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1. INTRODUCTION: BACKGROUND AND SIMPLE EXAMPLES

In a general implementation of Newton’s method, the steepest descent method, or
a hybrid method to compute solutions of f(x) = 0, where f : Rn → Rn, a domain
tolerance of a form similar to

δk =
‖x(k+1) − x(k)‖

max
{

‖x(k+1)‖, 1
} < δ (point domain tolerance condition) (1)

is used, for some domain stopping tolerance δ. The well-known idea is that, if x(∗)

solves f(x(∗)) = 0 exactly, then

‖x(k+1) − x(∗)‖ ∼ C‖x(k) − x(∗)‖2 (2)

for some constant C and for x(k) sufficiently close to x(∗). The quadratic conver-
gence assumption represented in (2) combined with the triangle inequality leads
to

‖x(k+1) − x(∗)‖ ≤̇C
(

‖x(k+1) − x(k)‖
1− C‖x(k) − x(∗)‖

)2

≤ 2C‖x(k+1) − x(k)‖2 (3)

for x(k) sufficiently close to x(∗). The approximation (3) justifies the domain heuris-
tic (1).

Similarly, f may be flat (with unknown flatness) near a solution x(∗), or else
merely a point x(k) with a small residual ‖f(x(k))‖ is desired. In such instances,
the following range tolerance is appropriate.

ρk = ‖f(x(k+1))‖ ≤ ε (point range tolerance condtion) (4)

for some range tolerance ε.
For illustration, take the simple example

Example 1. Consider

f(x) = x2 − 2,

with x ∈ [1, 2] and x̌ = 1.5.

Newton’s method for Example 1 converges rapidly for any starting point x(0) >
√

2,
and in particular for x(0) = x̌ = 1.5. Since f ′

(

x(∗)) = 2
√

2 is non-singular, the
domain and range tolerances are roughly equivalent, and the iterations in Table 1
are obtained1.

It is seen in Table 1 that the domain tolerance (1) and the range tolerance (4)
reflect actual error behavior well until the errors become small enough for roundoff
error to dominate the computation. For this example, a serious problem could
occur only if δ were set to be on the order of the square of the machine epsilon, or
ε were set to be on the order of the machine epsilon2.

However, uncertainties in data or computational errors can lead to loss of accu-
racy orders of magnitude greater than the machine epsilon. Under these conditions,

1Here, IEEE arithmetic was used. In lines with errors of 0, the machine representable approxi-
mations being subtracted were identical.
2The machine epsilon for this IEEE arithmetic machine is approximately 2.220446049250313 ×
10−16.
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k x(k+1) δ2
k ρk

∥

∥x(k+1) − x(∗)
∥

∥

0 1.50000000000000
1 1.41666666666667 3.46× 10−3 6.94× 10−3 2.45× 10−3

2 1.41421568627451 3.00× 10−6 6.01× 10−6 2.12× 10−6

3 1.41421356237469 2.26× 10−12 4.51× 10−12 1.59× 10−12

4 1.41421356237310 1.27× 10−24 4.44× 10−16 0
5 1.41421356237309 2.47× 10−32 4.44× 10−16 2.22× 10−16

6 1.41421356237310 2.47× 10−32 4.44× 10−16 0

Table 1. Stopping tolerance behavior for the point Newton method with function x2 − 2.

the maximum attainable accuracy in a Newton iteration can be difficult to predict
with floating-point iterations. In such instances, the domain and range tolerances
will not terminate the algorithm, and behavior as in iterations 4 through 6 in Ta-
ble 1 will occur, although the iteration may be more erratic for more complicated
functions and with more than one variable, and the actual magnitudes of the values
δ2
k and ρk may not be predictable.
Such uncertainties can be automatically handled with multidimensional interval

Newton methods, as described in the texts on interval computations, such as [7],
[1], [8], [3], [5]. In one dimension, interval Newton methods are of the form

x(k+1) =

{

x̌(k) −
f

(

x̌(k)
)

f ′(x(k))

}

∩ x(k). (5)

(Here, interval quantities are denoted by boldface, so that x(k) is an interval, x̌(k)

is a representative point, often taken to be the midpoint of x(k), and f ′(x(k)) is an
interval extension of the derivative of f over x(k). ) A domain tolerance condition
corresponding to (1) is

δk = max
1≤i≤n







w
(

x(k)
i

)

max
{∣

∣

∣x(k)
i

∣

∣

∣ , 1
}







< δ (interval domain tolerance condition), (6)

where w
(

x(k)
i

)

represents the width of the i-th coordinate interval. A range toler-
ance condition corresponding to (4) is

0 ∈ f i(x
(k)) and w

(

f i(x
(k))

)

< ε, 1 ≤ i ≤ n,

or, equivalently,

ρk = max
1≤i≤n

∣

∣

∣f i(x
(k))

∣

∣

∣ < ε (interval range tolerance condition). (7)

Application of the interval Newton method (5) to Example 1, with starting
bounds x(0) = [1, 2] gives Table 2. In Table 2, the library INTLIB [6] and Fortran
90 module INTERVAL ARITHMETIC [4] were used for simulated directed roundings;
the intervals in the table were rounded outward for display. The actual iterates
became exactly stationary at iteration number 4.

Analogously to the floating point case, δk and ρk are reasonable quantities to
check for stopping tolerances, except that the interval versions represent mathe-
matically rigorous domain and range error bounds, rather than heuristic values.
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k x(k+1) δk ρk

0 [1.00000000000000, 2.00000000000000] 5.00× 10−1 2.00× 100

1 [1.37499999999999, 1.43750000000001] 4.35× 10−2 1.09× 10−1

2 [1.41406249999999, 1.41441761363637] 2.51× 10−4 5.77× 10−4

3 [1.41421355929452, 1.41421356594718] 4.70× 10−9 1.01× 10−8

4 [1.41421356237309, 1.41421356237310] 4.71× 10−16 1.33× 10−15

5 [1.41421356237309, 1.41421356237310] 4.71× 10−16 1.33× 10−15

6 [1.41421356237309, 1.41421356237310] 4.71× 10−16 1.33× 10−15

Table 2. Stopping tolerance behavior for the interval Newton method with function x2 − 2.

However, as in the floating point case, the tolerance conditions (6) and (7) possi-
bly cannot be met if δ or ε are set too small. With inclusion-monotonic interval
arithmetic, the interval Newton iteration (5) must eventually become stationary.
However, multidimensional versions of (5) often become stationary far before reach-
ing an accurate enclosure for a solution, and many iterations may be spent with
only small progress towards the limiting endpoints. As an example, take

Example 2. Take

f1(x1, x2) = x3
1 − x2

f2(x1, x2) = x3
2 + x1,

with x(0)
1 = x(0)

2 = [−1, 1].

In Example 2, the interval extension of the Jacobi matrix over x(0) is
(

[0, 3] −1
1 [0, 3]

)

,

and it does not contain any singular matrices. Furthermore, the system resulting
from applying the inverse midpoint preconditioner also does not contain any sin-
gular matrices, and there is a unique solution within x(0). However, both the
interval Gauss–Seidel method and interval Gaussian elimination are stationary
at x(0). In such instances, subdividing the initial bounds and applying interval
techniques to sub-regions leads to success. In this case, using a starting box of
x(0)

1 = x(0)
2 = [−0.2, 0.1] (and also perhaps larger starting boxes) results in conver-

gence to narrow bounds around the true solution x(∗) = (0, 0), while other subre-
gions, such as say x1 = [0.1, 1], x2 = [0.1, 1], can be rejected with other interval
techniques. (For an explanation of these terms and algorithms, see [5].)

On the other hand, the interval Newton method may become stationary at some
x(k) due to roundout error, as in Table 2, or due to uncertainty in the data3. In such
cases, it is not appropriate to subdivide x(k) further. To illustrate the situation
where uncertainties in the data lead to questions about stopping tolerances, consider
the following illustrative example.

Example 3. Suppose the task is to

minimize φ(x) =
1
2

{

(x1 − [1, 2])2 + (x2 − [3, 4])2
}

.

3See the next section for an example.
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Here, the intervals [1, 2] and [3, 4] represent uncertainty in the problem specification.
Subject to this uncertainty, find maximum possible and minimum possible values of
x1 and x2.

If an interval Newton method, starting with initial coordinate bounds x(0) =
([−10, 10], [−10, 10], is applied to the gradient system

∇φ = (x1 − [1, 2], x2 − [3, 4])T = (0, 0)T ,

then the first iteration of an interval Gauss–Seidel method gives x(1) = ([1, 2], [3, 4])T

(to within roundout error) and all subsequent iterates are stationary at x(k) = x(1),
k ≥ 1. Thus, δk = 1/2 and ρk = 2 for k ≥ 1. In some algorithms, lack of toler-
ance satisfaction causes the box ([1, 2], [3, 4])T to be bisected, say, into the boxes
([1, 1.5], [3, 4])T and ([1.5, 2], [3, 4])T . However, since the box ([1, 2], [3, 4]) repre-
sents the sharpest possible bounds on the answer in this case, such bisection is not
appropriate.

Verified global optimization algorithms also sometimes use the width of the inter-
val extension of the objective function to determine when a box should be accepted
as small enough. With this criterion,

w
(

φ(x(1))
)

= w
(

([1, 2]− [1, 2])2 + ([3, 4]− [3, 4]) ∗ 2
)

= w([0, 1] + [0, 1]) = 2,

not small.
Thus, stopping due to domain or range tolerance conditions, or stopping when the

interval Newton method becomes stationary, is not sufficient. A stopping criterion
that determines when further subdivision will not enable convergence will be useful.

2. THE THICKNESS STOPPING CRITERION, AND CONSEQUENCES OF ITS USE

In rigorous global optimization algorithms with objective function φ(x), the progress
is made either by comparing bounds for the objective function over a region (inter-
val vector) x(0) or by successful iteration of an interval Newton method applied to
∇φ(x) = 0, with x(0) as initial iterate4. Subdivision of x(0) is done to either enable
sharper bounds on the objective φ or to enable the interval Newton method to con-
verge to narrower bounds, and such subdivision leads to unnecessary inefficiency
if it does not accomplish either of these things. The thickness stopping criterion
explained here detects when further bisection will not lead to sharper bounds on
the objective function, and can also be applied similarly to constraints or gradients.

Applied to the objective function φ, the criterion is simply

w
(

φ(x̌(k))
)

≥ ηφw
(

φ(x(k))
)

(objective thickness condition), (8)

where ηφ ∈ [0, 1] is termed the “objective function thickness factor.” Smaller values
of ηφ give a looser tolerance, but also allow more overestimation in the the range
of φ.

4In nonlinear systems algorithms, just a nonlinear system is considered, and in constrained algo-
rithms, the both the constraints by themselves and the Lagrange multiplier or Fritz–John system
are considered. This will be discussed in the next section.
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In Example 3 with x(k) = ([1, 2], [3, 4])T and x̌(k) = (1.5, 3.5)T ,

w
(

φ(x̌(k))
)

= w
(

[−0.5, 0.5]2 + [−0.5, 0.5]2
)

= 0.5

and

w
(

φ(x(k))
)

= 2.

Thus, the optimally small box x(k) = ([1, 2], [3, 4])T will be accepted without further
subdivision if ηφ is chosen so ηφ < 0.25.

The following observations aid in determining appropriate values of ηφ.

Theorem 1. (Upper bound on the range overestimation) Suppose that the objec-
tive thickness condition (8) is satisfied for some ηφ ∈ (0, 1). Let φ](x(k)) represent

the actual range of φ over x(k). Then the range overestimation w
(

φ](x(k))
)

−
w

(

φ(x(k))
)

satisfies

w
(

φ](x(k))
)

− w
(

φ(x(k))
)

≤ 1− ηφ

ηφ
w

(

φ(x̌(k))
)

.

Furthermore, this bound is achieved for some objective functions φ.

Proof.

w
(

φ](x(k))
)

− w
(

φ(x(k))
)

≤ w
(

φ(x(k))
)

− w
(

φ(x̌(k))
)

≤
w

(

φ(x̌(k))
)

ηφ
− w

(

φ(x̌(k))
)

=
1− ηφ

ηφ
w

(

φ(x̌(k))
)

.

Furthermore, for constant φ(x) ≡ [a, b], w
(

φ(x̌(k))
)

= w
(

φ(x(k))
)

= w
(

φ](x(k))
)

=
b− a, and the inequality becomes an equation.

Theorem 1 gives guidance on how near ηφ should be to 1 to ensure a given ac-
curacy in the range of the objective function and, hence, a given accuracy in the
global optimum. Conversely, ηφ should be chosen closer to 0 for the algorithm to be
more efficient. It has been seen that, in Example 3, choosing ηφ < 0.25 will totally
prevent unnecessary subdivision. Using a larger value of ηφ for this example will
result in some extra subdivision, but it will not be excessive for ηφ around, say, 0.5.
In general, an appropriate value of ηφ to avoid unnecessary subdivision depends
both on the amount of interval uncertainty in the objective and specific character-
istics of the interval evaluation. (The width overestimation can, in principle, be
arbitrarily large.) When the objective φ is an uncertain constant, any ηφ ∈ [0, 1]
will do. Otherwise, the value ηφ = 0.5 seems to work well in practice.

3. STOPPING CRITERIA IN GLOBAL OPTIMIZATION ALGORITHMS

Philosophy and details of incorporation into actual global optimization algorithms
are considered here.
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3.1 “Thick” Parameters: What is a Solution?

Considering Example 3, one may ask why the uncertain constants, [1, 2] and [3, 4]
should not be considered as variables, that is, why not consider the four-dimensional
bound-constrained problem

minimize φ(x) =
1
2

{

(x1 − x3)2 + (x2 − x4)2
}

, x3 ∈ [1, 2], x4 ∈ [3, 4] (9)

instead? In fact, in this particular example, the GlobSol package [2], starting with
x1 ∈ [−10, 10], x2 ∈ [−10, 10], considers 21 boxes to give an answer of four boxes
whose union is the box x(∗) = ([1, 2], [3, 4], [1, 2], [3, 4])T , exactly the solution that is
obtained in the two variable problem with uncertain constants. But this due only
to the special form of Example 3. Consider

Example 4.

minimize φ(x) = (x− a)2 + 10a2 with a ∈ [−1, 1], for x ∈ [−10, 10].

With ηφ = 0.2, GlobSol processes exactly two subintervals to obtain a solution list
consisting of two subintervals whose union is the exact solution set x(∗) = [−1, 1].
However, if a is considered as a variable, that is, if GlobSol solves the problem

minimize φ(x) = (x1 − x2)2 + 10x2
2 for x ∈ ([−10, 10], [−1, 1])T , (10)

GlobSol processes two boxes total, and returns a small box centered on the unique
solution (0, 0), a very different solution from that to the original formulation in
Example 4. The solution set for Example 4 contains the set of all solutions to the
univariate problem for a any fixed point in [1, 2], while the solution to the variant
in (10) contains only the solution for that a that gives the minimum value of φ.
One can think of the interval value of φ, [0, 14] in the case of GlobSol’s solution
to Example 4 with ηφ = 0.2, as bounds on the minimum value of the minimum
and the maximum value of the minimum, with some overestimation if the constant
appears in more than one place. (In Example 4, the actual range of φ over the
minimum values is [0, 10]. See §3.4 below.)

Efficiency considerations may also play a role in how the solution set is viewed.
Consider

Example 5.

minimize φ(x) = a(x1 − a)2 + b(x2 − b)2

with a ∈ [1, 2], b ∈ [3, 4], for x1 ∈ [−10, 10] and x2 ∈ [−10, 10].

With ηφ = 0.2, GlobSol processed four boxes total, and, with ηφ = 0.5, GlobSol
processed 10 boxes total5. In both cases, the union of the output boxes consisted
of the set

{

(x1, x2) | x1 ∈ [0.8408, 2.1592], x2 ∈ [2.8333, 4.1667],
}

5GlobSol was not able to complete without considering more than 20,000 subregions when ηφ =
0.9.
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to within roundout. (Note that this is an overestimate of the actual solution set
x(∗) = ([1, 2], [3, 4])T .) If Example 5 is reformulated as

minimize φ(x) = x3(x1 − x3)2 + x4(x2 − x4)2

with x3 ∈ [1, 2], x4 ∈ [3, 4], for x1 ∈ [−10, 10] and x2 ∈ [−10, 10], (11)

then GlobSol was unable to complete a search in an hour of processor time, cor-
responding to 89954 boxes processed. Although Problem (11) is similar to Prob-
lem (9) over the region in question, both problems have a two-dimensional set of
solutions in R4. The small but significant overestimation in Problem (11), due to
x3 and x4 appearing more than once, is enough to cause GlobSol to subdivide the
region into too many small sub-boxes surrounding the solution set.

Recapitulating:

—The solution set for a problem with thick constants is different from the solution
set of the corresponding problem with the constants considered as variables.

—The solution set to a problem with non-zero width (“thick”) constants contains
information about the solution to a kind of minimax problem. The corresponding
interval values of the objective function approximate the minimum minimum and
maximum minimum, and are in general better approximations when the widths
of the constants are smaller.

—Combined with the stopping criteria described here, formulating the problem
with thick constants can be more efficient than formulating the problem with
variables only.

3.2 Structuring the Stopping Criteria

Global optimization problems are generally of the form

minimize φ(x)

subject to
{

c(x) = 0 and
g(x) ≤ 0,

}

(12)

Here φ : x ⊂ Rn → R, c : x → Rm1 , and g : x → Rm2 , where x is an interval
vector x = ([x1, x1], . . . , [xn, xn])T . In a step of a global optimization code such as
GlobSol, a current box x(k) is processed, roughly with the following steps.

Algorithm 1. (General Steps in verified global search)

(1) The stopping tolerances are checked.
(2) Constraint propagation techniques are applied to narrow the coordinate bounds
x(k)

i , 1 ≤ i ≤ n. (See [5, Ch. 7] and the references therein.
(3) It is checked whether the lower bound φ(x(k)) > f, where f is a previously
computed rigorous upper bound on the global optimum. If it is, then reject x(k),
and proceed to step 9.

(4) If consideration of x(k) leads to a smaller value of f, then step 3 is applied
with the boxes x(∗) from the list of previously stored boxes.

(5) It is checked whether 0 ∈ ci(x(k)), 1 ≤ i ≤ m1 and whether gi ≤ 0, 1 ≤ i ≤
m2.
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(6) It is checked whether 0 ∈ L, where L is a generalized Lagrange multiplier
system or Fritz–John system corresponding to Problem (12).

(7) An interval Newton method is applied to the generalized Lagrange system.
(8) The stopping tolerances are checked again, and the box is either discarded,
stored on a solution list, or subdivided, so the components can be stored for
further processing.

(9) A new x(k) is selectedfrom the list of boxes yet to be processed. If there is
no such x(k), then the algorithm exits.

In steps 3 and 5, interval values of the objective, equality, and inequality con-
straints are used, while interval extensions of the gradients of these are needed in
step 6. The sharpness of these interval bounds can possibly be improved through
subdivision. Thus, application of the stopping criteria should take account of the
objective φ, the equality constraints c, the inequality constraints g, and the gradi-
ents of these.

Different problems may benefit from different sharpnesses with which the objec-
tive and two kinds of constraints are enclosed. Also, it may be unknown what the
exact effects of roundout error or thick tolerances are on the minimum achievable
widths in the ranges of the objective and two kinds of constraints. Thus, a rational
way of combining range tolerances, thickness conditions, gradient range tolerances,
and domain tolerances is needed.

The range stopping test is structured into three parallel parts, corresponding to
the objective, the equality constraints, and the inequality constraints. For simplic-
ity, the internal structure will be explained for the objective; the internal structure
of the other two is similar.

Algorithm 2. (Range and thickness criteria for the objective function)

Input: The objective range width tolerance εφ and the objective thickness factor
ηφ, the present box x(k), its midpoint x̌(k), and the machine epsilon εm.
Output: Either “x(k) meets the criteria” or “x(k) needs to be subdivided further.”

If w
(

φ(x(k))
)

< max {εφ, 100εm} Or w
(

φ(x̌(k))
)

> ηφw
(

φ(x(k))
)

Then signal “x(k) meets the criteria,”
Else signal “x(k) needs to be subdivided further.”

End If

End Algorithm 2

If φ(x(k)) is thick, it cannot be made narrow, since w
(

φ(x(k))
)

≥ w
(

φ(x̌(k))
)

.
Conversely, if φ(x(k)) is narrow to within tolerance εφ, further subdivision will
not improve the chances that φ(x(k)) > f (step 3 described above in the global
optimization algorithm process) can be verified. Thus, disjunction as illustrated,
rather than conjunction or a user-controlled choice, is appropriate in the conditional
in Algorithm 2.

In the complete stopping test, the analogue of Algorithm 2 is applied to the
constraints c and the inequality constraints g, in addition to the objective φ. Since
the importance of accuracy in the objective and constraints, as well as the efficiency
with which such accuracy can be achieved, varies from problem to problem, user
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control of the importance of each of conditions on the objective and two types of
constraints is useful. This results in the following scheme.

Algorithm 3. (Combined range width and thickness conditions)

Input:

(1) flags Fφ, Fc, and Fg indicating whether it is necessary for the range or width
condition on the objective, equality, or inequality constraints, respectively, to
be satisfied for convergence to be signalled,

(2) the width tolerances εφ, εc, and εg for the objective, equality, and inequality
constraints, respectively,

(3) the thickness factors ηφ, ηc, and ηg for the objective, equality, and inequality
constraints, respectively,

(4) the present box x(k), its midpoint x̌(k), and the machine epsilon εm.

Output: Either “x(k) meets the criteria” or “x(k) needs to be subdivided further.”

(1) Define
(a) P = “true” if and only if Algorithm 2 returns “x(k) meets the criteria”.
(b) C = “true” if and only if Algorithm 2, applied with εc replacing εφ and with

each ci, 1 ≤ i ≤ m1, replacing φ, returns “x(k) meets the criteria”.
(c) G = “true” if and only if Algorithm 2, applied with εg replacing εφ and with

each gi, 1 ≤ i ≤ m2, replacing φ, returns “x(k) meets the criteria”.
(2) If

{

{

(Fφ ∨ Fc ∨ Fg)
}

∧ (P ∨ ¬Fφ) ∧ (C ∨ ¬Fc) ∧ (G ∨ ¬Fg)
}

∨
{

{

¬(Fφ ∨ Fc ∨ Fg)
}

∧ (P ∨ C ∨ G)
}

Then signal “x(k) meets the criteria,”
Else signal “x(k) needs to be subdivided further.”

End If

End Algorithm 3

In the conditional in Algorithm 3, the user-set flags Fφ, Fc, and Fg define whether
or not it is necessary for the objective, the equality constraints, or the inequality
constraints, respectively, to meet the width or thickness criterion, unless all three
flags are set to “false.” If all three flags are set to “false,” then the box is considered
subdivided enough if at least one of the width/thickness criteria is met. This
scheme, although not the only one, provides substantial flexibility with a small
number of parameters. The second line of logic in step 2, handling the case when
all three flags are “false,” prevents vacuously signalling “x(k) meets the criteria,”
and allows stopping the subdivision if any of the criteria is met. In this case, that
is, when (¬Fφ ∧¬Fc ∧¬Fg), individual tolerances can be turned completely off by
adjusting the width tolerances and the thickness factors. For example, in the case
(¬Fφ ∧ ¬Fc ∧ ¬Fg), P can be turned off by setting εφ = 0 and ηφ = 1.

Algorithm 3 includes all conditions on the ranges of the objective and constraints,
but does not include either the domain conditions or the condition on the gradient.
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Also, it is useful to include the domain condition (6) for cases for which the domain
tolerance δ is easier to specify than the range width tolerances and range thickness
factors. Finally, a condition to ensure that the gradient of the Lagrange function
is narrow is useful. This condition, which can also be viewed as a scaled domain
condition, has been termed maximum smear in [5, p. 157 ff and p. 175], and justified
in [9] and elsewhere, is

σi < δσ, 1 ≤ i ≤ n, where (13)

σi =
∣

∣

∣

∂φ
∂xi

(x(k))
∣

∣

∣ +
m1
∑

j=1

∣

∣

∣

∂cj
∂xi

(x(k))
∣

∣

∣ +
m2
∑

j=1

∣

∣

∣

∂gj
∂xi

(x(k))
∣

∣

∣ and where

σ = max
1≤i≤n

σi.

Here, |[a, b]| = max{|a|, |b|}. In the sums for σi, it would be advantageous for the
partial derivatives of the cj and gj to be multiplied by corresponding generalized
Lagrange multipliers. However, such multipliers are in general not known when the
stopping test is applied.

In the global optimization system GlobSol, the range/thickness test, scaled do-
main tolerance (6) and maximum smear (13) are combined alternatively. The rea-
soning is that it is hard to predict, in general, which conditions are easily satisfiable,
and alternative satisfaction causes subdivision to stop under the weakest possible
conditions, thus avoiding impractical amounts of subdivision. (If the answers given
by such an algorithm are not narrow enough, it is relatively easy to refine them.)
This alternative formulation results in the following overall stopping criterion im-
plemented in GlobSol.

Algorithm 4. (Overall stopping criterion)

Input:

(1) the domain tolerance δ,
(2) flags Fφ, Fc, and Fg indicating whether it is necessary for the range or width
condition on the objective, equality, or inequality constraints, respectively, to
be satisfied for convergence to be signalled,

(3) the width tolerances εφ, εc, and εg for the objective, equality, and inequality
constraints, respectively,

(4) the thickness factors ηφ, ηc, and ηg for the objective, equality, and inequality
constraints, respectively,

(5) the present box x(k), its midpoint x̌(k), and the machine epsilon εm.

Output: Either “x(k) meets the criteria” or “x(k) needs to be subdivided further.”

If The scaled diameter is small according to (6),
Then signal “x(k) meets the criteria,” and Return

Else If The range conditions (Algorithm 3) are satisfied,
Then signal “x(k) meets the criteria,” and Return

Else If The smear diameter according to (13) is satisfied,
Then signal “x(k) meets the criteria,” and Return



12 · R. B. Kearfott

Else
signal “x(k) needs to be subdivided further.”

End If

End Algorithm 4

3.3 Which Coordinate Should be Subdivided?

A simple and common way of subdividing a box x(k) is to bisect a coordinate to form
x(k) and x(k). For example, if x(k) = ([−1, 1], [−2, 2])T , then the second coordinate
may be bisected to form x(k) = ([−1, 1], [−2, 0])T and x(k) = ([−1, 1], [0, 2])T , or
the first coordinate may be bisected to form x(k) = ([−1, 0], [−2, 2])T and x(k) =
([0, 1], [−2, 2])T . Ideally, the coordinate to be bisected will be chosen to maximize
the chance that the overall stopping criterion as defined by Algorithm 4 will be
satisfied by the resulting boxes. A good heuristic for this is to order the coordinates
according to the smears σi of equation (13), after removing those terms for which
φ, cj , or gj is thick or narrow according to Algorithm 2. This is what is presently
done in GlobSol.

3.4 Is it Advantageous to Subdivide Thick Constants?

In Example 5, due to interval dependence in the constants a and b, the estimate
for φ was an overestimate of the actual range. Subdividing the constants, such
as considering two problems, one with a ∈ [1, 1.5] and one with a ∈ [1.5, 2], will
reduce the overestimation6. Furthermore, especially in more complicated problems,
subdivision can reduce significantly the total amount of work involved. See §3.5
below.

There are differences between subdivision of thick constants and subdivision of
variables. Typically, subdivision of the constants will not lead to rapid rejection
of one half of the original region, as happens when subdividing a variable interval.
Thus, subdividing a multidimensional array of thick constants potentially produces
a very large number of subproblems to be considered. Furthermore, supplying dif-
ferent subintervals is logically equivalent to supplying a different objective function,
and the midpoint test, that is, step 4 of the general optimization scheme (Algo-
rithm 1) will reject some boxes x(∗) that were stored when a previous sub-interval
was being processed. Similarly, the value of f from steps 3 and 4 is different for dif-
ferent subintervals. Thus, a more sophisticated algorithm would need to be supplied
if thick constants were subdivided automatically.

For these reasons, GlobSol only allows for subdivision of a maximum of 10 thick
constants, and an example driver is supplied that only subdivides one thick con-
stant. Nonetheless, it is possible to treat constants as variables, as explained in
§3.3, when deciding how to subdivide. Further implementation effort and research
are required to determine how valuable this is.

To illustrate the advantages of subdivision of a constant, a one-dimensional ver-
sion of Example 5 was tried:

minimize φ(x) = a(x1 − a)2, with a ∈ [1, 2], for x1 ∈ [−10, 10]. (14)

6The amount by which the overestimation is reduced can be estimated by Theorem 1.
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With no subdivision, GlobSol gave two answer boxes whose union was enclosed
in x(∗) = [0.9481, 1.4996], with objective value enclosed in φ(x(∗)) ∈ [−2.23 ×
10−308, 2.213]. Subdividing a into five pieces gave 10 solution boxes whose union
was enclosed in x(∗) = [0.9992, 2.0004], with φ(x(∗)) ∈ [−2.23×10−308, 4.840×10−2].

3.5 An Industrial Example

In [10], GlobSol and the thick parameter scheme are used to solve a maintenance-
scheduling problem. The first case treated there is a nine-variable mixed integer
programming problem:

Example 6. (A maintenance scheduling problem)

minimize

{

s0 +
8

∑

i=1

si/xi+1

}/

x1 +

{

8
∑

i=1

(

ci

lβi
i

)

(x1xi+1)
βi−1

}

,

where l = (8, 7, 9, 14, 6, 15, 3, 5)T , s = (100, 105, 225, 345, 165, 500, 345, 105, 345)T ,
β = (1.7, 1.7, 2.0, 2.0, 1.7, 2.0, 1.25, 1.75)T , where the ci are interval constants, where
the variables x2 through x9 are integers, and where the solution is to be found
within the bounds x(0) = ([0.5, 20.5], [0.5, 2.5], [0.5, 2.5], [0.5, 4.5], [0.5, 4.5], [0.5, 2.5],
[1.5, 5.5], [0.5, 2.5], [0.5, 3.5])T .

One experiment had c = (92, [163.8, 200.2], 28, 30, 172, 30, 90, 50). (That is, only c2

was an interval, for this particular experiment.)
The integer conditions on variables x2 through x9 were enforced by introducing

equality constraints of the form

sin(πxi) = 0, 2 ≤ i ≤ 9.

(This technique was first suggested in [3].) As a consequence of the special form
of these constraints, it was logical to set εc = 0.5 (a value that assures accuracy to
within the nearest integer). Also, ηφ and ηc were both set to 0.5.

It was not possible for GlobSol to complete this problem within several days of
processor time without the thickness stopping conditions described above. It also
took an inordinate amount of time when c2 was not subdivided. When c2 was
subdivided into varying numbers of intervals, the results were as in the following
table.
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5 c2 subdivisions 10 c2 subdivisions 20 c2 subdivisions
# answer boxes 411 194 82
# boxes tried 18,994 28,996 50,073

CPU sec. 42,310 19,010 27,090
objective range [317, 327] [317, 326] [317, 325]

x1 range [10.9, 14.4] [11.1, 14.3] [11.3, 14.3]
x2 range 1 1 1
x3 range 1 1 1
x4 range [2, 4] [2, 3] [2, 3]
x5 range [2, 4] [2, 4] [2, 3]
x6 range 1 1 1
x7 range [3, 5] [3, 5] [3, 5]
x8 range 1 1 1
x9 range [1, 2] [1, 2] [1, 2]

Also of interest in this problem is the range on the objective φ associated with
particular integer values of x2 through x9. This information is also available from
the GlobSol output boxes.

4. SUMMARY

A criterion for determining when to quit subdividing interval bounds into subregions
has been introduced. This criterion is based on comparing the width of interval
evaluations at points with interval evaluations over the entire bounds. The criterion
enables verified global optimization algorithms to handle problems with significant
uncertainty in the original data. Inclusion of the criterion into a verified global
optimization code has been studied, and experiments on a significant problem have
been carried out.
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