relaxed
problem were solved instead. Furthermore, the relaxed problem may have
as much significance in the original application as problem 1.

There are additional criteria that can be used in the case of singular
constraints. For example, using techniques as in Algorithm 1, it should be
possible to verify that all combinations of p of the constraints are simulta-
neously feasible in a box around X̌, as in figure 5 for p = 1. That figure can
be interpreted as a cross-section in R3, where the constraints c1 = 0 and
c2 = 0 represent two surfaces that intersect tangentially15.

Finally, perhaps true linear dependence in the constraints should be
detected algebraically before numerical solution is attempted.

9 Summary

We have proposed various techniques for proving feasibility of a point in a
neighborhood of an approximate solution of an optimization problem posed
in terms of equality constraints and bound constraints. We have tested these
techniques on a small but significant set of test problems. The techniques
appear to be reliable and inexpensive, relative to the local floating point
optimizers used in conjunction with them. They should prove valuable in
global branch and bound algorithms and other applications.

Although verifying feasibility has been discussed in the literature, to
our knowledge, there has been little previous thorough development and
empirical evaluation of techniques. A notable exception is [16]. There, as
large a box as possible was constructed within which inequalities of the form
g(x) < 0 can be rigorously verified; the algorithm was applied to a significant
engineering design problem (of composite laminates).

15The usual situation for two constraints in R2 would be that there are no degrees of
freedom left.

27

c1(x) = 0
HHHHj

Tangent to c at center
has smaller first coordinateFirst coordinate is held

fixed at center

��9

@@R

Second coordinate variesS
So

?

6

u
u

Center of boxk

c2(x) = 0
@

@@R

uThese two points are verified.XXXXXXXXz
HHHHHHHHj

�
�

�
���

Figure 5: Partial verification when the constraint gradients are linearly de-
pendent

28

10 Acknowledgement

I wish to acknowledge Shiying Ning for programming and checking the more
complicated test problems used here.

References

[1] Alefeld, G., and Herzberger, J., Introduction to Interval Computations,
Academic Press, New York, 1983.

[2] Bongartz, I., Conn, A. R., Gould, N., and Toint, Ph.L., CUTE: Con-
strained and Unconstrained Testing Environment , preprint, 1993.

[3] Caprani, O., Godthaab, B., and Madsen, K., Use of a Real-Valued Local
Minimum in Parallel Interval Global Optimization, Interval Computa-
tions 1993 (2), pp. 71–82, 1993.

[4] Conn, A. R., Gould, N. and Toint, Ph.L., LANCELOT: A Fortran
Package for Large-Scale Nonlinear Optimization, Springer-Verlag, New
York, 1992.

[5] Floudas, C. A. and Pardalos, P. M., A Collection of Test Problems
for Constrained Global Optimization Algorithms, Springer-Verlag, New
York, 1990.

[6] Hansen, E. R., Global Optimization Using Interval Analysis, Marcel
Dekker, Inc., New York, 1992.

[7] Jansson, C. and Knüppel, O., A Global Minimization Method: The
Multi-Dimensional Case, preprint, 1992.

[8] Kearfott, R. B., Preconditioners for the Interval Gauss–Seidel Method ,
SIAM J. Numer. Anal. 27 (3), pp. 804–822, 1990.

[9] Kearfott, R. B., Hu, C. Y., Novoa, M. III, A Review of Preconditioners
for the Interval Gauss–Seidel Method , Interval Computations 1 (1), pp.
59–85, 1991.

[10] Kearfott, R. B., Dawande, M., Du K.-S. and Hu, C.-Y., INTLIB: A
Portable FORTRAN 77 Interval Standard Function Library , accepted
for publication in ACM Trans. Math. Software.

29

[11] Kearfott, R. B., A Fortran 90 Environment for Research and Prototyp-
ing of Enclosure Algorithms for Constrained and Unconstrained Nonlin-
ear Equations, accepted for publication in ACM Trans. Math. Software.

[12] Kearfott, R. B., Empirical Evaluation of Innovations in Interval Branch
and Bound Algorithms for Nonlinear Algebraic Systems, preprint, 1994.

[13] Kearfott, R. B., Empirical Evaluation of Innovations in Interval Branch
and Bound Algorithms for Nonlinear Algebraic Systems, preprint, 1994.

[14] Kearfott, R. B., Techniques in the Verified Solution of Constrained
Global Optimization Problems, preprint, 1994.

[15] Kearfott, R. B. and Xing, Z., An Interval Step Control for Continuation
Methods, SIAM J. Numer. Anal. 31 (3), pp. 892–914, 1994.

[16] Kristinsdottir, B. P., Zabinsky, Z. B., Csendes, T., Tuttle, M. E.,
Methodologies for Tolerance Intervals, Interval Computations (3), pp.
133–147, 1993.

[17] Moore, R. E., Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

[18] Neumaier, A., Interval Methods for Systems of Equations, Cambridge
University Press, Cambridge, England, 1990.

[19] Ratschek, H., and Rokne, J., New Computer Methods for Global Opti-
mization, Wiley, New York, 1988.

[20] Rump, S. M., Kleine Fehlerschranken bei Matrixproblemen, Ph.D. dis-
sertation, Universität Karlsruhe, 1980.

[21] Rump, S. M., Verification Methods for Dense and Sparse Systems of
Equations, in Topics in Validated Computations, ed. J. Herzberger,
Elsevier Science Publishers, Amsterdam, 1994.

[22] Rump, S. M., Verification Methods for Dense and Sparse Systems of
Equations, in Topics in Validated Computations, ed. J. Herzberger,
Elsevier Science Publishers, Amsterdam, 1994.

[23] Wolfe, M. A., An Interval Algorithm for Constrained Global Optimiza-
tion, J. Comput. Appl. Math. 50, pp. 605–612, 1994.

30

