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Based on interval arithmetic and classical
fixed point theory, we review

• Obtaining sharp but rigorous bounds
on an actual solution that is near an
approximate solution.

• Verifying continuation along a single
mathematical path.

• Rigorously locating all solutions to a
nonlinear system of equations.

• Rigorous global optimization.

The relative difficulty and practicality of
each of these tasks will be discussed.
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The General Mathematical
Framework

Use the notation

X = {(x1, x2, . . . , xn)T ∈ Rn

|xi ≤ xi ≤ xi, 1 ≤ i ≤ n},

A fundamental problem is then

Given F : X → Rn and X ∈ IRn,
rigorously verify:

• there exists a unique X∗ ∈ X
such that F (X∗) = 0,

(1)

Computer arithmetic can be used to verify
the assertion in Problem (1), with the aid
of interval extensions and computational
fixed point theorems.
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Underlying Mathematics

• Classical fixed point theory implies
existence.

– Contraction Mapping Theorem
– Brouwer Fixed Point Theorem
– Miranda’s Theorem

• Regularity (non-singularity) implies
uniqueness.

• Fundamental property of interval
arithmetic allows computational
existence and uniqueness.
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Underlying Mathematics

Miranda’s Theorem

Theorem 1 Suppose X ∈ IRn, and let the
faces of X be denoted by

Xi = (x1, . . . ,xi−1, xi,xi+1, . . . ,xn)
T

Xi = (x1, . . . ,xi−1, xi,xi+1, . . . ,xn)
T .

Let F = (f1, . . . , fn)T be a continuous
function defined on X. If

f i
u(Xi)f i

u(Xi) ≤ 0 (2)

for each i between 1 and n, then there is
an X ∈ X such that F (X) = 0.
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Connections with
Computation

Fundamental Property of Interval
Arithmetic

Definition 1 If f : R→ R is a function
computable as an expression, algorithm or
computer program involving the four
elementary arithmetic operations, then a
natural interval extension of f , whose
value over an interval x is denoted by f(x),
is obtained by replacing each occurrence of
x by the interval x and by executing all
operations as interval operations.

It is not hard to show

Theorem 2 If f is any natural interval
extension of f , and x ∈ IR is contained
within the domain of f , then f(x) contains
the range fu(x) of f over x.
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Connections with
Computation

Regularity

Lemma 3 Suppose F : X → Rn and A is
a Lipschitz matrix, such as F′(X). If A is
regular, then any root of F in X is unique.

Proof: Suppose X∗ ∈ X and X ∈ X have
F (X∗) = 0 and F (X) = 0. If A is a
Lipschitz matrix, then there is an A ∈ A
such that

F (X∗)− F (X) = 0
= A(X∗)−A(X)
= A(X∗ −X).

If X∗ 6= X, then A would have a null
vector, contradicting the regularity of A.
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Existence / Uniqueness with
Interval Newton Methods

An interval Newton method is defined by
an iteration of the form

X̃ = N(F ;X, X̌) = X̌ + V, (3)

where
Σ(A,−F (X̌)) ⊂ V,

where A is a Lipschitz matrix for F over
X and Σ(A,−F (X̌)) is that set {X ∈ Rn}
such that there exists an A ∈ A with
AX = −F (X̌).

Theorem 4 Suppose X̃ is the image of X
under an interval Newton method. If
X̃ ⊆ X, it follows that there exists a
unique solution of F (X) = 0 within X.
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Interval Newton Methods

Illustration
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In this case, an interval Newton method
proves existence.
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Connections with
Computation

On Interval Newton Methods

• Proof of the interval Newton existence
/ uniqueness theorem proceeds from
properties of interval arithmetic and
the contraction mapping theorem,
Miranda’s theorem, or the Brouwer
fixed point theorem (depending on
context and particulars).

• Reasonable bounding sets V can be
obtained by various methods, such as
the preconditioned interval
Gauss–Seidel method or preconditioned
interval Gaussian elimination.

• Iteration of interval Newton methods
leads to a locally quadratically
convergent process.
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Applications of Interval
Newton Existence/Uniqueness

• Global, exhaustive search for all
solutions to a nonlinear system of
equations.

• Rigorous, tight bounds on solutions to
nonlinear systems, given solutions to
approximate systems.

• Global optimization.

• Infallible step controls for continuation
methods.

• Computation of the topological degree.

• Verification of a particular value of the
topological degree.

Verified Linear and Nonlinear Systems July, 1998 SIAM I–10



Exhaustive Search for
Solutions

Given F : X → Rn and X ∈ IRn,
find rigorous and tight bounds X∗ on
all solutions X∗ ∈ X with F (X∗) =
0, and prove that each set of bounds
corresponds to a unique solution.

(4)

• The fundamental property of interval
arithmetic, interval Newton methods,
and a tesselation scheme for boxes
X ∈ IRn are combined.

• The general problem is NP complete.

• Nonetheless, effective algorithms exist
for moderate dimensions and for
problems with special properties.

• Such algorithms are far faster than grid
search, and also give mathematically
rigorous results.
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Verification of Approximate
Solutions

The Procedure:

1. An approximate solution X∗ is
computed with a floating point
algorithm.

2. A small box X∗ is constructed about
X∗ (“ε-inflation”).

3. An interval Newton method is used to
prove existence and uniqueness in X∗

Practicality:

• This problem is solved many times in
exhaustive search.

• This problem is not NP-complete; the
computational work is comparable to
that of floating point linear system
solvers.
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Global Optimization

• The problem is similar to exhaustive
search for solutions to systems of
equations.

• Interval values of the objective function
can be used to speed the search.

• Special techniques are used for
problems with various types of
constraints.

(Global optimization leads to more
complicated algorithms than exhaustive
search for zeros, and is more tenuously
related to dynamical systems.)
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Rigorous Step Controls for
Continuation Methods

General Predictor–Corrector Methods

• The goal is to follow the
one-dimensional solution manifolds of
H(Z) = H(X, t) = 0, H : Rn+1 → Rn.

• Popular predictor-corrector methods
proceed as follows:
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General Predictor-Corrector
Methods

Failure Modes

This actually happens frequently!
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Interval Step Control

Parametrized Interval Newton Methods

1. A coordinate t from the domain of
H : Rn+1 → Rn is held fixed, and an
interval Newton method is applied to
the remaining coordinates.

2. With appropriate interval extensions to
the Jacobi matrix,

N(H(·, t);X, X̌) ⊂ H(X, t)

implies that, for every t ∈ t, there is a
unique solution of H(X, t) = 0.

3. We have also proven that there is a
unique path passing through the faces
(X, t) and (X, t) of the box
(X, t) ⊂ Rn+1.

4. Because of this uniqueness, the iterates
cannot jump across branches or
bifurcation points.
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Parametrized Interval Newton
Methods

Illustration:
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Here, the computations prove that there is
a unique path in the box, passing through
the faces t = t and t = t.
Practicality:
The interval step control suffers neither
from the curse of dimensionality nor from
overestimation in interval computations
with large boxes.
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Computation of the
Topological Degree

The general problem is

Given F : X ⊂ Rn → Rn, compute
the topological degree d(F,X, 0) of
F over X at 0.

• Computation of d(F,X, 0) is possible
by finding all zeros of certain functions
F̃ : D ⊂ Rn−1 → Rn−1 over the n
(n− 1)-dimensional faces of X.

• This general degree computation is
roughly n times as expensive as
searching for all zeros of F in X.

• General degree computation may be
useful for other reasons or when there
are singular zeros of F .
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Verification of a Particular
Topological Degree Value

• If a particular value of the topological
degree (such as 2) is suspected, or a
particular singularity structure is
suspected, then a modified interval
Newton method can verify that the
structure is as postulated.

• Such verification takes little more
computational effort than application
of an ordinary interval Newton method.

The above is work in progress.
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