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Abstract

It is known that there are feasible algorithms for minimizing convex
functions, and that for general functions, global minimization is a difficult
(NP-hard) problem. It is reasonable to ask whether there exists a class
of functions that is larger than the class of all convex functions for which
we can still solve the corresponding minimization problems feasibly. In
this paper, we prove, in essence, that no such more general class exists.
In other words, we prove that global optimization is always feasible only
for convex objective functions.

1 Introduction

It is well known that in general, global optimization is a difficult-to-solve prob-
lem. In particular, it is known that even the problem of minimizing an objective
function f(x1, . . . , xn) on a box (“hyper-rectangle”) [x1, x1] × . . . × [xn, xn], a
problem of interest in interval computations [1, 2, 3], is NP-hard; see, e.g.,
[4, 6]. Crudely speaking, this means as the number of variables n increases,
in the worst case, the computation time required to solve the corresponding
optimization problem grows exponentially with n – and so, for large n, it is not
possible to have an algorithm that correctly solves all possible global optimiza-
tion problems.
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It is also well known that there exist feasible algorithms for minimizing
convex objective functions f(x1, . . . , xn); see, e.g., [6]. A natural question is:
can we extend these algorithms to a larger class of objective functions? In other
words, can we extend the class of all convex functions to a larger class for which
minimization is still feasible?

Of course, if we take this question literally, the answer is clearly “yes”: we can
extend the class of all convex functions by adding one or more objective functions
for which we already know the solutions to the corresponding minimization
problems.

This answer is not very interesting from a practical viewpoint. Indeed, the
class of all convex functions is not simply a collection of unrelated functions,
it is closed under several useful operations such as addition, multiplication by
a positive constant, substitution of linear combinations of variables instead of
the original variables, etc. It is therefore reasonable to ask: is there a class of
functions that is similarly closed and for which global minimization is feasible?

In this paper, we show that convex functions are the only ones for which
this is possible – once we have a single non-convex function in our closed class,
the corresponding global minimization problem becomes NP-hard.

2 Definitions and the Main Result

In this paper, we consider continuous functions f(x1, . . . , xn) from Rn to R for
different n.

Definition. We say that a class of functions F is closed if it satisfies the
following four conditions:

• F contains all linear functions;

• F is closed under addition, i.e., if f ∈ F and g ∈ F , then f + g ∈ F ;

• F is closed under multiplication by a positive constant, i.e., if f ∈ F and
c > 0, then c · f ∈ F ;

• F is closed under linear substitution if whenever f(x1, . . . , xk) ∈ F and
cik are real numbers, we have

f(c10 + c11 · x1 + . . . + c1n · xn, . . . , ck0 + ck1 · x1 + . . . + ckn · xn) ∈ F.

It is easy to see that the class of all linear functions is closed, and that the
class of all convex functions is closed.

By a minimization problem, we mean the following problem: given a function
f ∈ F and a box B, find the minimal value of the function f on the box B.
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Theorem 1. If a closed class F contains at least one non-convex function
and at least one non-linear convex function, then for this class, the problem of
finding the minimum of a given function f ∈ F on a given box is NP-hard.

Since minimization is feasible for convex functions, this theorem can be
reformulated as follows: for a closed class F that contains at least one non-linear
convex function, the following two conditions are equivalent to each other:

• all functions from the class F are convex;

• global minimization is feasible for the class F .

The same result holds if we consider a ε-minimization problem, i.e., if we fix
some real number ε > 0 (called accuracy), and, instead of looking for the exact
minimum m of a function f , we look for a value m̃ that is ε-close to m, i.e., for
which |m̃−m| ≤ ε.

Theorem 2. Let ε > 0 and let F be a closed class that contains at least
one non-convex function and at least one non-linear convex function. Then
the problem of finding an ε-approximation to the minimum of a given function
f ∈ F on a given box is NP-hard.

3 Proofs

3.1 Proof of Theorem 1

We prove Theorem 1 in 8 parts. Let F be a closed class that contains a non-
convex function f0(x1, . . . , xk) and a non-linear convex function f1(x1, . . . , xm).

1◦. We first prove that F contains a non-convex function of one variable.

Indeed, by definition, a function f of k variables is convex if

f(α · a + (1− α) · b) ≤ α · f(a) + (1− α) · f(b) (1)

for all a, b ∈ Rk and for all α ∈ (0, 1). Thus, non-convexity of f0 means that
there exist points a = (a1, . . . , ak) and b = (b1, . . . , bk), and a number α ∈ (0, 1)
for which

f0(α · a + (1− α) · b) > α · f0(a) + (1− α) · f0(b). (2)

Since the class F is closed under linear substitution, the function

f2(x1)
def= f0(a1 + x1 · (b1 − a1), . . . , ak + x1 · (bk − ak)). (3)

also belongs to the class F . In terms of f2(x1), the inequality (2) takes the form
f2(α) > α · f2(0)+ (1−α) · f2(1). Thus, the function f2(x1) is non-convex. The
statement is proven.
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2◦. We now prove that F contains a function f3(x1) of one variable for which
f3(0) = f3(1) = 0 and f3(α) > 0 for some α ∈ (0, 1).

We construct this function f3 from the above function f2, as f3(x) = f2(x)−
f2(0)−x·(f2(1)−f2(0)). Since F is closed, F contains all linear functions, and it
is closed under addition; thus, f3 ∈ F . It is easy to check that f3(0) = f3(1) = 0,
and that (3) implies f3(α) > 0.

3◦. We now prove that F contains a function f4(x1) of one variable for which
f4(0) = f4(1) = 0 and f4(x) > 0 for all x ∈ (0, 1).

We will construct this function f4 from the above function f3. We know
that f3(α) > 0 and that f(0) = 0. Let α− denote the supremum of all the
values x < α for which f3(x) ≤ 0. By definition of α−, we have f3(x) > 0 for
all x ∈ (α−, α]. The supremum α− is a limit point of non-positive values f3(x),
x ≤ α−, and it is also a limit point of positive values f3(x), x > α−. Thus,
f3(α−) = 0.

Similarly, if we take, as α+, the infimum of all the values x > α for which
f3(x) ≤ 0. Then, f3(α+) = 0 and f3(x) > 0 for all x ∈ [α, α+). So, f3(α−) =

f3(α+) = 0 and f3(x) > 0 for all x ∈ (α−, α+). Thus, the function f4(x) def=
f3(α− + x · (α+ − α−)) belongs to the class F and has the desired property.

4◦. We now prove that F contains a non-linear convex function f5(x) of one
variable.

This can be done similarly to Part 1 of this proof. Indeed, one can easily
see that a function f of m variables is linear if

f(α · a + (1− α) · b) = α · f(a) + (1− α) · f(b) (4)

for all a, b ∈ Rm and for all α ∈ (0, 1). Thus, non-linearity of f1 means that
there exist points a = (a1, . . . , am) and b = (b1, . . . , bm), and a number α ∈ (0, 1)
for which

f1(α · a + (1− α) · b) 6= α · f1(a) + (1− α) · f1(b). (5)

Since the function f1 is convex, we conclude that

f1(α · a + (1− α) · b) < α · f1(a) + (1− α) · f1(b). (6)

Since the class F is closed under linear substitution, the function

f5(x1)
def= f(a1 + x1 · (b1 − a1), . . . , ak + x1 · (bk − ak)) (7)

also belongs to the class F . In terms of f5(x1), the inequality (6) takes the form
f5(α) < α · f5(0) + (1− α) · f5(1). Thus, the function f5(x1) is non-linear. The
class of all convex functions is closed under linear substitution, so the function
f5(x) is also convex. The statement is proven.

5◦. We now prove that F contains a function f6(x1) of one variable for which
f6(0) = f6(1) = 0 and f6(α) < 0 for some α ∈ (0, 1).
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Similarly to Part 2 of this proof, we take

f6(x) = f5(x)− f5(0)− x · (f5(1)− f5(0)). (8)

6◦. We now prove that F contains a function f7(x1) of one variable for which
f7(0) = 0, f7(x) ≥ 0 for all x ∈ (−1, 1) and f7(x) > 0 for all x ∈ [0, 1).

We will construct this function f7 from the above function f6. We know
that f6(0) = f6(1) = 0 and that f6(α) < 0. Let m denote the minimum value
of the function f6(x) on the interval [0, 1], and let α0 denote the supremum of
all the values x ∈ (0, 1) at which the function f6(x) attains this minimum value
m. Then, f6(x) ≥ m for all x ∈ [0, 1], and f6(x) > m for all x > α0.

If we take ∆ def= min(α0, 1 − α0), then [α0 −∆, α0 + ∆] ⊆ [0, 1]. Thus, for

f7(x) def= f7(α0 + x · ∆) − m, we have f7 ∈ F , f7(0) = 0, f7(x) ≥ 0 for all
x ∈ [−1, 1] and f7(x) > 0 for all x ∈ (0, 1].

7◦. Finally, let us now prove that F contains a function f8(x1) of one variable
for which f8(0) = 0 and f8(x) > 0 for all x ∈ [−1, 1] for which x 6= 0.

Indeed, we can take f8(x) def= f7(x) + f7(−x).

8◦. We now complete the proof of Theorem 1.
To prove NP-hardness of the global minimization problem for the class F ,

we will reduce a known NO-hard problem to this problem, namely, the following
subset sum problem [4, 5]: Given n positive integers s1, . . . , sn and an integer
s > 0, check whether it is possible to find a subset of this set of integers whose
sum is equal to exactly s.

For each i, we can take xi = 0 if we do not include the i-th integer in the
subset, and xi = 1 if we do. Then the subset problem takes the following form:
check whether there exist values xi ∈ {0, 1} for which

∑

si · xi = s.
We will reduce each instance of this problem to the problem of minimizing

a function f9(x1, . . . , xn) on the box [0, 1]n, where f is defined as follows:

f9(x1, . . . , xn) =
n

∑

i=1

f4(xi) + f8

(

n
∑

i=1

s′i · xi − s′
)

, (9)

where s′i
def= si/S, s′ def= s/S, and S def= s +

∑

si.
Since the class F is closed, the function (9) belongs to the class F . We prove

that the minimum of the function (9) is equal to 0 if and only if the original
subset problem has a solution.

Indeed, due to the choice of S, we have |
∑

s′i · xi − s′| ≤ 1. Thus, due to
Part 6 of this proof, we have f8(

∑

s′i · xi − s′) ≥ 0. Due to Part 3 of this proof,
we have f4(xi) ≥ 0. Thus, the function f9, as a sum of non-negative terms, is
always non-negative. The only way for this function to be equal to 0 is when
all the non-negative terms are equal to 0. Due to Parts 3 and 6, this is possible
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only if for every i, xi = 0 or xi = 1, and if
∑

s′i · xi = s′ – hence
∑

si · xi = s.
Thus, if the minimum is 0, the subset sum problem has a solution.

Vice versa, if the subset sum problem has a solution x1, . . . , xn, then for these
values xi, we will have f9(x1, . . . , xn) = 0. Hence, in this case, the minimum of
the function (9) is equal to 0. The reduction is thus proven, so the minimization
problem is NP-hard. Theorem 1 is thus proven.

3.2 Proof of Theorem 2

We prove Theorem 2 in three more steps.

9◦. We begin by showing that for every δ > 0, there exists a β > 0 for which
f8(x) ≤ δ and x ∈ [−1, 1] implies |x| ≤ δ.

We can prove this by reduction to a contradiction. If the statement that
we try to prove is false, this means that there exists a δ > 0 such that for
every β, there exists an x(β) for which f8(x(β)) ≤ β and |x(β)| ≥ δ. All the
values x(β) belong to the same compact set [−1, 1]. Thus, from the sequence
x(β), we can extract a converging subsequence x(βk) → x0. For the limit x0 of
this subsequence, we have f8(x0) = 0 and |x0| ≥ δ, which contradicts what we
proved in Part 6. This contradiction shows that our statement is indeed true.

10◦. Similarly, we can prove that for every δ > 0, there exists a γ > 0 such that
if f4(x) ≤ γ and x ∈ [0, 1], then either x ≤ δ or x ≥ 1− δ.

11◦. We now fix ε > 0, and we will reduce the subset sum problem to the
problem of finding the minimum of functions f ∈ F with accuracy ε.

For every instance of the subset sum problem, we will take δ def= 0.2/S. For
this δ, let β and γ denote the values described in Parts 9 and 10 of this proof.
We denote ε0

def= min(β, γ). Then, as the desired function f ∈ F , we take a
function f10 = (3ε/ε0) · f9, where f9 is described by the formula (9).

If the subset sum problem has a solution, then the minimum of the function
f10 is equal to 0. We show that if the minimum of the function f10 is smaller
or equal than 3ε, then the subset problem is equal to 0. Thus, the minimum is
either equal to 0, or larger than 3ε.

• In the first case, if we compute the ε-approximation m̃ to the minimum
m, we get m̃ ≤ ε.

• In the second case, if we compute the ε-approximation m̃ to the minimum
m, we get m̃ > 2ε.

Thus, by comparing m̃ with ε, we will be able to tell whether the original
instance of the subset sum problem has a solution.

So, to complete the proof of Theorem 2, we must show that if the minimum
m of the function f10 is not larger than 3ε, then the original instance of the
subset problem has a solution. Indeed, this minimum is attained for some inputs
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x1, . . . , xn ∈ [0, 1]. Since f10 = (3ε/ε0) · f9, for these inputs, the function f9

takes the value ≤ ε0.
The expression (9) that defines the function f9 is the sum of non-negative

terms. Thus, each of these terms is not larger than ε0 = min(β, γ), and thus,
not larger than β and not larger than γ. From Part 10 and f4(xi) ≤ γ, we
conclude that either xi ≤ δ or xi ≥ 1 − δ. In other words, if by x̃i, we denote
the integer that is closest to xi, we conclude that

|xi − x̃i| ≤ δ. (10)

Similarly, from f8(
∑

s′i · xi − s′) ≤ β, we conclude that |
∑

s′i · x′i − s′| ≤ δ.
Multiplying both sides of this inequality by S, we get

∣

∣

∣

∑

si · xi − s
∣

∣

∣ ≤ S · δ. (11)

From (10), we conclude that
∣

∣

∣

(
∑

si · x̃i − s
)

−
(
∑

si · x̃i − s
)∣

∣

∣ =
∣

∣

∣

∑

(x̃i − xi) · si

∣

∣

∣ ≤

δ ·
∑

si ≤ δ · S. (12)

From (11) and (12), we conclude that
∣

∣

∣

∑

si · x̃i − s
∣

∣

∣ ≤ 2 · δ · S. (13)

By definition of δ, the product 2 ·δ ·S is equal to 0.4. Thus, the absolute value of
the integer

∑

si · x̃i− s does not exceed 0.4. The only such integer is 0. Hence,
∑

si · x̃i − s = 0, i.e., the original instance of the subset sum problem indeed
has a solution. Theorem 2 is thus proven.

4 Conclusions

A number of global optimization algorithms are based on decomposing the ob-
jective function into convex combinations of a set of elementary functions. The
results in this paper show that, if any non-convex function is included in the
set, the resulting class of unconstrained optimization problems contains NP-
hard problems. For example, if f is any nonlinear convex function in the class,
then, if −f is also included in the class, the resulting set of problems contains
NP-hard problems.
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