
Existence and Uniqueness
Verification for Singular Zeros

of Nonlinear Systems

by
R. Baker Kearfott

Department of Mathematics, University of
Southwestern Louisiana

rbk@usl.edu
and

Jianwei Dian
Department of Mathematics, University of

Southwestern Louisiana
and

Arnold Neumaier
Institute of Mathematics, University of

Vienna

singular system verification SCAN’98–1

The General Question

Given F : x → Rn and x ∈ IRn,
rigorously verify:

• there exists a unique x∗ ∈ x such
that F (x∗) = 0,

(1)

Computer arithmetic can be used to verify
the assertion in Problem (1), with the aid
of interval extensions and computational
fixed point theorems.

singular system verification SCAN’98–2

The General Question

Uses

• Producing rigorous bounds on
approximate solutions to linear and
nonlinear systems (The approximate
solutions can be computed with
traditional techniques.)

– in analysis of stability of structures,
where one wants to prove that all
eigenvalues have negative real parts

– in robust computational geometry
(surface intersection problems, etc.)

• As a tool in branch and bound
algorithms in global optimization.

• As a tool in the verification that all
zeros of a nonlinear system have been
found in a region of Rn.

singular system verification SCAN’98–3

The Nonsingular Case

Traditional Interval Newton Methods

Assumptions (roughly stated):

1. The Jacobi matrix F ′(x∗) is
nonsingular.

2. x∗ is near the center of x.

3. The component widths of x are small.

4. N(F ;x, x̌) is the image of x under an
appropriate, preconditioned interval
Newton method, with x̌ the center of x.

Then:

1. The preconditioned F ′(x) is
approximately the identity matrix.

2. Thus, N(F ;x, x̌) ⊂ x. This proves that
there is a unique solution of F (x) = 0
in x.

singular system verification SCAN’98–4

The Nonsingular Case

An Example

Example 1 Take

f1(x1, x2) = x2
1 − x2,

f2(x1, x2) = x1 − x2
2,

and
x = (x1,x2)

T = ([−0.1, 0.1], [−0.1, 0.3])T .

Take x̌ = (0, 0.1)T , so
F (x̌) = (−0.1,−0.01)T , and an interval
extension of the Jacobi matrix is

F′(x) =








2x1 −1
1 −2x2








=









[−.2, .2] −1
1 [−0.6, 0.2]








.

Precondition by the inverse of the
midpoint matrix

Y = {m(F′(X))}−1 =








−0.2 1
−1 0








,

singular system verification SCAN’98–5

The Nonsingular Case

An Example (continued)

so the corresponding linear interval system
is

Y F′(x)(x− x̌) = −Y F (x̌),

i.e.,








[0.96, 1.04] [−0.4, 0.4]
[−0.2, 0.2] 1








(x−x̌) =









−0.01
−0.1








.

The interval Gauss–Seidel method applied
to this system proves a unique solution in
x:

x̃1 = 0− −0.01 + [−0.4, 0.4][−0.2, 0.2]
[0.96, 1.04]

⊆ [−0.094, 0.073] ⊂ int([−0.1, 0.1]).

Similarly, x̃2 ⊂ int(x2).

singular system verification SCAN’98–6

Singularities
When the Jacobi matrix F ′(x∗) is singular,
computations as above cannot possibly
prove existence and uniqueness.
Example 2 Take

f1(x1, x2) = x2
1 − x2,

f2(x1, x2) = x2
1 + x2,

and
x = (x1,x2)

T = ([−0.1, 0.1], [−0.1, 0.3])T .
For such systems, the best that a
preconditioner can do is reduce the Jacobi
matrix to approximately the form























































∗ 0 . . . 0
n - rank
︷ ︸︸ ︷∗ . . . ∗

0 ∗ 0 . . . 0 ∗ . . . ∗
...
0 . . . 0 ∗ ∗ . . . ∗
0 . . . 0 0 0 . . . 0
...
0 . . . 0 0 0 . . . 0























































.

singular system verification SCAN’98–7

Singularities

Philosophical Considerations

Uniqueness verification within the original
x is not possible. Alternatives are:

1. (Easy but perhaps not always
adequate) Verify the system has an
ε–approximate solution within x.

2. (Only possible in special cases) Verify
the system has at least one solution in
x.

3. (More difficult computationally) Verify
the system has an exact number of
solutions, counting multiplicities, in a
complex extension of x.

Which alternative is appropriate in
particular contexts?

singular system verification SCAN’98–8

Singularities

ε–Approximate Solution

1. Simply evaluate the interval extension
F(x).

2. If ‖F(x)‖ < ε, then each component of
F is less than ε everywhere within x.
(But all components of f may not
simultaneously vanish.)

3. This technique can be used, along with
scaling, etc., to handle non-isolated
solutions in branch and bound
algorithms.

singular system verification SCAN’98–9

Singularities

Verification of at Least One Solution

1. The topological degree (to be explained
shortly) may be computed over x.

2. If the topological degree is non-zero,
there is at least one solution of
F (x) = 0 in x.

3. No conclusion can be reached if the
topological degree is zero.

singular system verification SCAN’98–10

Singularities

Verification of the Exact Multiplicity

1. If F : Cn → Cn, then the topological
degree of F over x gives the exact
number of solutions, counting
multiplicities.

2. If F : Rn → Rn, and F can be extended
analytically into Cn, then computations
can verify existence of an exact solution
or solutions (with multiplicity
computed by the algorithm) within a
small region of complex space
containing x.

3. Sometimes the value of the topological
degree (i.e. the multiplicity of the
solution) is of interest beyond the
existence/uniqueness question.

singular system verification SCAN’98–11

The Topological Degree

What is it?
• If F : x ⊂ Rn → Rn, F ′(x∗) 6= 0

wherever F (x∗) = 0, x∗ ∈ x, and
F (x) 6= 0 when x ∈ ∂x, then the degree
d(F,x, 0) is the number of x∗ ∈ x,
F (x∗) = 0 with det(F ′(x∗)) > 0, minus
the number of such x∗ ∈ x with
det(F ′(x∗)) < 0.

• d(F,x, 0) is a continuous function of F ,
and is defined even if det(F ′(x∗)) = 0,
as long as there are no solutions to
F (x) = 0 on ∂x.

• If F is extended to Cn and is thought
of as mapping R2n to R2n, and x is
embedded in a box z ∈ C2n, then
d(F, z, 0) is equal to the exact number
of z ∈ z, F (z) = 0, counting
multiplicities.

singular system verification SCAN’98–12

The Topological Degree

An Example

• If

f1(x, y) = x2 − y2 − ε2

f2(x, y) = 2xy,

If ε 6= 0, then F has solutions at
(x, y) = (ε, 0) and (x, y) = (−ε, 0).
Since det(F ′(x)) = 4(x2 + y2) = 4ε2 at
each of these solutions, d(F, z, 0) = 2,
where

z = {(x, y) | x ∈ [−0.1, 0.1], y ∈ [−δ, δ]}

for any δ > 0.

• If ε = 0, then d(F, z, 0) is still equal to
2, even though the Jacobi matrix
vanishes at the only solution
(x, y) = (0, 0).

singular system verification SCAN’98–13

The Topological Degree

How is it Computed?

• d(F,x, 0) depends only on values of F
on ∂x.

• Define

F¬k(x) = (f1(x), . . . , fk−1(x),
fk+1(x), . . . , fn(x)),

and select s ∈ {−1, 1}. Then d(F,x, 0)
is equal to the number of zeros of F¬k

on ∂x with positive orientation at
which sgn(fk) = s, minus the number
of zeros of F¬k on ∂x with negative
orientation at which sgn(fk) = s.

• The orientation is computed by
computing the sign of the determinant
of the Jacobian of F¬k and by taking
account of which face.

singular system verification SCAN’98–14

Computation of the Degree

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@

f1(x) = 0
Z

Z
Z

Z
Z

Z
Z}

�
�

�
�

�
�

�
�

�
�

�
���

x

x

f2 > 0

f2 > 0

6

6

�

?

?

?

-

6

f1 = x2
1 − x2

2
f2 = 2x1x2

singular system verification SCAN’98–15

Computation of the Degree

Computational Cost

1. Directly finding all zeros of F¬k on ∂x
can be done in a straightforward
branch and bound algorithm. However,
that is perhaps too expensive for mere
verification purposes.

2. The structure of the preconditioned
system can be used to greatly simplify
the computations.

3. The widths of the box x constructed
about the approximate solution can be
chosen so that only several
one-dimensional searches need be done
to compute d(F, z, 0), where
F : Cn → Cn.

singular system verification SCAN’98–16

Computation of the Degree

Notation and Assumptions

• For F : Rn → Rn, extend F to complex
space: z = x + iy, uk(x, y) = <(fk(z))
and vk(x, y) = =(fk(z)).

• Define F̃ (x, y) =
(u1(x, y), v1(x, y), . . . , un(x, y), vn(x, y)) :
R2n → R2n.

• Assume F (x∗) ≈ 0.

• Assume F has been preconditioned
(say, through an incomplete LU
factorization). Also assume F ′(x∗) has
null space of dimension 1, so

fk(x) ≈ (xk − x∗k) +
∂fk

∂xn
(x∗)(xn − x∗n)

for 1 ≤ k ≤ n− 1.

singular system verification SCAN’98–17

Structure of the System

One-Dimensional Null Space

For 1 ≤ k ≤ (n− 1),

uk(x, y) = (xk − x̌k) +
∂fk

∂xn
(x̌)(xn − x̌n)

+O
(

‖(x− x̌, y)‖2
)

vk(x, y) = yk +
∂fk

∂xn
(x̌)yn

+O
(

‖(x− x̌, y)‖2
)

,

and

un(x, y) = O
(

‖(x− x̌, y)‖2
)

,

vn(x, y) = O
(

‖(x− x̌, y)‖2
)

.

singular system verification SCAN’98–18

Structure of the System

Consequences

1. Mean-value interval extensions uk and
vk can be formed, 1 ≤ k ≤ n− 1.

2. If xn is known precisely, formally
solving uk(x,y) = 0 for xk gives xk

with w(xk) = O
(

‖(x− x̌,y)‖2
)

,
1 ≤ k ≤ n− 1.

3. If yn is known precisely, formally
solving vk(x,y) = 0 for yk gives yk

with w(yk) = O
(

‖(x− x̌,y)‖2
)

,
1 ≤ k ≤ n− 1.

singular system verification SCAN’98–19

A Degree-Computation
Algorithm

Construction of the Box z

1. Define x = ([x1, x1], . . . , [xn, xn]) and
y = ([y1, y1], . . . , [yn, yn]).

2. Define xk as (x,y) with [xk, xk]
replaced by xk, and define xk as (x,y)
with [xk, xk] replaced by xk. Similarly
define yk and yk.

3. uk(x, y) = 0 on xk, 1 ≤ k ≤ n− 1, at
approximately

xn = x̌n +
x̌k − xk

∂fk/∂xn(x̌)
,

uk(x, y) = 0 on xk, 1 ≤ k ≤ n− 1, at
approximately

xn = x̌n +
x̌k − xk

∂fk/∂xn(x̌)
.

singular system verification SCAN’98–20

A Degree-Computation
Algorithm

Construction of z (continued)
4. Similarly, vk(x, y) = 0 on yk,

1 ≤ k ≤ n− 1, at approximately
yn = −yk

∂fk/∂xn(x̌), and vk(x, y) = 0 on yk,
1 ≤ k ≤ n− 1, at approximately
yn = −yk

∂fk/∂xn(x̌).

5. Thus, if xn is chosen so

w(xn) ≤
1
2

min
1≤k≤n−1















w(xk)
|∂fk/∂xn(x̌)|















,

then it is unlikely that uk(x, y) = 0 on
either xk or xk.

6. Similarly, if yn is chosen so that

w(yn) ≤
1
2

min
1≤k≤n−1















w(yk)
|∂fk/∂xn(x̌)|















,

then it is unlikely that vk(x, y) = 0 on
either yk or yk.

singular system verification SCAN’98–21

Degree Computation

An Actual Algorithm

1. For k = 1 to n− 1:

(a) Do mean-value interval evaluations
of uk(x, y) over xk and xk to show
that uk(x, y) 6= 0 on these faces of z.

(b) Similarly do second-order interval
evaluations of vk(x, y) over yk and
yk to show that vk(x, y) 6= 0 on these
faces of z.

2. On xn and xn:

(a) Use mean-value extensions
uk(x,y) = 0 to solve for xk with
width O

(

‖(x− x̌,y)‖2
)

,
1 ≤ k ≤ n− 1.

(b) Perform a binary search on yn to
find verified intervals where F̃¬vn = 0
and vn(x, y) > 0.

singular system verification SCAN’98–22

A Degree Computation
Algorithm

(continued)

3. On yn and yn (similar to Step 2):

(a) Use mean-value extensions
vk(x,y) = 0 to solve for xk with
width O

(

‖(x− x̌,y)‖2
)

,
1 ≤ k ≤ n− 1.

(b) Perform a binary search on xn to
find verified intervals where F̃¬vn = 0
and vn(x, y) > 0.

4. For each solution to F¬vn = 0 found in
Steps 2b and 3b, compute an
orientation, to sum to find the degree.

singular system verification SCAN’98–23

The Degree Computation
Algorithm

Some Notes

• For each interval on yn produced in the
search in Step 2b, narrower intervals on
yk can be produced with a mean-value
extension vk(x) = 0, 1 ≤ k ≤ n− 1.

• Similarly, for each interval on xn

produced in the search in Step 3b,
narrower intervals on xk can be
produced with a mean-value extension
uk(x) = 0, 1 ≤ k ≤ n− 1.

• An interval Newton method can be set
up for F̃¬vn to verify existence and
uniqueness.

singular system verification SCAN’98–24

