
1 Linear Programming Preconditioners for the

Nonlinear Interval Gauss-Seidel Method with

Midpoint Predictor

In applying interval techniques to nonlinear systems, we obtain and bound
solutions of transformed interval linear systems of the form

A(X −X) = B, (1)

where A ∈ IRm× n, X ∈ X, and B is usually a vector of narrow intervals
or scalars.

In handling such systems, it is often useful, and sometimes necessary, to
precondition the system by multiplication with a matrix Y . For the case
where m = n, some common choices for Y appearing in the literature are the
inverse of the midpoint matrix of A and the inverse of the Jacobian matrix
for the function at X.

In [] Kearfott presented a method using linear programming for comput-
ing preconditioning matrices in a row-wise fashion for the system 1 when
X = m(X) and w(B) = 0 (or negligible). These preconditioners were opti-
mal in a certain sense when using the interval Gauss-Seidel procedure.

In this chapter, we expand on that work by presenting more efficient
formulations of the related linear programming problems, and by providing
additional theoretical results. We will also mention some empirical observa-
tions made concerning these linear programming preconditioners.

1.1 A Row-wise View of Preconditioners

Consider the Gauss-Seidel step in the k-th coordinate for the system 1,

x̃k = xk −

 m∑
i=1

yk,ibi +
n∑

j=1
j 6=k

(xj − xj)
m∑
i=1

yk,iai,j


/(

m∑
i=1

yk,iai,k

)
. (2)

Viewed as an isolated step, the computation of x̃k depends on no other
elements of Y but those in the k-th row. Hence, when dealing with the
interval Gauss-Seidel method, it is reasonable to consider preconditioning
rows individually instead of considering the entire preconditioning matrix Y .
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In fact, we are really dealing with equivalence classes of preconditioning rows
since

Lemma 1.1 (Kearfott) When applying the Gauss-Seidel step in the k-th
coordinate, every nonzero multiple of the k-th row of Y yields the same x̃k

(in exact arithmetic).

Hereafter, we will denote a preconditioning row for the Gauss-Seidel step in
the k-th coordinate by Yk, and we define equivalence of preconditioning rows
as follows.

Definition 1.1 Two preconditioning rows for the Gauss-Seidel step in the
k-th coordinate are equivalent iff they are nonzero scalar multiples of each
other.

We also will refer to the numerator and the denominator of the fraction on
the right hand side of equation 2 by nk(Yk) = [nk, nk] and dk(Yk) = [dk, dk]
respectively.

1.2 Classification of Preconditioning Rows

Two general disjoint classes of useful preconditioning rows are now defined.

Definition 1.2 A preconditioning row Yk is a C-preconditioner iff 0 6∈ dk(Yk).
Furthermore, Yk is a normal C-preconditioner iff dk = 1.

Definition 1.3 A preconditioning row Yk is an E-preconditioner iff 0 ∈
dk(Yk) and 0 6∈ nk(Yk). Furthermore, Yk is a normal E-preconditioner iff
nk = 1.

Note that all useful preconditioning rows are either C-preconditioners or
E-preconditioners. A preconditioner not falling into either of these catagories
would necessarily have 0 ∈ dk(Yk) and 0 ∈ nk(Yk), resulting in x̃k being set
to (−∞,∞).

In general, determining the existence of an E-preconditioner is a nontrivial
task. However, we have the following simple test for the existence of a C-
preconditioner.

Lemma 1.2 (Hu) There exists a C-preconditioner Yk iff at least one ele-
ment of the k-th column of A does not contain 0.
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We also define the following specific C-preconditioners.

Definition 1.4 The C-preconditioner Yk is width-optimal, or a CW -preconditioner,
iff it minimizes the width of x̃k over all C-preconditioners.

Definition 1.5 The C-preconditioner Yk is left-optimal, or a CL-preconditioner,
iff it maximizes the left endpoint of x̃k over all C-preconditioners.

Definition 1.6 The C-preconditioner Yk is right-optimal, or a CR-preconditioner,
iff it minimizes the right endpoint of x̃k over all C-preconditioners.

Analogous specific E-preconditioners will be defined later.

1.3 Some Important Identities

Lemma 1.3 Let r ∈ < and x, r ∈ <, and denote the positive and negative
parts of r by r = max{r, 0} and r = max{−r, 0} respectively. Then the
following are true:

1. rx = [r − r, r − r].

2. w[r(x−m(x))] = |r|w(x).

3. |x| = max{−, }.

4. r(x−) = [−rw(x), rw(x)].

5. r(x−) = [−rw(x), rw(x)].

6. |x| = δ[−+ (+)] + (1− δ)[+(+)] for any δ ∈ [0, 1].

Lemma 1.4 Let Yk be a C-preconditioner and suppose that for all 1 ≤ i ≤ n
we have xi ∈ {i,m(xi), i}. Define the following:

VM = {j | 1 ≤ j ≤ n, j 6= k, xj = m(xj) and w(xj) 6= 0}.
VL = {j | 1 ≤ j ≤ n, j 6= k, xj = j and w(xj) 6= 0}.
VR = {j | 1 ≤ j ≤ n, j 6= k, xj = j and w(xj) 6= 0}.
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Then

nk(Yk) =
m∑
i=1

yk,im(bi) +
m∑
i=1

|yk,i|w(bi)
[
−1

2
, 1
2

]
+
∑
j∈VM

w(xj) |
∑m

i=1 yk,iai,j|
[
−1

2
, 1
2

]
+
∑
j∈VL

w(xj)
[
−
(∑m

i=1 yk,iai,j

)
,
(∑m

i=1 yk,iai,j

)]
+
∑
j∈VR

w(xj)
[
−
(∑m

i=1 yk,iai,j

)
,
(∑m

i=1 yk,iai,j

)]
.

If xi = m(xi) for all 1 ≤ i ≤ n, then

w(nk(Yk)) =
m∑
i=1

|yk,i|w(bi) +
∑
j∈VM

w(xj)|
∑m

i=1 yk,iai,j|.

Lemma 1.5 For all preconditioners Yk and all 1 ≤ j ≤ n we have

m∑
i=1

yk,iai,j =

[
m∑
i=1

(
yk,ii,j − yk,ii,j

)
,

m∑
i=1

(
yk,ii,j − yk,ii,j

)]
.

For any preconditioner Yk we have

dk =
m∑
i=1

(
yk,ii,k − yk,ii,k

)
.

1.4 Computation of Width-Optimal C-Preconditioners
Using Linear Programming

In this section, assume that a C-preconditioner exists for the interval Gauss-
Seidel step in the k-th coordinate.

By Lemma 1.1, finding a (normal) preconditioner Yk involves solving the
nonlinear optimization problem

min
dk=1

w(nk(Yk)/dk(Yk)). (3)
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However, Kearfott [] observed the following Given system 1, suppose that
Yk is a normal C-preconditioner and x̃k is computed by equation 2. Then
the following hold (in exact arithmetic):

1. If 0 ∈ nk(Yk), then w(x̃k) = w(nk(Yk)).

2. If nk < 0, then w(xk ∩ x̃k) < min{−nk, (k−xk)}.

3. If 0 < nk, then w(xk ∩ x̃k) < min{nk, (xk−k)}.

In particular, if 0 6∈ nk(Yk) and xk = m(xk) then w(xk ∩ x̃k) < w(xk)/2.
Hence, a normal C-preconditioner Yk which solves

min
dk=1

w(nk(Yk)), (4)

is a normal preconditioner if 0 ∈ nk(Yk). Otherwise, when using the midpoint
predictor at least half of xk will be eliminated after intersection with x̃k. In
addition, as we shall show, problem 4 can be stated as a linear programming
problem. These facts make solving problem 4 an attractive alternative to
solving problem 3 when attempting to find preconditioners.

In [], Kearfott used the first three identities of Lemma 1.3 and the repre-
sentation of w(nk(Yk)) from Corollary 1.3 to construct a linear programming
problem related to problem 4 for the case A ∈ <n×n, X = m(X), and
w(B) = 0 (or negligible). In standard form, this problem contained 5n − 3
variables and 2n−1 constraints. If we define U = {j | 1 ≤ j ≤ n and j 6= k},
we may state Kearfott’s formulation as

minimize
∑
j∈U

v′jw(xj)

subject to v′′j − v′j −
n∑

i=1

(y′ii,j − y′′i i,j) = 0, j ∈ U ,

v′′′j − v′j +
n∑

i=1

(y′ii,j − y′′i i,j) = 0, j ∈ U ,

n∑
i=1

(y′ii,k − y′′i i,k) = 1,

and v′j ≥ 0, v′′j ≥ 0, v′′′j ≥ 0, j ∈ U ,
y′i ≥ 0, y′′i ≥ 0, 1 ≤ i ≤ n.

(5)
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After solving problem 5 for (y′; y′′; v′; v′′; v′′′), a preconditioner Yk is computed
by setting yk,iy

′
i − y′′i , for 1 ≤ i ≤ n.

It was shown that, under certain conditions, the preconditioner Yk ob-
tained by solving problem 5 also solved problem 4. Kearfott also conjectured,
based on empirical evidence, that those conditions were always satisfied when
using the simplex method with exact arithmetic. Finally, it was shown that
the linear programming problem was feasible iff a C-preconditioner existed.

1.5 An Improved Linear Programming Formulation
for Computing Width-Optimal C-Preconditioners

Lemma 1.6 Let V = {j | 1 ≤ j ≤ n, j 6= k, and w(xj) 6= 0} and choose
δj ∈ [0, 1] for all j ∈ V. If X = m(X) then

w(nk(Yk)) =
m∑
i=1

(yk,i + yk,i)w(bi) +
∑
j∈V

w(xj)δj

[
vj −

m∑
i=1

(
yk,ii,j − yk,ii,j

)]

+
∑
j∈V

w(xj)(1− δj)

[
vj +

m∑
i=1

(
yk,ii,j − yk,ii,j

)]

where

vj =
m∑
i=1

(yk,i − yk,i)(i,j+i,j), j ∈ V .

Based on this result, we construct a linear programming problem related to
problem 4 with X = m(X), which has several advantages over problem 5.
For A ∈ IRm× n, this problem contains at most 2(n+m− 1) variables and
n constraints when in standard form. By defining V = {j | 1 ≤ j ≤ n, j 6=
k, and w(xj) 6= 0} and choosing δj ∈ [0, 1] for all j ∈ V , we may state this
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linear programming problem as

minimize Wk(y′; y′′; v′; v′′) =

m∑
i=1

(y′i + y′′i )w(bi) +
∑
j∈V

w(xj)δj

[
v′j −

m∑
i=1

(y′ii,j − y′′i i,j)

]

+
∑
j∈V

w(xj)(1− δj)

[
v′′j +

m∑
i=1

(y′ii,j − y′′i i,j)

]

subject to v′′j − v′j +
m∑
i=1

(y′i − y′′i )(i,j+i,j) = 0, j ∈ V ,

m∑
i=1

(y′ii,k − y′′i i,k) = 1,

and v′j ≥ 0, v′′j ≥ 0, j ∈ V ,
y′i ≥ 0, y′′i ≥ 0, 1 ≤ i ≤ n.

(6)
After solving problem 6 for (y′; y′′; v′; v′′), a preconditioner Yk is obtained as
follows:

Definition 1.7 If (y′; y′′; v′; v′′) is a feasible point of problem 6, we define the
preconditioner generated by (y′; y′′; v′; v′′) to be Yk = H(y′; y′′; v′; v′′), which
is computed by setting yk,iy

′
i − y′′i for 1 ≤ i ≤ n.

In the analysis of problem 6, the following type of feasible point is of
particular interest.

Definition 1.8 A feasible point (y′; y′′; v′; v′′) of problem 6 is normal iff
y′iy
′′
i = 0 for all 1 ≤ i ≤ n and v′jv

′′
j = 0 for all j ∈ V.

We now show that preconditioners generated by feasible points of prob-
lem 6 must be C-preconditioners.

Lemma 1.7 Let (y′; y′′; v′; v′′) be a feasible point of problem 6, and let Yk
be its generated preconditioner. Then Yk is a C-preconditioner with dk ≥ 1.
Furthermore, if (y′; y′′; v′; v′′) is a normal feasible point, then Yk is a normal
C-preconditioner (dk = 1).
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Define αi = min{y′i, y′′i } ≥ 0 for 1 ≤ i ≤ n. Then for 1 ≤ i ≤ n we have
yk,i = y′i − αi and yk,i = y′′i − αi. Hence, by Lemma 1.5,

dk =
m∑
i=1

((y′i − αi)i,k − (y′′i − αi)i,k)

=
m∑
i=1

(y′ii,k − y′′i i,k) +
m∑
i=1

αi (i,k−i,k)

= 1 +
m∑
i=1

αiw(ai,k)

≥ 1.

In particular, if (y′; y′′; v′; v′′) is a normal feasible point, then αi = 0 for all
1 ≤ i ≤ n, and hence dk = 1.

Note that it is possible for two distinct feasible points to generate the same
preconditioner. However, unlike arbitrary feasible points, normal feasible
points have the following property.

Lemma 1.8 No two distinct normal feasible points of problem 6 can generate
equivalent preconditioners.

The above results allow us to give the following characterization of the
relationship between problem 4 and problem 6 for the case X = m(X) when
only normal feasible points of problem 6 are considered.

Lemma 1.9 If X = m(X) then H is a bijective function from the set of
normal feasible points of problem 6 to the set of normal C-preconditioners
such that for any normal feasible point (y′; y′′; v′; v′′) and any normal C-
preconditioner Yk we have

Yk = H(y′; y′′; v′; v′′)⇒ Wk(y′; y′′; v′; v′′) = w(nk(Yk)).

Furthermore, H(Yk) = (Yk;Yk; v; v) where vj =
∑m

i=1 yk,i(i,j+i,j), j ∈ V .

By Lemma 1.6 and Corollary 1.3, every normal C-preconditioner Yk generates
a normal feasible point H(Yk) = (y′; y′′; v′; v′′) of problem 6 for which we have
Wk(y′; y′′; v′; v′′) = w(nk(Yk)). The relation H(H(Yk)) = Yk follows easily
from the definitions of H and H.

Conversely, by Lemma 1.7 every normal feasible point (y′; y′′; v′; v′′) gen-
erates a normal C-preconditioner H(y′; y′′; v′; v′′) = Yk. By Lemma 1.8 and
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the preceding case in this proof we must have that H(H(y′; y′′; v′; v′′)) =
(y′; y′′; v′; v′′).

It turns out that we need not concern ourselves with non-normal feasible
points when dealing with problem 6. The following Theorem demonstrates
this.

Lemma 1.10 Let (y′; y′′; v′; v′′) be a feasible point of problem 6. Then we
may construct a normal feasible point (z′; z′′;u′;u′′) associated with (y′; y′′; v′; v′′)
for which Wk(z′; z′′;u′;u′′) ≤ Wk(y′; y′′; v′; v′′). Furthermore, H(z′; z′′;u′;u′′)
is a normal C-preconditioner equivalent to the C-preconditioner H(y′; y′′; v′; v′′).

Let Yk be the C-preconditioner generated by (y′; y′′; v′; v′′). For j ∈ V define
vj =

∑m
i=1 yk,i(i,j+i,j). Also, define αi = min{y′i, y′′i } ≥ 0 for 1 ≤ i ≤ n, and

βj = min{v′j, v′′j } ≥ 0 for j ∈ V . Then we have yk,i = y′i−αi and yk,i = y′′i −αi

for all 1 ≤ i ≤ n, as well as vj = v′j − βj and vj = v′′j − βj for all j ∈ V . So,
by Lemma 1.6 we have

w(nk(Yk)) =
m∑
i=1

(yk,i + yk,i)w(bi) +
∑
j∈V

w(xj)δj

[
vj −

m∑
i=1

(
yk,ii,j − yk,ii,j

)]

+
∑
j∈V

w(xj)(1− δj)

[
vj +

m∑
i=1

(
yk,ii,j − yk,ii,j

)]

=
m∑
i=1

(y′i + y′′i )w(bi) +
∑
j∈V

w(xj)δj

[
v′j −

m∑
i=1

(y′ii,j − y′′i i,j)

]

+
∑
j∈V

w(xj)(1− δj)

[
v′′j +

m∑
i=1

(y′ii,j − y′′i i,j)

]

−

{
2

m∑
i=1

αiw(bi) +
∑
j∈V

w(xj)

[
βj +

m∑
i=1

αi (i,j−i,j)

]}
≤ Wk(y′; y′′; v′; v′′).

Furthermore, we must have 0 ≤ w(nk(Yk)) ≤ Wk(y′; y′′; v′; v′′) since w(nk(Yk))
is the width of an interval.

By Lemma 1.7, dk ≥ 1. Define Zk = 1
dk
Yk. Then Zk is a normal C-

preconditioner equivalent to Yk. By Lemma 1.9, the point (z′; z′′;u′;u′′) =
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H(Zk) is a normal feasible point for which

Wk(z′; z′′;u′;u′′) = w(nk(Zk))

=
1

dk
w(nk(Yk))

≤ w(nk(Yk))

≤ Wk(y′; y′′; v′; v′′).

Finally, by Lemma 1.9, the normal C-preconditioner generated by (z′; z′′;u′;u′′)
is in fact Zk.

Hence, for any feasible point of problem 6 there exists a normal feasible
point having an equal or smaller objective function value and generating
an equivalent (normal) C-preconditioner. This and the fact that we are
interested in the generated preconditioners, and not the feasible points of
problem 6 themselves, motivates the following definitions.

Definition 1.9 Two feasible points of problem 6 are equivalent iff they gen-
erate equivalent preconditioners. An equivalence class containing a solution
to problem 6 is called a solution equivalence class.

By Lemma 1.8 and 1.10, we have the following result.

Lemma 1.11 Each equivalence class of feasible points contains a unique
normal feasible point. Furthermore, the minimum objective function value of
problem 6 over a class is attained at the normal feasible point in that class.

We are now able to prove the following theorem relating problem 4 and
problem 6 for the case X = m(X). If X = m(X) then problem 4 and
problem 6 are equivalent in the following sense:

1. Each of the problems is feasible iff a C-preconditioner exists.

2. There is a bijective function S from the set of normal C-preconditioners
(feasible points of problem 4) to the set of equivalence classes of feasible
points of problem 6 such that for any normal C-preconditioner Yk and
for any (z′; z′′;u′;u′′) ∈ S(Yk) we have

w(nk(Yk)) = Wk(y′; y′′; v′; v′′) ≤ Wk(z′; z′′;u′;u′′),

where (y′; y′′; v′; v′′) is the unique normal feasible point in S(Yk).
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3. The restriction S̃ of S to the set of solutions of problem 4 is a bijec-
tive function from that set to the set of solution equivalence classes of
problem 6.

Recall that existence of a C-preconditioner implies existence of an equiva-
lent normal C-preconditioner. Then clearly problem 4 is feasible iff a C-
preconditioner exists, as it is a minimization problem over all normal C-
preconditioners. Also, existence of a normal C-preconditioner implies exis-
tence of a (normal) feasible point for problem 6 by Lemma 1.6. Conversely,
every feasible point of problem 6 generates a C-preconditioner by Lemma 1.7.
Hence the first statement is proved.

Next, recall that the function H defined in Lemma 1.9 is a bijection be-
tween the set of normal C-preconditioners and the set of normal feasible
points. Since each equivalence class of feasible points contains a unique nor-
mal feasible point by Lemma 1.11, we may define S(Yk) to be the equivalence
class of feasible points containing H(Yk). Similarly, for any equivalence class
E of feasible points of problem 6 we may define S(E) to be the normal
C-preconditioner H(y′; y′′; v′; v′′), where (y′; y′′; v′; v′′) is the unique normal
feasible point contained in E. It follows that S must be bijective with in-
verse S. Then by Lemma 1.9, Lemma 1.10, and Lemma 1.11 we must have
w(nk(Yk)) = Wk(y′; y′′; v′; v′′) ≤ Wk(z′; z′′;u′;u′′), where Yk is a normal C-
preconditioner, (y′; y′′; v′; v′′) is the unique normal feasible point in S(Yk),
and (z′; z′′;u′;u′′) ∈ S(Yk) is arbitrary. This proves the second statement.

Now, let Yk be a normal C-preconditioner which solves problem 4 and
suppose that S(Yk) is not a solution equivalence class of problem 6. By
Lemma 1.9, H(Yk) is a normal feasible point of problem 6 for which we have
w(nk(Yk)) = Wk(H(Yk)). Since S(Yk) was not a solution equivalence class,
there must exist a feasible point (z′; z′′;u′;u′′) of problem 6 for which we have
Wk(z′; z′′;u′;u′′) < Wk(H(Yk)). By Lemma 1.10 we may assume without
loss of generality that (z′; z′′;u′;u′′) is a normal feasible point. But then by
Lemma 1.9 we must have that H(z′; z′′;u′;u′′) is a normal C-preconditioner
and

w(H(z′; z′′;u′;u′′)) = Wk(z′; z′′;u′;u′′) < Wk(H(Yk)) = w(nk(Yk)),

which contradicts the assumption that Yk solves problem 4. Therefore, the
range of S̃ is a subset of the set of solution equivalence classes of problem 6.

On the other hand, suppose that E is a solution equivalence class of prob-
lem 6, but the normal C-preconditioner S(E) does not solve problem 4. Also,
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let (z′; z′′;u′;u′′) be the unique normal feasible point in E. Then there exists a
normal C-preconditioner Yk such that w(Yk) < w(S(E)) = Wk(z′; z′′;u′;u′′).
But then by Lemma 1.9 we must have that H(Yk) is a normal feasible point
of problem 6 and

Wk(H(Yk)) = w(Yk) < w(S(E)) = Wk(z′; z′′;u′;u′′)

This contradicts the assumption that E is a solution equivalence class of
problem 6 since, by Lemma 1.11, E does not contain H(Yk) and the minimum
objective function value of problem 6 over E is attained at (z′; z′′;u′;u′′).
Therefore, the range of S̃ is a superset of the set of solution equivalence
classes of problem 6.

Hence, the range of S̃ is the set of solution equivalence classes of prob-
lem 6. Also, since S was a bijection we must have that S̃ is injective. Hence,
the restriction S̃ of S to the set of solutions of problem 4 is a bijective function
from that set to the set of solution equivalence classes of problem 6.

1.6 Linear Programming Formulations for Computing
Some Left-Optimal and Right-Optimal C-Preconditioners

By Lemma 1.1, finding a (normal) preconditioner Yk involves solving the
nonlinear optimization problem

max
dk=1

xk − nk(Yk)/dk(Yk).

However, since xk is fixed, we may solve

min
dk=1

nk(Yk)/dk(Yk). (7)

for Yk to find a (normal) preconditioner. Similarly, finding a (normal) pre-
conditioner Yk involves solving the nonlinear optimization problem

min
dk=1

xk − nk(Yk)/dk(Yk),

but we may solve
max
dk=1

nk(Yk)/dk(Yk). (8)

for Yk to find a (normal) preconditioner.
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In dealing with preconditioners, we applied Theorem 1.4 and replaced
the nonlinear optimization problem 3 with the more tractable problem 4.
The following theorem, analogous to Theorem 1.4, allows us to do a similar
substitution when dealing with preconditioners and preconditioners. Given
system 1, suppose that Yk is a normal C-preconditioner and x̃k is computed
by equation 2. Then the following hold (in exact arithmetic):

1. If 0 ≤ nk, then nk(Yk)/dk(Yk) = nk.

2. If 0 ≥ nk, then nk(Yk)/dk(Yk) = nk.

3. If nk < 0, then w(xk ∩ x̃k) < min{−nk, (k−xk)}.

4. If 0 < nk, then w(xk ∩ x̃k) < min{nk, (xk−k)}.

In particular, in the latter two cases, if xk = m(xk) then w(xk ∩ x̃k) <
w(xk)/2.

Hence, a normal C-preconditioner Yk which solves

min
dk=1

nk (9)

is a normal preconditioner if 0 ≤ nk, and a normal C-preconditioner Yk which
solves

min
dk=1
−nk (10)

is a normal preconditioner if nk ≤ 0. Otherwise, when xk = m(xk) at least
half of xk will be eliminated after intersection with x̃k. In addition, as we
shall show, problems 9 and 10 can be stated as linear programming prob-
lems. These facts make solving problems 9 and 10 an attractive alternative
to solving problems 7 and 8 when attempting to find preconditioners and
preconditioners respectively.

Lemma 1.12 Let Yk be a C-preconditioner and suppose that for all 1 ≤ i ≤
n we have xi ∈ {i,m(xi), i}. Define the following:

VM = {j | 1 ≤ j ≤ n, j 6= k, xj = m(xj) and w(xj) 6= 0}.
VL = {j | 1 ≤ j ≤ n, j 6= k, xj = j and w(xj) 6= 0}.
VR = {j | 1 ≤ j ≤ n, j 6= k, xj = j and w(xj) 6= 0}.
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Also, choose δj ∈ [0, 1] for all j ∈ VM . Then for VI = VL and VS = VR we
have

nk =
m∑
i=1

(yk,i − yk,i)m(bi)−
1

2

m∑
i=1

(yk,i + yk,i)w(bi)

− 1

2

∑
j∈VM

w(xj)δj

[
vj −

m∑
i=1

(
yk,ii,j − yk,ii,j

)]

− 1

2

∑
j∈VM

w(xj)(1− δj)

[
vj +

m∑
i=1

(
yk,ii,j − yk,ii,j

)]
−
∑
j∈VI

w(xj)vj −
∑
j∈VS

w(xj)vj

and for VI = VR and VS = VL we have

nk =
m∑
i=1

(yk,i − yk,i)m(bi) +
1

2

m∑
i=1

(yk,i + yk,i)w(bi)

+
1

2

∑
j∈VM

w(xj)δj

[
vj −

m∑
i=1

(
yk,ii,j − yk,ii,j

)]

+
1

2

∑
j∈VM

w(xj)(1− δj)

[
vj +

m∑
i=1

(
yk,ii,j − yk,ii,j

)]
+
∑
j∈VS

w(xj)vj +
∑
j∈VI

w(xj)vj

where

vj =
m∑
i=1

(yk,i − yk,i)(i,j+i,j), j ∈ VM ,

vj =
m∑
i=1

(
yk,ii,j − yk,ii,j

)
, j ∈ VI ,

vj =
m∑
i=1

(
yk,ii,j − yk,ii,j

)
, j ∈ VS.

Based on these results, we may construct linear programming problems
related to problems 9 and 10 when X ∈ X is chosen correctly. For A ∈
IRm× n, these problems contains at most 2(n + m − 1) variables and n
constraints when in standard form.
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Choose xi ∈ {i,m(xi), i} for all 1 ≤ i ≤ n and define the following:

VM = {j | 1 ≤ j ≤ n, j 6= k, xj = m(xj) and w(xj) 6= 0}.
VL = {j | 1 ≤ j ≤ n, j 6= k, xj = j and w(xj) 6= 0}.
VR = {j | 1 ≤ j ≤ n, j 6= k, xj = j and w(xj) 6= 0}.

Also, choose δj ∈ [0, 1] for all j ∈ VM and define the set of constraints

v′′j − v′j +
m∑
i=1

(y′i − y′′i )(i,j+i,j) = 0, j ∈ VM ,

v′′j − v′j +
m∑
i=1

(
y′k,ii,j − y′′k,ii,j

)
= 0, j ∈ VI ,

v′′j − v′j +
m∑
i=1

(
y′k,ii,j − y′′k,ii,j

)
= 0, j ∈ VS,

m∑
i=1

(y′ii,k − y′′i i,k) = 1,

and v′j ≥ 0, v′′j ≥ 0, j ∈ VM ∪ VI ∪ VS,
y′i ≥ 0, y′′i ≥ 0, 1 ≤ i ≤ n,

(11)

where VI and VS will be set by each problem. Then we may state a linear
programming problem corresponding to problem 9 as

minimize Lk(y′; y′′; v′; v′′) =

−
m∑
i=1

(y′i − y′′i )m(bi) +
1

2

m∑
i=1

(y′i + y′′i )w(bi)

+
1

2

∑
j∈VM

w(xj)δj

[
v′j −

m∑
i=1

(y′ii,j − y′′i i,j)

]

+
1

2

∑
j∈VM

w(xj)(1− δj)

[
v′′j +

m∑
i=1

(y′ii,j − y′′i i,j)

]
+
∑
j∈VS

w(xj)v
′
j +

∑
j∈VI

w(xj)v
′′
j

subject to the set of constraints 11, where
VI = VR and VS = VL.

(12)
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Similarly we may state a linear programming problem corresponding to prob-
lem 10 as

minimize Rk(y′; y′′; v′; v′′) =

m∑
i=1

(y′i − y′′i )m(bi) +
1

2

m∑
i=1

(y′i + y′′i )w(bi)

+
1

2

∑
j∈VM

w(xj)δj

[
v′j −

m∑
i=1

(y′ii,j − y′′i i,j)

]

+
1

2

∑
j∈VM

w(xj)(1− δj)

[
v′′j +

m∑
i=1

(y′ii,j − y′′i i,j)

]
+
∑
j∈VI

w(xj)v
′′
j +

∑
j∈VS

w(xj)v
′
j

subject to the set of constraints 11, where
VI = VL and VS = VR.

(13)

After solving problem 12 or 13 for (y′; y′′; v′; v′′), a preconditioner Yk is
obtained as follows:

Definition 1.10 If (y′; y′′; v′; v′′) is a feasible point of problem 12 or 13, we
define the preconditioner generated by (y′; y′′; v′; v′′) to be Yk = H(y′; y′′; v′; v′′),
which is computed by setting yk,iy

′
i − y′′i for 1 ≤ i ≤ n.

As in the analysis of problem 6, we define normal feasible points as

Definition 1.11 A feasible point (y′; y′′; v′; v′′) of problem 12 or 13 is normal
iff y′iy

′′
i = 0 for all 1 ≤ i ≤ n and v′jv

′′
j = 0 for all j ∈ VM ∪ VI ∪ VS.

Also, as is the case for problem 6, normal feasible points have the following
property.

Lemma 1.13 No two distinct normal feasible points of problem 12 or 13 can
generate equivalent preconditioners.

We now show that preconditioners generated by feasible points of prob-
lems 12 and 13 must be C-preconditioners. For the proof, see the proof of
Lemma 1.7.
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Lemma 1.14 Let (y′; y′′; v′; v′′) be a feasible point of problem 12 or 13 and
let Yk be its generated preconditioner. Then Yk is a C-preconditioner with
dk ≥ 1. Furthermore, if (y′; y′′; v′; v′′) is a normal feasible point, then Yk is
a normal C-preconditioner (dk = 1).

The above results allow us to give the following characterization of the
relationships between problems 9 and 12, and between problems 10 and 13,
for appropriate choices of X when only normal feasible points of the linear
programming problems are considered.

Lemma 1.15 If X is chosen as specified in the definition of problem 12, then
H is a bijective function from the set of normal feasible points of problem 12
to the set of normal C-preconditioners such that for any normal feasible point
(y′; y′′; v′; v′′) and any normal C-preconditioner Yk we have

Yk = H(y′; y′′; v′; v′′)⇒ Lk(y′; y′′; v′; v′′) = nk.

Similarly, if X is chosen as specified in the definition of problem 13, then H
is a bijective function from the set of normal feasible points of problem 13 to
the set of normal C-preconditioners such that for any normal feasible point
(y′; y′′; v′; v′′) and any normal C-preconditioner Yk we have

Yk = H(y′; y′′; v′; v′′)⇒ Rk(y′; y′′; v′; v′′) = −nk.

Furthermore, in both of the above cases, H(Yk) = (Yk;Yk; v; v) where

vj =
m∑
i=1

yk,i(i,j+i,j), j ∈ VM ,

vj =
m∑
i=1

(
yk,ii,j − yk,ii,j

)
, j ∈ VI ,

vj =
m∑
i=1

(
yk,ii,j − yk,ii,j

)
, j ∈ VS.

By Lemma 1.12 and Corollary 1.3, every normal C-preconditioner Yk gener-
ates a normal feasible point H(Yk) = (y′; y′′; v′; v′′) of problem 12 for which
we have Lk(y′; y′′; v′; v′′) = nk. Similarly, every normal C-preconditioner Yk
generates a normal feasible point H(Yk) = (y′; y′′; v′; v′′) of problem 13 for
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which we have Rk(y′; y′′; v′; v′′) = −nk. The relation H(H(Yk)) = Yk follows
easily from the definitions of H and H.

Conversely, by Lemma 1.14 every normal feasible point (y′; y′′; v′; v′′) of
problem 12 or 13 generates a normal C-preconditioner H(y′; y′′; v′; v′′) = Yk.
By Lemma 1.13 and the preceding case in this proof we must have that
H(H(y′; y′′; v′; v′′)) = (y′; y′′; v′; v′′).

We now state an analogue to Lemma 1.10 for problems 12 and 13 which
allows us to effectively disregard non-normal feasible points. Note however
that, unlike the case for problem 6, it is necessary to impose restrictions the
objective functions.

Lemma 1.16 Let (y′; y′′; v′; v′′) be a feasible point of problem 12. Then we
may construct a normal feasible point (z′; z′′;u′;u′′) associated with (y′; y′′; v′; v′′)
such that H(z′; z′′;u′;u′′) is a normal C-preconditioner equivalent to the C-
preconditioner H(y′; y′′; v′; v′′). Furthermore, we have

Lk(z′; z′′;u′;u′′)

{
≤ Lk(y′; y′′; v′; v′′) if Lk(y′; y′′; v′; v′′) ≥ 0,
< 0 if Lk(y′; y′′; v′; v′′) < 0.

Similarly, let (y′; y′′; v′; v′′) be a feasible point of problem 13. Then we may
construct a normal feasible point (z′; z′′;u′;u′′) associated with (y′; y′′; v′; v′′)
such that H(z′; z′′;u′;u′′) is a normal C-preconditioner equivalent to the C-
preconditioner H(y′; y′′; v′; v′′). Furthermore, we have

Rk(z′; z′′;u′;u′′)

{
≤ Rk(y′; y′′; v′; v′′) if Rk(y′; y′′; v′; v′′) ≥ 0,
< 0 if Rk(y′; y′′; v′; v′′) < 0.

Let Yk be the C-preconditioner generated by (y′; y′′; v′; v′′) and define

vj =
m∑
i=1

(yk,i − yk,i)(i,j+i,j), j ∈ VM ,

vj =
m∑
i=1

(
yk,ii,j − yk,ii,j

)
, j ∈ VI .

vj =
m∑
i=1

(
yk,ii,j − yk,ii,j

)
, j ∈ VS.

Also, define αi = min{y′i, y′′i } ≥ 0 for 1 ≤ i ≤ n, and βj = min{v′j, v′′j } ≥ 0
for j ∈ VM . Then we have yk,i = y′i − αi and yk,i = y′′i − αi for all 1 ≤ i ≤ n,
as well as vj = v′j − βj and vj = v′′j − βj for all j ∈ VM .
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Now, for all j ∈ VI we have

vj − vj =
m∑
i=1

(
yk,ii,j − yk,ii,j

)
=

m∑
i=1

(
y′k,ii,j − y′′k,ii,j

)
+

m∑
i=1

αiw(ai,j)

= v′j − v′′j +
m∑
i=1

αiw(ai,j).

Since v′j ≥ 0 and v′′j ≥ 0 we must have vj ≤ v′′j if vj = 0. If vj 6= 0 then we
must have vj = 0 from which it follows that

vj = v′′j − v′j −
m∑
i=1

αiw(ai,j) ≤ v′′j .

Hence, for all j ∈ VI there exists a βj ≥ 0 such that vj = v′′j − βj. Similarly,
for all j ∈ VS we have

vj − vj =
m∑
i=1

(
yk,ii,j − yk,ii,j

)
=

m∑
i=1

(
y′k,ii,j − y′′k,ii,j

)
−

m∑
i=1

αiw(ai,j)

= v′j − v′′j −
m∑
i=1

αiw(ai,j).

Since v′j ≥ 0 and v′′j ≥ 0 we must have vj ≤ v′j if vj = 0. If vj 6= 0 then we
must have vj = 0 from which it follows that

vj = v′j − v′′j −
m∑
i=1

αiw(ai,j) ≤ v′j.

Hence, for all j ∈ VS there exists a βj ≥ 0 such that vj = v′j − βj.
Then by Lemma 1.12 we must have

nk =
m∑
i=1

(yk,i − yk,i)m(bi) +
1

2

m∑
i=1

(yk,i + yk,i)w(bi)
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+
1

2

∑
j∈VM

w(xj)δj

[
vj −

m∑
i=1

(
yk,ii,j − yk,ii,j

)]

+
1

2

∑
j∈VM

w(xj)(1− δj)

[
vj +

m∑
i=1

(
yk,ii,j − yk,ii,j

)]

+
∑
j∈VS

w(xj)vj +
∑
j∈VI

w(xj)vj

=
m∑
i=1

(y′i − y′′i )w(bi) +
1

2

m∑
i=1

(y′i + y′′i )w(bi)

+
1

2

∑
j∈VM

w(xj)δj

[
v′j −

m∑
i=1

(y′ii,j − y′′i i,j)

]

+
1

2

∑
j∈VM

w(xj)(1− δj)

[
v′′j +

m∑
i=1

(y′ii,j − y′′i i,j)

]

−

{
m∑
i=1

αiw(bi) +
1

2

∑
j∈VM

w(xj)

[
βj +

m∑
i=1

αiw(ai,j)

]}

+
∑
j∈VS

w(xj)v
′
j +

∑
j∈VI

w(xj)v
′′
j

−

{ ∑
j∈VS∪VI

w(xj)βj

}
≤ Lk(y′; y′′; v′; v′′).

Also, by an almost identical arguement, we must have

−nk ≤ Rk(y′; y′′; v′; v′′).

By Lemma 1.14, dk ≥ 1. If we define Zk = 1
dk
Yk, then Zk is a normal

C-preconditioner equivalent to Yk.
If (y′; y′′; v′; v′′) is a feasible point of problem 12 then by Lemma 1.15,

the point (z′; z′′;u′;u′′) = H(Zk) is a normal feasible point of problem 12 for
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which

Lk(z′; z′′;u′;u′′) = nk(Zk)

=
1

dk
nk

≤ 1

dk
Lk(y′; y′′; v′; v′′).

Hence we have

Lk(z′; z′′;u′;u′′)

{
≤ Lk(y′; y′′; v′; v′′) if Lk(y′; y′′; v′; v′′) ≥ 0,
< 0 if Lk(y′; y′′; v′; v′′) < 0.

Similarly, if (y′; y′′; v′; v′′) is a feasible point of problem 13 then by Lemma 1.15,
the point (z′; z′′;u′;u′′) = H(Zk) is a normal feasible point of problem 13 for
which

Rk(z′; z′′;u′;u′′) = −nk(Zk)

= − 1

dk
nk

≤ 1

dk
Rk(y′; y′′; v′; v′′).

Rk(z′; z′′;u′;u′′)

{
≤ Rk(y′; y′′; v′; v′′) if Rk(y′; y′′; v′; v′′) ≥ 0,
< 0 if Rk(y′; y′′; v′; v′′) < 0.

Finally, by Lemma 1.15, the normal C-preconditioner generated by (z′; z′′;u′;u′′)
is in fact Zk.

As was the case for problem 6, we are not interested in the feasible points
of the linear programming problems themselves. We are interested in the
generated preconditioners. Hence we make the following definitions.

Definition 1.12 Two feasible points of problem 12 or problem 13 are equivalent
iff they generate equivalent preconditioners. An equivalence class containing
a solution to problem 12 or problem 13 is called a solution equivalence class.

By Lemma 1.13 and 1.16, we have the following result.
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Lemma 1.17 Each equivalence class of feasible points contains a unique
normal feasible point. Furthermore, if the objective function is nonnegative
over an entire class, then the minimum objective function value of problem 6
over that class is attained at the normal feasible point in that class. Finally,
if the value of the objective function at a normal feasible point is nonnegative,
then it is nonnegative for any other feasible point in the same class.

We are now able to prove the following theorem relating problems 9
and 12, or problems 10 and 13, for appropriate choices of X when the
objective function of problem 9, or problem 10, is nonnegative for all C-
preconditioners. If xi ∈ {i,m(xi), i} for all 1 ≤ i ≤ n and if nk ≥ 0 for all
(normal) C-preconditioners, then problem 9 and problem 12 are equivalent
in the following sense:

1. Each of the problems is feasible iff a C-preconditioner exists.

2. There is a bijective function S from the set of normal C-preconditioners
(feasible points of problem 9) to the set of equivalence classes of feasible
points of problem 12 such that for any normal C-preconditioner Yk and
for any (z′; z′′;u′;u′′) ∈ S(Yk) we have

nk = Lk(y′; y′′; v′; v′′) ≤ Lk(z′; z′′;u′;u′′),

where (y′; y′′; v′; v′′) is the unique normal feasible point in S(Yk).

3. The restriction S̃ of S to the set of solutions of problem 9 is a bijec-
tive function from that set to the set of solution equivalence classes of
problem 12.

Similarly, if xi ∈ {i,m(xi), i} for all 1 ≤ i ≤ n and if −nk ≥ 0 for all
(normal) C-preconditioners, then problem 10 and problem 13 are equivalent
in the following sense:

1. Each of the problems is feasible iff a C-preconditioner exists.

2. There is a bijective function S from the set of normal C-preconditioners
(feasible points of problem 10) to the set of equivalence classes of fea-
sible points of problem 13 such that for any normal C-preconditioner
Yk and for any (z′; z′′;u′;u′′) ∈ S(Yk) we have

−nk = Rk(y′; y′′; v′; v′′) ≤ Rk(z′; z′′;u′;u′′),

where (y′; y′′; v′; v′′) is the unique normal feasible point in S(Yk).
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3. The restriction S̃ of S to the set of solutions of problem 10 is a bijec-
tive function from that set to the set of solution equivalence classes of
problem 13.

Here we only give the proof of the first half, which relates problems 9 and 12,
as the proof of the second half, which relates problems 10 and 13, is almost
identical.

Recall that existence of a C-preconditioner implies existence of an equiv-
alent normal C-preconditioner. Then clearly problem 9 is feasible iff a C-
preconditioner exists, as it is a minimization problem over all normal C-
preconditioners. Also, existence of a normal C-preconditioner implies ex-
istence of a (normal) feasible point for problem 12 by Lemma 1.12. Con-
versely, every feasible point of problem 12 generates a C-preconditioner by
Lemma 1.14. Hence the first statement is proved.

Next, recall that the function H defined in Lemma 1.15 is a bijection
between the set of normal C-preconditioners and the set of normal feasi-
ble points. Since each equivalence class of feasible points contains a unique
normal feasible point by Lemma 1.17, we may define S(Yk) to be the equiv-
alence class of feasible points containing H(Yk). Similarly, for any equiva-
lence class E of feasible points of problem 12 we may define S(E) to be the
normal C-preconditioner H(y′; y′′; v′; v′′), where (y′; y′′; v′; v′′) is the unique
normal feasible point contained in E. It follows that S must be bijective
with inverse S. Then by Lemma 1.15, Lemma 1.16, and Lemma 1.17 we
must have nk = Lk(y′; y′′; v′; v′′) ≤ Lk(z′; z′′;u′;u′′), where Yk is a normal
C-preconditioner, (y′; y′′; v′; v′′) is the unique normal feasible point in S(Yk),
and (z′; z′′;u′;u′′) ∈ S(Yk) is arbitrary. This proves the second statement.

Now, let Yk be a normal C-preconditioner which solves problem 9 and
suppose that S(Yk) is not a solution equivalence class of problem 12. By
Lemma 1.15, H(Yk) is a normal feasible point of problem 12 for which we have
Nk(nk(Yk)) = Lk(H(Yk)). Since S(Yk) was not a solution equivalence class,
there must exist a feasible point (z′; z′′;u′;u′′) of problem 12 for which we
have Lk(z′; z′′;u′;u′′) < Lk(H(Yk)). By Lemma 1.16 we may assume without
loss of generality that (z′; z′′;u′;u′′) is a normal feasible point. But then by
Lemma 1.15 we must have that H(z′; z′′;u′;u′′) is a normal C-preconditioner
and

Nk(H(z′; z′′;u′;u′′)) = Lk(z′; z′′;u′;u′′) < Lk(H(Yk)) = Nk(nk(Yk)),

which contradicts the assumption that Yk solves problem 9. Therefore, the
range of S̃ is a subset of the set of solution equivalence classes of problem 12.
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On the other hand, suppose that E is a solution equivalence class of
problem 12, but the normal C-preconditioner S(E) does not solve prob-
lem 9. Then there exists a normal C-preconditioner Yk such that Nk(Yk) <
Nk(S(E)) = Lk(z′; z′′;u′;u′′), where (z′; z′′;u′;u′′) is the unique normal fea-
sible point in E. But then by Lemma 1.15 we must have that H(Yk) is a
normal feasible point of problem 12 and

Lk(H(Yk)) = Nk(Yk) < Nk(S(E)) = Lk(z′; z′′;u′;u′′)

This contradicts the assumption that E is a solution equivalence class of prob-
lem 12 since, by Lemma 1.17, E does not contain H(Yk) and the minimum
objective function value of problem 12 over E is attained at (z′; z′′;u′;u′′).
Therefore, the range of S̃ is a superset of the set of solution equivalence
classes of problem 12.

Hence, the range of S̃ is the set of solution equivalence classes of prob-
lem 12. Also, since S was a bijection we must have that S̃ is injective. Hence,
the restriction S̃ of S to the set of solutions of problem 9 is a bijective function
from that set to the set of solution equivalence classes of problem 12.
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