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Introduction

Publications in interval analysis currently suffer from a multitude of incompatible notational
styles. There are obvious advantages in having a standardized notation, especially for those
peripheral to our field who only want to read an occasional paper to see whether the field
offers something for the solution of their problems. It is important for the future of interval
analysis to reach out to these colleagues; a standardized notation helps reduce the burden
of learning new notation to a minimum.

In much of mathematics, standardization happens automatically because people use the
notation introduced by the first influential papers on an issue. In interval analysis, this
unfortunately did not happen. Worse, because there was no consensus in the past literature,
new authors of work in interval analysis created their own notational habits, and produced
further variants that added to the confusion. The time seems ripe to attempt to correct this
unpleasant situation.
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This paper proposes a standard for the entire community to use in publishing its work.
Emphasis is on easy usage and easy comprehensibility. To facilitate the acceptance of the
standard, a LATEX style file is provided [1] that makes it easy to create documents conforming
to the standard.

The proposed standard is based on the following guidelines: the notation should blend
seamlessly with the traditional notation in mathematics, in particular numerical analysis
and optimization. It should also result in formulas that look as simple as possible, while
conveying the meaning clearly even to readers not working in the field. It should create a
minimal burden in preparing manuscripts for authors wanting to conform to the standard.
In particular, standardization is restricted to the most basic aspects of interval terminology.

We hope that the suggested notation will appear persuasive to authors in interval analysis
and its applications, convincing them that using it is likely to improve the communication
of ideas in interval analysis to colleagues and potential users.

1. Standard notation

Noninterval quantities. General recommendations on the mathematical style are in the
authoritative Handbook of Writing for the Mathematical Sciences by Higham [2].

In order for the notation to be consistent with traditional usage in other fields of mathe-
matics, in particular optimization and numerical analysis, letters defining scalars and vectors
should be lower case, and those defining matrices should be upper case. Sets should be cap-
itals not in bold, unless they are intervals or boxes (see below). Similarly, letters denoting
scalar-valued functions should be lower case, and letters denoting vector-valued functions
should be upper case.

Upper case vector-valued functions are advisable because these are nonlinear operators,
that is, generalizations of linear operators and matrices. This is the dominant usage, cf., e.g.,
Ortega & Rheinboldt [3, p. 20], Dennis & Schnabel [4], although not universally
followed (e.g., Nocedal & Wright [5] use lower case).

Arithmetic expressions are formulas (or more general programs) made up of a finite se-
quence of operations and elementary functions applied to constants, the components of an
argument vector, or intermediate results. Letters denoting expressions should be sansserif
lower case for scalar results, and sansserif upper case for vector results. Expressions are eval-
uated on arguments of a given class using class specific operations and elementary functions.

A notational distinction of arithmetic expressions and the function they represent is
important because equivalent expressions give different results when evaluated in nonstandard
(e.g., floating point) arithmetic. This has been blurred in the past, sometimes leading to
confusion, especially for people outside interval analysis who are likely to interpret f([−1, 1])
as the image of [−1, 1] under f ; f([−1, 1]) specifies it as the result of applying the operations
in f to the interval [−1, 1] in its intrinsic arithmetic.

The sloppy usage of “the function f(x) = x2 − x + 1” is accepted in mathematics, but
is discouraged and should be replaced by either “the expression f(x) = x2 − x + 1” or “the
function f defined by f(x) = x2 − x + 1 for all x ∈ R”, depending on the intended usage:
The first form emphasizes the syntactic form to be used for evaluation and is defined for
all arguments for which the operations are defined, while the second form emphasizes the
mapping aspect and has no meaning with a nonreal argument.

Given a list x of arguments, the sublist consisting of the components xk with indices k in
a subset K of indices is denoted by xK , and the complementary sublist by x 6∈K , or by x 6=k if
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K = {k}; the ordering is that of the natural ordering of the index set. If f is an expression
in x, then

f(xK , y 6∈K) := f(z), zk =

{
xk if k ∈ K,
yk if k 6∈ K,

denotes the value of f at the argument with components in K taken from x and the others
taken from y. Similarly, f(xk, y 6=k) denotes the value of f at the argument with components
k taken from x and the others taken from y.

This is the simplest of various notations used in some versions of slopes, and in con-
straint propagation for slicing, where some arguments in an expression are intervals, and
others are components of centers or endpoints of intervals.
R denotes the field of real numbers, Rn the vector space of column vectors of length n

with real entries, and Rm×n the vector space of m× n-matrices with real coefficients.
This is the standard notation in numerical analysis; cf. Golub & van Loan [6],

Higham [7], and Neumaier [8]. In optimization, it is usually avoided to refer explicitly to
a space of matrices, but if it occurs, such as in Nocedal & Wright [5, p. 255], the above
notation is used there, too.

It is recommended to write S ⊆ S ′ if S is a subset of S ′, and to avoid the use of the
ambiguous symbol ⊂.

To say unambiguously that S is a proper subset of S ′ (rarely needed in our field), it is
best to use words, or S ⊆ S ′, S 6= S ′.

The interior of a subset S ⊆ Rn is denoted by int S, the boundary by ∂S. The convex
hull (closed convex hull) of a set S is denoted by ch S (cch S).

The above includes the possibility of writing int (S), ch (S), etc., where appropriate.
The relations =, <,≤, >,≥ between vectors or matrices, and the supremum sup S and

infimum inf S of a set S of vectors or matrices are interpreted componentwise.
This conforms with standard usage in lattice theory, and is essential in arguments

based on the theory of nonnegative matrices, M-matrices, and H-matrices, where vectors
with all components > 0 figure prominently.

The transpose of a vector x (a matrix A) is written as xT (AT ). The transposed inverse
of a nonsingular square matrix A is denoted by

A−T = (AT )−1 = (A−1)T .

Using xT and AT is standard in numerical analysis and optimization. The notation A−T is
now also frequently used in numerical analysis and very convenient. Many pure mathemati-
cians prefer x>, A>, and statisticians (and Matlab) use x′, A′; our choice is guided by the
closeness of interval analysis to numerical analysis and optimization.

Components of a matrix A are denoted by Aik (preferably) or aik (if done consistently);
the ith row of A is denoted by Ai:, and the kth column by A:k.

Diag (A) = (A11, . . . , Ann)T

denotes the diagonal of a square matrix A, diag(a) = diag(a1, . . . , an) the diagonal matrix
with diagonal entries ak, and diag(A) = diag(Diag (A)) the diagonal part of A.

This is a compromise between mathematical notation and Matlab notation, consis-
tent with traditional notation.

There is no common notation in mathematics for the identity matrix; numerical analysts
usually use I; other authors use E or Id. Many mathematicians use 1 as the unit in any ring
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and hence also in the ring of matrices, and this has its advantages. Our recommendation is
to use I and 1 in contexts where I is used as an index set.

The preferred (but not the only useful) norm in interval computations is the maximum
norm, ‖x‖∞ = maxk |xk|. In papers where ‖x‖ shall denote a distinguished norm, it should
be defined so explicitly in the paper.

Intervals and boxes. A box of dimension n is a pair x = [x, x] consisting of two real
column vectors x and x of length n with x ≤ x. The set of all boxes of dimension n is
denoted by IRn.

IRn has been used in four books, Neumaier [8, 9], Kearfott [10], Jaulin et al. [11].
Boldface for intervals is in [8, 10]; [9] did not distinguish between reals and intervals nota-
tionally; [11] used x for real vectors and [x] for interval vectors, which seems unnecessarily
complicated, given that mathematicians do not specially mark vectors; [10] used capital bold-
face letters for interval vectors, with the disadvantage that formulas of linear algebra have a
different appearance when written for intervals.

A box x is generally identified with the (nonempty) set of points between its lower and
upper bound,

x = {x ∈ Rn | x ≤ x ≤ x},
so that a vector x ∈ Rn is contained in a box x, i. e., x ∈ x iff x ≤ x ≤ x. Similarly, a
thin box x = [x, x] (i. e., a box of zero width) is usually identified with the unique point x
it contains. A generic (arbitrary) point in a box x is often denoted by x or x̃. The set of
vertices of a box x (or more generally a polytope S) is denoted by vert x (vert S).

We write inf x := x for the lower bound, sup x := x for the upper bound, and dim x = n
for the dimension of x. The width of a box x is

wid x = x− x ≥ 0;

its radius is

rad x =
1

2
wid x =

1

2
(x− x),

and its midpoint is

mid x =
1

2
(x + x).

Writing wid (x), rad (x), mid (x) is also acceptable.
x̌ was reserved for the midpoint in [9], but is elsewhere used more generally for a

center, i. e., a representative point (not necessarily the midpoint) used in centered forms.
A (real, closed, nonempty) interval is a 1-dimensional box, i. e., a pair x = [x, x] consist-

ing of two real numbers x and x with x ≤ x. The set of all intervals is denoted by IR. A box
x may be considered as an interval vector x = (x1, . . . , xn)T with components xk = [xk, xk].

For example, if x =

(
1

3

)
and x =

(
2

4

)
then x =

(
[1, 2]

[3, 4]

)
.

The deviation of an interval x is the real number dev x defined by dev x = x if |x| ≥ |x|,
and dev x = x otherwise. The mignitude of an interval x is the number

〈x〉 = min{ |x| | x ∈ x }.

Using < x > for the mignitude would make formulas more difficult to interpret, espe-
cially if used together with inequality signs.
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The interval-valued absolute value function is defined on intervals by

abs(x) = { |x| | x ∈ x }.

The absolute value of a box x is the real vector

|x| = max{ |x| | x ∈ x } = sup{−x, x}.

In particular,

abs(x) = [ 〈x〉, |x| ] for intervals x.

The vector valued hypermetric between x and y is denoted by

dist (x, y) = sup{ |x− y|, |x− y| }.

The Hausdorff distance between two boxes x and y in the metric given by the maximum
norm is then

dist∞(x, y) = ‖dist (x,y)‖∞,

and similarly for other specific norms.
The book [9] used the traditional q(x, y) for dist (x, y), which is less easy to under-

stand.

Interval matrices. An m × n interval matrix is a m × n matrix A whose entries
Ajk = [Ajk, Ajk] (j = 1, . . . , m, k = 1, . . . , n) are intervals. An interval matrix A is generally
identified with the (nonempty) set of matrices A with Ajk ∈ Ajk for all j, k, equivalently
with A ≤ A ≤ A. The notation for boxes is adapted to interval matrices in the natural
componentwise way. An exception is the mignitude, which is undefined for non-square
matrices, and becomes the comparison matrix 〈A〉 of a square matrix A, defined as the
matrix with diagonal components 〈A〉kk = 〈Akk〉 and off-diagonal components 〈A〉jk =
−|Ajk| for j 6= k.

This is needed for consistent usage in the context of H-matrices; see Neumaier [9,
Chapter 3]. 〈A〉 is undefined for matrices that are not square and for vectors of length > 1.

Operations and expressions. A relation xω y (with ω ∈ {<,≤, >,≥}) between two
boxes x and y is defined to be true iff xω y for all x ∈ x, y ∈ y.

This is the traditional, oldest interpretation, and is established. Of course, other inter-
pretations are possible but should be designated differently. For example, the statement “xω y
for some x ∈ x, y ∈ y” could perhaps be denoted by xω∗ y; but this should be defined in
each paper using it.

Operations (and elementary functions) are automatically interpreted as the natural opera-
tions on the class of objects involved; i. e., real for real (vector, matrix) arguments, interval
if an argument is interval (vector, matrix).

In case of finite precision arithmetic, interval operations are assumed outward rounded.
In case of conflicting interpretations (exact vs. rounded, or interval versus set operations),
the recommended notation is fl(expression) for the floating point evaluation of an explicitly
given expression expression, fl∆(expression) and fl∇(expression) for upward and down-
ward directed rounding, respectively, flint(expression) for the outward rounded interval
evaluation, and set(expression) for the set (Minkowski) evaluation.
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fl(expression) is commonly used in numerical analysis, and generalizes naturally in
the form stated.

Since expressions define unique functions from (part of) IR to IR, other functions from
IR to IR may also be written in bold if desired.

The image of a set S under a mapping f (which equals the range of f for arguments
in S) is denoted by

range (f, S) = {f(x) | x ∈ S},
and the range of an expression f over a box x is

range (f,x) = {f(x) | x ∈ x}.
The use of f(S) for the image of S under f is discouraged since, for boxes S = x, a

confusion with an interval evaluation may occur. Alternatives such as range x∈Sf(x) formed
in analogy to the use of min or lim are acceptable.

The interval hull of a set S is denoted by ¤S, and the interval evaluation of an expression
f is f(x), so that range (f, x) ⊆ f(x).

Generalizations of intervals. Complex intervals exist either as rectangles or as disks.
If only one sort of complex intervals is used, the set of such intervals should be denoted by
IC, otherwise use ICrect for the set of complex rectangles and ICdisc for the set of complex
discs.

An extended box of dimension n is either the empty set x = ∅, or a pair x = [x, x]
consisting of two column vectors x ∈ (R ∪ {−∞})n and x ∈ (R ∪ {∞})n with x ≤ x. ∗IRn

denotes the set of extended boxes of dimension n. An extended interval is an extended box
of dimension one.

Kaucher [12, 13] completed interval arithmetic by introducing improper intervals where
the upper bound is smaller than the lower bound, and converse operations to the standard
interval arithmetic operations. In particular, we have inner addition and inner subtraction,

x⊕ y = [x + y, x + y], xª y = [x− y, x− y],

and more compicated formulas for inner multiplication ¯ and inner division ®. The support
of the resulting algebraic system — Kaucher complete interval arithmetic — consisting of
both proper intervals and improper intervals is denoted by KR.

Kaucher’s original notation IR conflicts with the later consensus usage of this for the
set of intervals.

All the notation for intervals and boxes is extended to these generalizations in a straight-
forward way.

2. The intmacros.sty style file

To facilitate the acceptance of the proposed standard, a LATEX style file is provided [1]
(together with the LATEX source of the present paper as an example of its use) that makes it
easy to create documents conforming to the standard. The style file is designed to keep the
LATEX notation for intervals as simple as possible.

The style file uses \a for a, \A for A, etc., to denote bold face (i. e., interval) quantities.
This notation is very short and quite convenient; even on the blackboard, \A is better than
[A] since it is shorter, and can be read naturally as “interval A”.
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\mathsf f gives the sansserif letter f, etc., denoting an expression.
The style file uses \Rz for R, and similarly for other open-faced upper case letters. \ul x

and \ol x encode the lower bound x and the upper bound x of x.
In some cases, the existence of already frequently used macros prevented the natural

name for an abbreviation, and we modified it according to the annotation in the style file.
For example, both \vert and \Vert are reserved in LATEX for single and double vertical lines,
respectively. So, the vertex set gets the abbreviation \ivert instead of \vert. Similarly,
the interior is typed as \iint instead of \int, the midpoint as \imid instead of \mid, an
interval or box i is typed as \ii instead of \i, v as \vv instead of \v, and an interval matrix
D as \DD instead of \D.
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