Existence and Uniqueness Verification for Singular Zeros of Nonlinear Systems

by

R. Baker Kearfott Department of Mathematics, University of Southwestern Louisiana

rbk@usl.edu

and

Jianwei Dian

Department of Mathematics, University of Southwestern Louisiana

and

Arnold Neumaier

Institute of Mathematics, University of Vienna

singular system verification

SCAN'98–1

The General Question

Given $F : \mathbf{x} \to \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{IR}^n$, rigorously verify: (1)

• there exists a unique $x^* \in \mathbf{x}$ such that $F(x^*) = 0$,

Computer arithmetic can be used to verify the assertion in Problem (1), with the aid of interval extensions and *computational* fixed point theorems.

The General Question

Uses

- Producing rigorous bounds on approximate solutions to linear and nonlinear systems (The approximate solutions can be computed with traditional techniques.)
 - in analysis of stability of structures, where one wants to prove that all eigenvalues have negative real parts
 - in robust computational geometry (surface intersection problems, etc.)
- As a tool in branch and bound algorithms in global optimization.
- As a tool in the verification that *all* zeros of a nonlinear system have been found in a region of \mathbb{R}^n .

singular system verification

SCAN'98–3

The Nonsingular Case

Traditional Interval Newton Methods

Assumptions (roughly stated):

- 1. The Jacobi matrix $F'(x^*)$ is nonsingular.
- 2. x^* is near the center of **x**.
- 3. The component widths of \mathbf{x} are small.
- 4. $\mathbf{N}(F; \mathbf{x}, \check{x})$ is the image of \mathbf{x} under an appropriate, preconditioned interval Newton method, with \check{x} the center of \mathbf{x} .

Then:

- 1. The preconditioned $F'(\mathbf{x})$ is approximately the identity matrix.
- 2. Thus, $\mathbf{N}(F; \mathbf{x}, \check{x}) \subset \mathbf{x}$. This proves that there is a unique solution of F(x) = 0in \mathbf{x} .

singular system verification

SCAN'98–4

The Nonsingular Case

An Example

Example 1 Take

$$f_1(x_1, x_2) = x_1^2 - x_2, f_2(x_1, x_2) = x_1 - x_2^2,$$

and

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)^T = ([-0.1, 0.1], [-0.1, 0.3])^T.$$

Take $\check{x} = (0, 0.1)^T$, so $F(\check{x}) = (-0.1, -0.01)^T$, and an interval extension of the Jacobi matrix is

$$\mathbf{F}'(\mathbf{x}) = \begin{pmatrix} 2\mathbf{x}_1 & -1\\ 1 & -2\mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} [-.2, .2] & -1\\ 1 & [-0.6, 0.2] \end{pmatrix}.$$

Precondition by the inverse of the midpoint matrix

$$Y = \{ \mathbf{m}(\mathbf{F}'(\mathbf{X})) \}^{-1} = \begin{pmatrix} -0.2 & 1 \\ -1 & 0 \end{pmatrix},$$

singular system verification

The Nonsingular Case

An Example (continued)

so the corresponding linear interval system is

$$Y\mathbf{F}'(\mathbf{x})(\mathbf{x}-\check{x}) = -YF(\check{x}),$$

i.e.,

$$\begin{pmatrix} [0.96, 1.04] & [-0.4, 0.4] \\ [-0.2, 0.2] & 1 \end{pmatrix} (\mathbf{x} - \check{x}) = \begin{pmatrix} -0.01 \\ -0.1 \end{pmatrix}.$$

The interval Gauss–Seidel method applied to this system proves a unique solution in **x**:

$$\tilde{\mathbf{x}}_{1} = 0 - \frac{-0.01 + [-0.4, 0.4][-0.2, 0.2]}{[0.96, 1.04]} \\ \subseteq [-0.094, 0.073] \subset \operatorname{int}([-0.1, 0.1]).$$

Similarly, $\tilde{\mathbf{x}_2} \subset \operatorname{int}(\mathbf{x}_2)$.

singular system verification

When the Jacobi matrix $F'(x^*)$ is singular, computations as above cannot possibly prove existence and uniqueness.

Example 2 Take

$$f_1(x_1, x_2) = x_1^2 - x_2, f_2(x_1, x_2) = x_1^2 + x_2,$$

and

 $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)^T = ([-0.1, 0.1], [-0.1, 0.3])^T$. For such systems, the best that a preconditioner can do is reduce the Jacobi matrix to approximately the form

singular system verification

SCAN'98–7

Philosophical Considerations

Uniqueness verification within the original \mathbf{x} is not possible. Alternatives are:

- 1. (Easy but perhaps not always adequate) Verify the system has an ϵ -approximate solution within **x**.
- 2. (Only possible in special cases) Verify the system has at least one solution in x.
- 3. (More difficult computationally) Verify the system has an exact number of solutions, counting multiplicities, in a complex extension of **x**.

Which alternative is appropriate in particular contexts?

 ϵ -Approximate Solution

- 1. Simply evaluate the interval extension $\mathbf{F}(\mathbf{x})$.
- 2. If ||F(x)|| < ε, then each component of F is less than ε everywhere within x.
 (But all components of f may not simultaneously vanish.)
- 3. This technique can be used, along with scaling, etc., to handle non-isolated solutions in branch and bound algorithms.

Verification of at Least One Solution

- 1. The *topological degree* (to be explained shortly) may be computed over **x**.
- 2. If the topological degree is non-zero, there is at least one solution of F(x) = 0 in **x**.
- 3. No conclusion can be reached if the topological degree is zero.

singular system verification

Verification of the Exact Multiplicity

- 1. If $F : \mathbb{C}^n \to \mathbb{C}^n$, then the topological degree of F over **x** gives the exact number of solutions, counting multiplicities.
- 2. If $F : \mathbb{R}^n \to \mathbb{R}^n$, and F can be extended analytically into \mathbb{C}^n , then computations can verify existence of an exact solution or solutions (with multiplicity computed by the algorithm) within a small region of complex space containing **x**.
- 3. Sometimes the value of the topological degree (i.e. the multiplicity of the solution) is of interest beyond the existence/uniqueness question.

singular system verification

The Topological Degree

What is it?

- If $F : \mathbf{x} \subset \mathbb{R}^n \to \mathbb{R}^n$, $F'(x^*) \neq 0$ wherever $F(x^*) = 0$, $x^* \in \mathbf{x}$, and $F(x) \neq 0$ when $x \in \partial \mathbf{x}$, then the degree $d(F, \mathbf{x}, 0)$ is the number of $x^* \in \mathbf{x}$, $F(x^*) = 0$ with $det(F'(x^*)) > 0$, minus the number of such $x^* \in \mathbf{x}$ with $det(F'(x^*)) < 0$.
- d(F, x, 0) is a continuous function of F, and is defined even if det(F'(x*)) = 0, as long as there are no solutions to F(x) = 0 on ∂x.
- If F is extended to Cⁿ and is thought of as mapping R²ⁿ to R²ⁿ, and x is embedded in a box z ∈ C²ⁿ, then d(F, z, 0) is equal to the exact number of z ∈ z, F(z) = 0, counting multiplicities.

singular system verification

The Topological Degree

An Example

• If

$$f_1(x,y) = x^2 - y^2 - \epsilon^2$$

 $f_2(x,y) = 2xy,$

If $\epsilon \neq 0$, then F has solutions at $(x, y) = (\epsilon, 0)$ and $(x, y) = (-\epsilon, 0)$. Since $\det(F'(x)) = 4(x^2 + y^2) = 4\epsilon^2$ at each of these solutions, $d(F, \mathbf{z}, 0) = 2$, where

$$\mathbf{z} = \{(x, y) \mid x \in [-0.1, 0.1], y \in [-\delta, \delta]\}$$

for any $\delta > 0$.

• If $\epsilon = 0$, then $d(F, \mathbf{z}, 0)$ is still equal to 2, even though the Jacobi matrix vanishes at the only solution (x, y) = (0, 0).

singular system verification

The Topological Degree

How is it Computed?

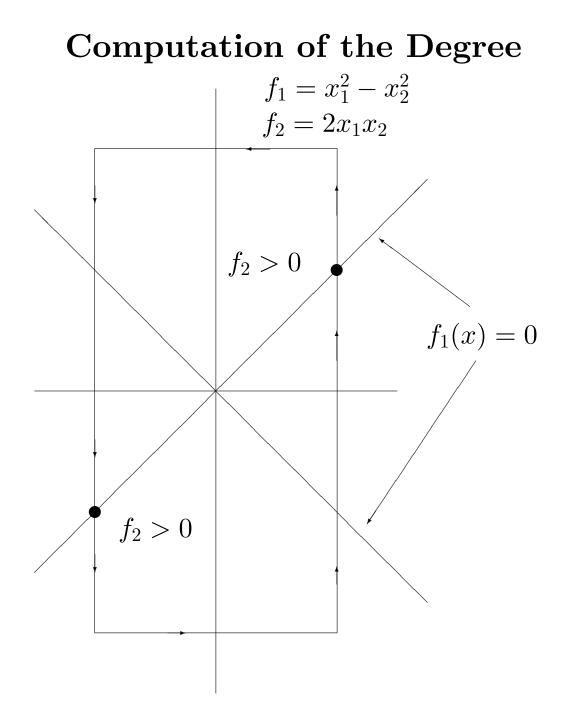
- $d(F, \mathbf{x}, 0)$ depends only on values of F on $\partial \mathbf{x}$.
- Define

$$F_{\neg k}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_{k-1}(\mathbf{x}), f_{k+1}(\mathbf{x}), \dots, f_n(\mathbf{x})),$$

and select $s \in \{-1, 1\}$. Then $d(F, \mathbf{x}, 0)$ is equal to the number of zeros of $F_{\neg k}$ on $\partial \mathbf{x}$ with positive orientation at which $\operatorname{sgn}(f_k) = s$, minus the number of zeros of $F_{\neg k}$ on $\partial \mathbf{x}$ with negative orientation at which $\operatorname{sgn}(f_k) = s$.

 The orientation is computed by computing the sign of the determinant of the Jacobian of F_{¬k} and by taking account of which face.

singular system verification



singular system verification

Computation of the Degree

Computational Cost

- 1. Directly finding all zeros of $F_{\neg k}$ on $\partial \mathbf{x}$ can be done in a straightforward branch and bound algorithm. However, that is perhaps too expensive for mere verification purposes.
- 2. The structure of the preconditioned system can be used to greatly simplify the computations.
- 3. The widths of the box **x** constructed about the approximate solution can be chosen so that only several one-dimensional searches need be done to compute $d(F, \mathbf{z}, 0)$, where $F : \mathbb{C}^n \to \mathbb{C}^n$.

singular system verification

Computation of the Degree

Notation and Assumptions

- For $F : \mathbb{R}^n \to \mathbb{R}^n$, extend F to complex space: z = x + iy, $u_k(x, y) = \Re(f_k(z))$ and $v_k(x, y) = \Im(f_k(z))$.
- Define $\tilde{F}(x, y) =$ $(u_1(x, y), v_1(x, y), \dots, u_n(x, y), v_n(x, y)) :$ $\mathbb{R}^{2n} \to \mathbb{R}^{2n}.$

• Assume $F(x^*) \approx 0$.

Assume F has been preconditioned (say, through an incomplete LU factorization). Also assume F'(x*) has null space of dimension 1, so

$$f_k(x) \approx (x_k - x^*_k) + \frac{\partial f_k}{\partial x_n} (x^*) (x_n - x^*_n)$$

for $1 \le k \le n - 1$.

singular system verification

Structure of the System

One-Dimensional Null Space

For $1 \leq k \leq (n-1)$,

$$egin{aligned} u_k(x,y) &= (x_k - \check{x}_k) + rac{\partial f_k}{\partial x_n}(\check{x})(x_n - \check{x}_n) \ &+ \mathcal{O}\left(\| (x - \check{x},y) \|^2
ight) \ v_k(x,y) &= y_k + rac{\partial f_k}{\partial x_n}(\check{x})y_n \ &+ \mathcal{O}\left(\| (x - \check{x},y) \|^2
ight), \end{aligned}$$

and

$$egin{aligned} u_n(x,y) \ &= \ \mathcal{O}\left(\|(x-\check{x},y)\|^2
ight), \ v_n(x,y) \ &= \ \mathcal{O}\left(\|(x-\check{x},y)\|^2
ight). \end{aligned}$$

singular system verification

Structure of the System

Consequences

- 1. Mean-value interval extensions \mathbf{u}_k and \mathbf{v}_k can be formed, $1 \le k \le n-1$.
- 2. If x_n is known precisely, formally solving $\mathbf{u}_k(\mathbf{x}, \mathbf{y}) = 0$ for x_k gives \mathbf{x}_k with $w(\mathbf{x}_k) = \mathcal{O}\left(\|(\mathbf{x} - \check{x}, \mathbf{y})\|^2\right)$, $1 \le k \le n-1$.
- 3. If y_n is known precisely, formally solving $\mathbf{v}_k(\mathbf{x}, \mathbf{y}) = 0$ for y_k gives \mathbf{y}_k with $w(\mathbf{y}_k) = \mathcal{O}\left(\|(\mathbf{x} - \check{x}, \mathbf{y})\|^2 \right)$, $1 \le k \le n - 1$.

singular system verification

A Degree-Computation Algorithm

Construction of the Box \mathbf{z}

1. Define
$$\mathbf{x} = ([\underline{x}_1, \overline{x}_1], \dots, [\underline{x}_n, \overline{x}_n])$$
 and $\mathbf{y} = ([\underline{y}_1, \overline{y}_1], \dots, [\underline{y}_n, \overline{y}_n]).$

- 2. Define $\mathbf{x}_{\underline{k}}$ as (\mathbf{x}, \mathbf{y}) with $[\underline{x}_k, \overline{x}_k]$ replaced by \underline{x}_k , and define $\mathbf{x}_{\overline{k}}$ as (\mathbf{x}, \mathbf{y}) with $[\underline{x}_k, \overline{x}_k]$ replaced by \overline{x}_k . Similarly define $\mathbf{y}_{\underline{k}}$ and $\mathbf{y}_{\overline{k}}$.
- 3. $u_k(x, y) = 0$ on $\mathbf{x}_{\underline{k}}, 1 \le k \le n 1$, at approximately

$$x_n = \check{x}_n + \frac{\check{x}_k - \underline{x}_k}{\partial f_k / \partial x_n(\check{x})},$$

 $u_k(x,y) = 0$ on $\mathbf{x}_{\overline{k}}, 1 \le k \le n-1$, at approximately

$$x_n = \check{x}_n + \frac{\check{x}_k - \overline{x}_k}{\partial f_k / \partial x_n(\check{x})}$$

singular system verification

A Degree-Computation Algorithm

Construction of \mathbf{z} (continued)

4. Similarly,
$$v_k(x, y) = 0$$
 on $\mathbf{y}_{\underline{k}}$,
 $1 \le k \le n - 1$, at approximately
 $y_n = \frac{-y_k}{\partial f_k / \partial x_n(\check{x})}$, and $v_k(x, y) = 0$ on $\mathbf{y}_{\overline{k}}$,
 $1 \le k \le n - 1$, at approximately
 $y_n = \frac{-\overline{y}_k}{\partial f_k / \partial x_n(\check{x})}$.

5. Thus, if \mathbf{x}_n is chosen so

$$\mathbf{w}(\mathbf{x}_n) \le \frac{1}{2} \min_{1 \le k \le n-1} \left\{ \frac{\mathbf{w}(\mathbf{x}_k)}{|\partial f_k / \partial x_n(\check{x})|} \right\},\,$$

then it is unlikely that $u_k(x, y) = 0$ on either $\mathbf{x}_{\underline{k}}$ or $\mathbf{x}_{\overline{k}}$.

6. Similarly, if \mathbf{y}_n is chosen so that

$$w(\mathbf{y}_n) \leq \frac{1}{2} \min_{1 \leq k \leq n-1} \left\{ \frac{w(\mathbf{y}_k)}{|\partial f_k / \partial x_n(\check{x})|} \right\},\,$$

then it is unlikely that $v_k(x, y) = 0$ on either $\mathbf{y}_{\underline{k}}$ or $\mathbf{y}_{\overline{k}}$.

singular system verification

Degree Computation

An Actual Algorithm

- 1. For k = 1 to n 1:
 - (a) Do mean-value interval evaluations of $u_k(x, y)$ over $\mathbf{x}_{\underline{k}}$ and $\mathbf{x}_{\overline{k}}$ to show that $u_k(x, y) \neq 0$ on these faces of \mathbf{z} .
 - (b) Similarly do second-order interval evaluations of $v_k(x, y)$ over $\mathbf{y}_{\underline{k}}$ and $\mathbf{y}_{\overline{k}}$ to show that $v_k(x, y) \neq 0$ on these faces of \mathbf{z} .
- 2. On $\mathbf{x}_{\underline{n}}$ and $\mathbf{x}_{\overline{n}}$:
 - (a) Use mean-value extensions $\mathbf{u}_k(\mathbf{x}, \mathbf{y}) = 0$ to solve for \mathbf{x}_k with width $\mathcal{O}(\|(\mathbf{x} - \check{x}, \mathbf{y})\|^2),$ $1 \le k \le n - 1.$
 - (b) Perform a binary search on \mathbf{y}_n to find verified intervals where $\tilde{F}_{\neg v_n} = 0$ and $v_n(x, y) > 0$.

singular system verification

A Degree Computation Algorithm

(continued)

- 3. On \mathbf{y}_n and $\mathbf{y}_{\overline{n}}$ (similar to Step 2):
 - (a) Use mean-value extensions $\mathbf{v}_k(\mathbf{x}, \mathbf{y}) = 0$ to solve for \mathbf{x}_k with width $\mathcal{O}(\|(\mathbf{x} - \check{x}, \mathbf{y})\|^2),$ $1 \le k \le n-1.$
 - (b) Perform a binary search on \mathbf{x}_n to find verified intervals where $\tilde{F}_{\neg v_n} = 0$ and $v_n(x, y) > 0$.
- 4. For each solution to $F_{\neg v_n} = 0$ found in Steps 2b and 3b, compute an orientation, to sum to find the degree.

The Degree Computation Algorithm

Some Notes

- For each interval on y_n produced in the search in Step 2b, narrower intervals on y_k can be produced with a mean-value extension $\mathbf{v}_k(x) = 0, 1 \le k \le n-1$.
- Similarly, for each interval on x_n produced in the search in Step 3b, narrower intervals on x_k can be produced with a mean-value extension $\mathbf{u}_k(x) = 0, 1 \le k \le n - 1.$
- An interval Newton method can be set up for $\tilde{F}_{\neg v_n}$ to verify existence and uniqueness.