
Interval Subroutine Library Mission⋆

George F. Corliss1, R. Baker Kearfott2, Ned Nedialkov3, John D. Pryce4, and
Spencer Smith5

1 Marquette University
2 University of Louisiana at Lafayette

3 McMaster University and Lawrence Livermore National Laboratory
4 Cranfield University, RMCS Shrivenham

5 McMaster University

Abstract. We propose the collection, standardization, and distribution
of a full-featured, production quality library for reliable scientific comput-
ing with routines using interval techniques for use by the wide community
of applications developers.

1 Vision – Why are we doing this?

The interval/reliable computing research community has long worked to attract
practicing scientists and engineers to use its results. We use any of the terms
interval, reliable, verified computation in the sense of producing rigorous bounds
on true results [1, 2]. The Interval Subroutine Library (ISL) is a project to place
interval tools into the hands of people we believe will benefit from their use by
gathering and refining existing tools from many interval authors. We acknowl-
edge that intervals carry a steep learning curve, and that they sometimes have
been over-promised. The winning strategy for widespread adoption of interval
technologies is the development of “killer applications” that are so much better
(in some sense) than current practice that practicing scientists and engineers
have no choice but to adopt the new technology.

The ISL team wants to see such killer applications appear, but producing
them is not our mission. The routine use of interval techniques by practicing
scientists and engineers is hampered by a lack of widely-used, comprehensive,
quality interval software that is available on all major platforms (Linux, Mac
OS, Unix, Windows). Once such software is available, use of interval techniques
is likely to grow along at least three paths: small-scale applications by scien-
tists/engineers in the course of their daily work; professionally built applications
in a specific area, such as global optimization or curve graphing; and the almost
invisible embedding of verified computing as a tool in commodity software such
as spreadsheets or scientific data analysis and document preparation.

ISL can provide the infrastructure for such developments. ISL targets appli-
cation developers, those who are developing the significant applications. Interval-
based tools tailored for specific end-practitioner applications are developed by

⋆ This work was supported in part by EPSRC Grant D033373/1.

applications developers with expertise in applications areas, but those developers
are not finding interval tools they perceive as attractive for their applications.
Currently, if we talk to a group of scientists or engineers about intervals and
convince them of the value of interval techniques, when they ask, “Great! What
software can I use?” there is a long, painful pause. We have many tools, pack-
ages, and research codes, but we have no CD that solves their problems with
rigorous bounds.

Major obstacles to widespread adoption of interval techniques by developers
of main-stream scientific and engineering applications include lack of speed and
hardware support, lack of customer demand, lack of interoperability of interval
tools, a steep learning curve, and many others. ISL, by itself, can solve none
of those. ISL can help unify the work of the world-wide interval research com-
munity to ease the learning curve with easier to use, more portable software
that interoperates better with other interval tools and with other common tolls
used in scientific computation. A central repository containing much of the high-
quality work of the community helps attract customers, who, in turn, drive a
broad-based demand for improved hardware support.

The ISL project itself does not author software; contributing authors do that.
The goal of the ISL project is to gather and disseminate a library of high quality
interval-based tools. The fundamental requirements is “Preserve containment.”
Routines are expected to return an enclosure of the correct mathematical result
or provide a suitable indication of failure. The qualities of interest for the ISL
project include

• correctness, • comprehensiveness,
• reliability, • performance,
• robustness, • maintainability, and
• usability, • portability.

To achieve these qualities, the ISL project encourages its contributing authors to
use software engineering sound principles, including documentation, good archi-
tecture, thorough testing, and coding standards. The documentation produced
and the process of assembling the library also support the goal of achieving high
quality. Documentation should be complete, consistent, correct, usable, veri-
fiable, maintainable, and reusable. The development process should have the
qualities of productivity, timeliness, and transparency.

The authors are embarking upon a plan for the cooperative development of
such a library. This paper lays out the broad scope of the project.

1.1 Short-term goals

By the end of 2007, we expect to offer interval Basic Linear Algebra Subroutines
(BLAS) levels 1 and 2 and a collection of problem-solving packages, mostly cho-
sen from existing software, including linear systems, optimization, and differen-
tial equations. The collection may include utilities for automatic differentiation,
Taylor models, and constraint propagation. For our plan to achieve this, see §3.1.

1.2 Long-term goals

In perhaps 6 to 8 years, we hope to offer a library of interval tools with coverage
comparable to early releases of the IMSL or NAG libraries, SLATEC [3], the
popular Numerical Recipes books [4, 5], the GNU Scientific Library(GSL) [6], or
other comparable libraries. The library will be freely available, and we shall also
encourage its appearance in commercial products. The library should be used
by a significant number of applications widely used in their respective domains.
For our plan to achieve this, see §3.2

1.3 History

To provide a comprehensive interval problem-solving library is an old idea, much
of whose history in this section was kindly provided by an anonymous referee.
In 1976, Ulrich Kulisch and H.W. Wippermann proposed developing language
support and problem-solving routines in interval arithmetic. They raised funds
and jointly with Nixdorf developed what finally became PASCAL–XSC. The
language, the compiler, and the subroutine library are still available from www.

xsc.de. The Russian translation of the language and the corresponding toolbox
volume just appeared in its third edition.

When IBM became aware of this development, a close cooperation with the
Kulisch institute at Karlsruhe was started in 1980. They jointly developed and
implemented a Fortran extension called ACRITH–XSC, together with a large
number of problem-solving routines with automatic result verification corre-
sponding to the PASCAL–XSC development.

As a next step, a C++ class library called C–XSC was developed at the
Kulisch institute at Karlsruhe in the early 1990s, with books [7] and a toolbox
volume with problem-solving routines [8]. The software was recently updated,
extended, and adapted to new versions of C and C++ at the institute of W.
Krämer at Wuppertal. The software is publicly available, including source code,
from www.math.uni-wuppertal.de/wrswt/xsc/cxsc_new.html. C–XSC runs
on many platforms, and comes with a large number of fast and accurate elemen-
tary and special functions for real, complex, real interval, and complex interval
data. They all come with proven error bounds. The problem-solving routines that
come with C–XSC cover much of the problem space envisioned by the present
ISL project.

The filib++ package [9, 10], from Wuppertal, offers fast computation of
guaranteed bounds for interval versions of a comprehensive set of elementary
functions, and it adds an extended mode for exception-free computation mode
relying on containment sets [11]. Filib++ uses templates and traits classes to
obtain an efficient, easily extendable, and portable C++ library. Filib++ also
come with an extensive set of problem-solving routines, and it is available from
www.math.uni-wuppertal.de/wrswt/software/filib.html.

Another library providing guaranteed bounds is INTLAB [12] (based on Mat-
lab) from the institute of S.M. Rump at Hamburg. R.B. Kearfott at Lafayette,
Louisiana and W. Walter at Dresden offer other Fortran based libraries.

The development of killer applications to promote interval technologies is
surely possible with existing interval environments, but they have not yet hap-
pened. By building on the work of our predecessors, ISL, if successful, will in-
crease the penetration of interval techniques into the mainstream of scientific
and engineering computation and lowering the barriers to the development of
that killer application.

2 Product – What will we deliver?

To meet the needs of a wide community of applications developers in a broad
cross-section of applications areas, we need a portable, comprehensive, produc-
tion-quality library of interval tools solving most of the standard problems of
scientific computation. The library should be available in a downloadable or
CD form. The library should also have a clear licensing structure that protects
authors, while still encouraging commercialization.

2.1 Contents

We envision a hierarchical library, with units organized into chapters roughly as
suggested by Figure 1:

Interval arithmetic and extended interval arithmetic based on csets (BIAS)

Interval standard functions (level 0 BLAS) Levels 1, 2, and 3 BLAS (vector, matrix-vector, and matrix-matrix operations)

Validated enclosure to systems of linear equations

low-level routines

applications

Global Optimization and
solution of nonlinear systems

Quadrature

ODE's PDE's

robust graphics chemical engineering

artificial intelligence mathematical proofs

stability analysis of dynamical systems
(particle accelerator beams, asteroid
 orbits, etc.)

etc.

Taylor arith.?

Many others
 (?)

Constraint Propagation Support

problem-solving routines

AD

Fig. 1. A tentative hierarchical structure.

Level 0 – Basic Interval Arithmetic: Interval arithmetic including
1. Constructors,
2. Arithmetic operations,

3. Comparison operators,
4. Input/output, and
5. Elementary functions.

Level 0 should be consistent with a C++ interval arithmetic standard,
such as that proposed by proposed by Brönnimann, Melquiond, and Pion
(BMP) [13], should a suitable standard be adopted. Level 0 should have
a large overlap with the functionality provided by many current interval
arithmetic packages, including PROFIL/BIAS [12, 14, 15], filib++ [9, 10],
Boost [16], Gaol [17], C–XSC [7, 8, 18–20], and the Sun C++ compiler [21].

Level 1 – Utilities: Level 1 units are called by several units in Level 2 to
provide capabilities including
1. Error handler,
2. Additional (non-basic) interval arithmetic features,
3. Vectors and matrix classes,
4. Level 1 and level 2 BLAS,
5. Automatic differentiation,
6. Taylor model arithmetic, and
7. Constraint propagation.

Level 2 – Problem-solving routines: Chapter outline will grow with time,
initially, similar to the contents of many textbooks in numerical analysis:
1. Linear systems, eventually including sparse and eigensystems,
2. Nonlinear systems,
3. Optimization,
4. Quadrature,
5. Statistics,
6. Ordinary differential equations, and
7. Partial differential equations.

Level 3 – Applications: Not in the scope of ISL, but we strongly encourage
applications developers to build on ISL.

Capabilities not listed here are by no means left out. For example, Level 1
may include multiple precision interval arithmetic with an API close to the Level
0, so that Level 2 and Level 3 units can easily switch from double precision inter-
vals to intervals of higher precision, or vector and matrix classes using elliptical
representations for multi-dimensional intervals. Eventually, each chapter should
contain a variety of general- and special-purpose routines. Categorizing inter-
val software in a structure roughly paralleling widely-used approximate libraries
encourages interval researchers to consider gaps in interval coverage.

3 Plan – How will we accomplish that?

We have both short-term (two years) and long-term (3–10 years) plans.

3.1 Short-term plan: gather, organize, and disseminate

For perhaps two years, this is primarily a library project in the sense of identi-
fying, collecting, organizing, and making available work that already exists.

Step 1 – Language standardization. ISL is a C++ library. Brönnimann, et
al. have proposed to add intervals to the C++ language standard [13]. The
ISL team is working for the strengthening and the adoption of this proposal.
The BMP proposal can become the basis for our ISL Level 0 BIAS well
before it is approved. Several existing implementations of intervals in C++
are reasonably close to the proposed standard, so multiple (almost) reference
implementations are available.

Step 2 – Pilot inclusion into ISL. Select about three existing packages for
initial inclusion into ISL. This gives us a chance to prototype policies, pro-
cedures, and practices for incorporating existing work. See the discussion of
some issues in §3.3–3.9.

In particular, this paper is not a call for participation, as we are still working
to refine how ISL will work.

Step 3 – Invite participation. Once some of the issues of policies, proce-
dures, and practices for incorporating existing work have been refined, we
will invite 6–10 researchers to submit their work for inclusion in ISL. At this
stage, the number of packages we will invite remains modest, as we develop
experience, participation, and visibility.

We hope for a very preliminary release including parts of Steps 1 and 2 by
the end of 2006 and a release including about five ISL Level 2 problem-solving
routines by the end of 2007.

3.2 Long-term plan

After we gain experience and visibility from the short-term “gather, organize,
and make available” activities, we expect to expand the scope of the library by
inviting contributions from the interval community. Work will be managed along
the model of many successful open source projects. We anticipate releases each
1–2 years. We will continue development of a free version of ISL, while seeking
a commercial partner such as NAG, Sun, IBM, Intel, or Microsoft.

Next, we turn our attention in subsections 3.3–3.9 to some of the issues that
must be settled to ensure the success of ISL.

3.3 Language and environment

We do not wish to ignite religious warfare, but we must choose an appropriate
computer language for ISL. In the short-term “gather, organize, and make avail-
able” activities, we can include packages in any language. Most existing interval
software is in Matlab or some dialect of Fortran or C++. While it is attractive to
suppose we can support all languages, with finite resources, our goals are served
better by focusing on one language. ISL is in C++ because there appears to be
more existing interval software in C++ than in other candidates. Inter-language
interoperability depends on support from the languages themselves.

3.4 Organizational structure

Quality, comprehensive libraries are not compiled by a single person or small
group of people over a short time. There are many models we can follow of soft-
ware development by large, loosely-coupled teams over several years, including
the LAPACK project [22], PETSc [23–25], and many open source projects such
as the GSL [6].

The ISL project is coordinated by a steering committee, currently, the au-
thors of this paper. We meet occasionally as a group, and subsets meet as possible
at conferences. The steering committee sets directions and policies, such as those
outlined in this paper. In the long-term steady state, the role of the steering com-
mittee is somewhat like that of the editorial board of a major journal, overseeing
the work of authors, referees, and the publication process.

3.5 Adding value

There are several good packages for interval arithmetic corresponding to our
proposed Level 0 BIAS, there are many interval-based problem-solving routines
corresponding to our Levels 1 and 2, and there are a few comprehensive projects
such as Karlsruhe XSC Toolbox books [8] and Neumaier’s COCONUT [26].
Kreinovich does an admirable job of capturing and maintaining pointers to many
interval projects at [27]. What value does ISL add?

We return to our initial premise. Although many interval tools are available,
there is no single source, a web site or a CD offering a standardized, portable,
peer-reviewed suite of tools that install and work together. In the long term, we
envision a comprehensive, universally used library. This is in contrast to offering
general languages, such as in the COCONUT project or General Algebraic Mod-
eling System (GAMS), or offering graphical user interfaces, such as in commer-
cial packages such as Maple. We view the effort as promoting standardization,
portability, and reuse. In the short term, ISL works with contributing authors
to gather existing interval tools, standardize their installation and interfaces,
perform peer review acceptance and comparative testing, provide examples, and
make these tools available from a single source.

3.6 Quality Assurance

All interval code has to have the quality of correctness. The code must obey the
rule “Preserve containment.”

Contributions are peer refereed. To be considered for inclusion in ISL, nor-
mally we expect the algorithm to have been the subject of at least one peer
refereed journal paper. Codes, testing, and documentation are also refereed,
similar to the standards for an Association for Computing Machinery (ACM)
Algorithm. We intend that publications and programs associated with ISL be
held to the highest academic and software engineering standards.

We strongly recommend that contributing authors follow modern software
engineering practices, recognizing that “modern software engineering practices”

encompass methods proposed by Parnas [28], Literate Programming [29, 30],
agile methods such as Extreme Programming [31] and Test-Driven Develop-
ment [32], and others. Generally, we favor the more formal methods because
specifications for, say, a linear equation solver, are not expected to change sig-
nificantly while development is being done.

The ideal contribution to ISL consists of the following parts.

A specification of the software requirements, including the mathematical
statement of the problem and information on the required inputs and possible
output values. With respect to the inputs, the specification indicates clearly any
constraints that exist on the data. Where necessary, a flag shall be specified
whose values indicate the reason for failure when a solution cannot be deter-
mined. All contributions to ISL share the goal of achieving the qualities listed in
the introduction, especially the requirement, “Containment is preserved.” How-
ever, it is difficult to write validatable specifications of non-functional require-
ments. For instance, validating correctness is challenging for scientific computing
problems, because formal proofs of correctness are difficult and often overly con-
servative, although non-formal proofs with rigor comparable to proofs in the
mathematical literature are often appropriate. Therefore, rather than specify
the requirements, the approach is taken of describing the final software product,
typically including statements of the form, “It finds an enclosure of correct solu-
tion if the input lies in set Y .” This description is given in the software validation
report, discussed below.

A design specification. The ideal specifications includes an API or function
signature plus semantics, often modeled on specifications for corresponding pack-
ages for approximate solutions.

A software validation report. The software validation report is about a com-
bination of observed scope, tightness and speed (plus maybe memory load), and
the observed interplay among them. It characterizes the problems that are suc-
cessfully solved.

The contributing authors are asked to provide the evidence that the software
meets the stated requirements and to describe the level to which the software
meets the software quality goals. The software validation can consist of infor-
mal and formal analysis, testing and a summary of important software metrics.
Techniques for informal and formal analysis include code walkthroughs, code re-
views, and inspection. Techniques such as literate programming can be employed
so that confidence can be built on the correctness of the code, in a similar sense
to how confidence is built by mathematicians inspecting a mathematical proof.
The summary of testing also builds confidence by showing the test cases that
were passed and that any user can download and run for themselves. The de-
scriptions set expectations for the behavior of the program in similar situations.
The descriptions can be tested for lies; for instance, the validation report might
assert, “the software was run over a given range of inputs on machines x and y

and the program terminated in 5 seconds or less with an enclosure of the correct
answer in 87% of cases, terminated in 5 seconds or less with a failure indicator

in 10% of cases, and had not terminated in 5 seconds in the remaining 3% of
cases.”

More detailed quality assurance policies and procedures are being developed
based on our experiences in Step 2 of the Short Term Plan outlined in §3.1.

3.7 Licensing

Especially in view of Sun being granted several interval-related patent appli-
cations, the interval community is increasingly aware of the importance of the
protection of intellectual property. ISL needs a carefully considered license which

– protects rights and reputations of authors,
– provides for free distribution, and
– encourages commercialization.

To help us in that, we are gathering and evaluating examples including

– GNU Lesser General Public License (LGPL), Modified Berkeley, Boost, MIT,
and other Open Source licenses;

– licenses of various interval packages; and
– intellectual property policies of some (possibly) participating universities.

3.8 Publications

Since many potential participants in the ISL project are academics, the project
will not succeed without clear publication opportunities:

– Continuing publication of incremental and innovative development of interval
software;

– Identification of omissions in coverage (holes) as development targets;
– Comparative testing of similar packages in the spirit of Enright and Hull [33]

or Mazzia, Iavernaro, and Magherini [34] for approximate ODE solvers or
Pryce [35, 36] for Sturm-Liouville solvers; and

– Suites of test problems for interval problem-solving routines, e.g., Corliss
and Yu for interval arithmetic operations and elementary functions [37].
Interval test suites should include many problems from existing test suites
for approximate solvers and also problems intended to test existence and
containment properties.

– Software engineering publications related to the development of scientific
software with respect to appropriate process models, methodologies and doc-
umentation. Software engineering has mostly ignored scientific software and
placed most of the emphasis on research on safety critical systems and in-
formation systems. There is room to make contributions by looking at the
issues that are specific to scientific software.

For academic researchers, release of software to ISL in addition to journal pub-
lications offers an external, peer-reviewed process for recognizing research con-
tributions and wider dissemination than links from the authors’ web site.

While valuing the role of Reliable Computing as the core journal in this
research field, we encourage contributing authors to publish in a wide variety
of journals, especially journals in applications areas, to help bring the message
of intervals to as wide an audience as possible. Intervals are much closer to the
main stream of scientific computing than many of us realize, as new applications
and researchers using interval techniques are published regularly. We help more
people learn about intervals by publishing in the outlets they read.

In the long-term steady state, having code accepted for inclusion in ISL may
be viewed as equivalent to a journal paper, probably contributing more to the
overall advance of the infrastructure of science than many journal papers.

3.9 Funding

While it would be welcome if someone wanted to provide large funding, that
is unlikely. If we look at the models of LAPACK or most open source projects,
there may be modest funding somewhere for overall leadership and organization,
but the developers are on their own to secure their own funding. One would hope
that contributing to a large, well-organized, well-publicized international effort
might help many interval researchers get our own work funded.

Similarly, it would be welcome if a large software company provided the
leadership and modest funding for the champion to lead an open source project.
In other fields of study, with more obvious customers, several firms have made
significant contributions to various open source projects.

4 Partners – How can you help?

Clearly, the long-term goal is ambitious, requiring the work of many people
over many years. This section outlines our vision of an ideal partnership of
contributing authors, chapter architects, referees, and ISL steering committee.

4.1 Contributing author

A contributing author contributes any of

– Code unit for the library to solve some well-defined problem of scientific
computing, e.g., constraint propagation, linear systems, optimization;

– Functionality or performance improvements, corrections, or extensions to an
existing unit of the library;

– Test suites;
– Documentation; and
– API architecture for a chapter of the library.

For a new unit for the library, a contributing author should submit

– User Guide: installation, requirements, examples;
– Maintenance documentation: system architecture, detailed design, test plan

and report;

– Source code; and
– Journal article (with quality of TOMS article and algorithm).

A typical interaction might be

1. Contributing author contacts (or is contacted by) the ISL steering commit-
tee.

2. They discuss a suitable problem of scientific computing, specifications, li-
censing, etc.

3. Contributing author submits a suitable research publication to a journal.
4. Contributing author submits to ISL source; installation instructions; docu-

mentation of the problem, description of algorithms, examples of use, refer-
ences, etc.; acceptance and other tests; copies of journal papers, etc.

5. ISL or chapter editor sends submitted materials to referees.
6. Usual iterations with editors, referees, and authors.
7. ISL accepts or declines the submission.
8. After acceptance, ISL maintains discussions with the contributing author to

ensure that updates to the original work are reflected in the library.

ISL should be more than a listing of web links to contributing authors’ pages.
That requires some process, at least semi-formal. The short-term “gather, orga-
nize, and make available” phase of the project will be used to find an appropriate
balance of a formal process to ensure quality and a light-weight process all can
use effectively. For example, there is no need to duplicate refereeing work already
performed for journal publication.

4.2 Chapter architect/editor

In the short term, the ISL steering committee are the architects of the library
and the editors for contributed units. As the scope grows, each chapter of the
library (see §2.1) has an architect/editor responsible for

– External architecture of the chapter, problem coverage, consistent API;
– Internal architecture, shared utilities; and
– Collaboration with contributing authors for this chapter.

4.3 Referee

The referee contributes to the overall quality of the library by providing an
external assessment. The referee reviews materials submitted by contributing
authors including source, installation instructions, documentation of the prob-
lem, description of algorithms, examples of use, references, acceptance and other
tests. The referee is assessing the library materials as they affect application
developers who use the library, rather than the more academic concerns of a
traditional journal referee. We anticipate that some referees are anonymous, and
some are collegial.

The ISL refereeing process may be modeled on the process for refereeing
Association for Computing Machinery (ACM) Algorithms. We encourage ISL

contributing authors to submit their work as ACM Algorithms, in which case,
the ISL refereeing is sharply truncated.

We anticipate that some refereeing work leads to publishable careful com-
parative testing of similar packages and compilation of sets of standard test
problems for interval problem-solving routines.

4.4 Applications development

The goal of the ISL project is to get quality, portable, uniform, comprehensive
interval tools into use by developers of applications used by practicing scientists
and engineers. Our target audience includes

– Developers in the interval community, our contributing authors. For example,
authors of interval differential equations or optimization solvers benefit from
automatic differentiation, constraint propagation, and linear solvers in ISL.

– Scientists from applications areas developing more reliable software than
that currently available.

– Small commercial companies seeking the competitive advantage of high re-
liability software in their market niche.

– Large commercial companies who develop market-leading software packages
in industry segments, such as chemical engineering, structural engineering,
financial modeling, chip and circuit design, supply chain planning, industrial
process engineering, etc.

ISL targets the developers of software for use in these areas.

5 Will ISL Succeed?

It is natural to ask why this ISL project might be more successful than its
predecessors described in §1.3. We seek not to disparage the work of others but
to highlight opportunities open to the community as a whole to increase the
penetration of interval techniques into the common practice of scientific and
engineering computation.

Stand on the shoulders of giants – ISL should incorporate as much as
possible existing work in the underlying packages for interval arithmetic and the
higher-level problem-solving routines.

C++ Standard – If intervals are standardized in C++, intervals become
available in the daily software toolbox of most developers of scientific and engi-
neering software, without even a need to download. A standard makes it much
easier for several packages to inter-operate, removing the current impediments
of slight inconsistencies in the interval arithmetic provided by for example by
C–XSC, filib++, PROFIL/BIAS, and Sun.

Interoperability – Interval problem-solving routines available with C–XSC,
filib++, PROFIL/BIAS, and Sun each have strengths. If we can leverage a C++
interval standard for the underlying interval operations and migrate existing
problem-solving routines toward more consistent interfaces, it becomes easier
for developers to use the best routines from several authors.

Hardware support – Broader adoption of interval software is much more
attractive if interval arithmetic is supported directly by hardware, a position
advanced by Professor Kulisch for many years, most recently in [38].

Customers – Major hardware vendors will support intervals when there is
customer demand, and customers do not demand what they cannot experience.
More widely available, portable, easy to use interval software facilitates experi-
encing the certainty afforded by interval techniques by a broader audience.

Open source – The success of many broad-based open source software devel-
opment projects demonstrates an alternative to the Not Invented Here model of
development in single institutes by leveraging the strengths of many researchers,
rather than putting the resources of the research community into competing
projects.

World-wide – ISL should involve researchers from Japan, China, India,
Brazil, and others as well as traditional seats in Europe, Canada, and US.

Connections with point-based algorithms – Approximate algorithms
using pure floating-point arithmetic are becoming more reliable, e.g., Baron for
global optimization. A wider network of developers can leverage connections
with point numerical analysis and applications developers. Advances from ap-
proximate algorithms can improve the speed of interval algorithms, and interval
insights can improve the reliability of approximate algorithms at critical steps.

Ease the steep learning curve – Compared with approximate algorithms,
most interval algorithms require a deeper understanding of the problem, of the
method of solution being used, and of the coding of the problem. We reduce that
gap by very careful attention to ease of use and by promoting more consistent
interfaces across a wider variety of problem-solving routines.

“Deeper” analysis – We have problem-solving routines covering a wide
variety of problems, but there are opportunities to improve the set of problems
each can handle and their scalability to larger problems.

“Broader” analysis – We have solved the general case for linear and non-
linear systems, differential equations, and optimization repeatedly. A centralized
repository makes it easier to recognize the need for special-purpose solvers, e.g.,
sparse systems, linear ordinary differential equations, linear programming prob-
lems, and many more.

Structure for academic recognition for software development – Most
members of the interval community are academic researchers, rewarded for pub-
lishing, not for coding. ISL may come to provide in the long term a structure for
recognition of peer-reviewed software development, leading to increased funding
opportunities.

It will take a long time. It will take lots of people. And it will take money.

6 Conclusions

Initially, ISL intends to be a single source for as large a body of existing interval
routines as resources allow. In the longer term, ISL offers a quality, portable,

uniform, comprehensive, problem-solving library. Eventually, we aspire to be
seamlessly integrated with tools and libraries for approximate computation.

Acknowledgement

An initial draft of this paper was prepared during a visit of the first author to
Tibor Csendes at the Department of Applied Informatics, University of Szeged,
Hungary, January 16 - 20, 2006. We thank Tibor for his kind hospitality.

We thank anonymous referees for contributing significantly, especially for
providing much of the content of §1.3.

References

1. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia,
PA (1979)

2. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

3. Fong, K., Jefferson, T., Suyehiro, T., Walton, L.: Guide to the SLATEC com-
mon mathematical library. Technical report, netlib.org (1990) See http://www.

netlib.org/slatec/.
4. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes

in Fortran: The Art of Scientific Computing, Second ed. Cambridge University
Press, Cambridge (1992) Also available for Fortran 90, C, and C++.

5. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C++: The Art of Scientific Computing, Second ed. Cambridge University Press,
Cambridge (2002)

6. GSL: GNU Scientific Library (1996 - June 2004) http://www.gnu.org/software/
gsl/.

7. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., Rauch, M.: C–XSC – A C++
Library for Extended Scientific Computing. Springer–Verlag, Heidelberg (1993)

8. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified
Computing I — Basic Numerical Problems. Springer-Verlag, Heidelberg (1993)

9. Lerch, M., Tischler, G., von Gudenberg, J.W., Hofschuster, W., Krämer, W.:
filib++, a fast interval library supporting containment computations. ACM Trans-
actions on Mathematical Software 32(2) (2006)

10. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.:
The interval library filib++ 2.0 - design, features and sample programs. Preprint
2001/4, Universität Wuppertal, Wuppertal, Germany (2001)

11. Pryce, J.D., Corliss, G.F.: Interval arithmetic with containment sets. Computing
(accepted) Technical Report DoIS/TR01/06, Department of Information Systems,
Shrivenham Campus, Cranfield University, Swindon SN6 8LR, UK, 2005. Available
at http://homepage.ntlworld.com/j.d.pryce/isloct05/prycecorliss06.pdf.

12. Rump, S.M.: INTLAB interval toolbox, version 5.2 (1999–2006) http://www.ti3.
tu-harburg.de/intlab.ps.gz.

13. Brönnimann, H., Melquiond, G., Pion, S.: A proposal to add interval arith-
metic to the C++ standard library. Technical Report N1843-05-0103, CIS De-
partment, Polytechnic University, New York, and Laboratoire de l’Informatique
du Parallélisme, École Normale Supérieure de Lyon, and INRIA Sophia Antipolis
(2005–2006)

14. Knüppel, O.: PROFIL/BIAS – A fast interval library. Computing 53(3–4) (1994)
277–287 http://www.ti3.tu-harburg.de/profil_e.

15. Knüppel, O.: PROFIL/BIAS v 2.0. Bericht 99.1, Technische Universität Hamburg-
Harburg, Harburg, Germany (1999)

16. Brönnimann, H., Melquiond, G., Pion, S.: The Boost interval arithmetic library
(2006) http://www.cs.utep.edu/interval-comp/main.html.

17. Goualard, F.: Gaol, not just another interval library (2006) http://www.

sourceforge.net/projects/gaol/.
18. Hofschuster, W.: C–XSC – A C++ Class Library web page (2004) http://www.

math.uni-wuppertal.de/wrswt/xsc/cxsc.html.
19. Hofschuster, W., Krämer, W.: C–XSC 2.0: A C++ library for extended scientific

computing. In: Numerical Software with Result Verification. Number 2991 in Lec-
ture Notes in Computer Science. Springer–Verlag, Heidelberg (2004) 15–35 Also
appeared as Preprint BUW-WRSWT 2003/5, Universität Wuppertal, 2003.

20. Hofschuster, W., Krämer, W., Wedner, S., Wiethoff, A.: C–XSC 2.0: A C++
library for extended scientific computing. Preprint BUGHW–WRSWT 2001/1,
Universität Wuppertal (2001)

21. Microsystems, S.: C++ interval arithmetic programming reference (2004–2006)
http://docs.sun.com/db/doc/806-7998.

22. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
User’s Guide, 3rd edn. SIAM, Philadelphia, PA (1999) Certain derivative work
portions have been copyrighted by the Numerical Algorithms Group Ltd. See http:
//www.netlib.org/lapack/, http://www.nacse.org/demos/lapack/.

23. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G.,
McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report
ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2004)

24. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes,
L.C., Smith, B.F., Zhang, H.: PETSc Web page (2001) http://www.mcs.anl.gov/
petsc.

25. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of
parallelism in object oriented numerical software libraries. In Arge, E., Bruaset,
A.M., Langtangen, H.P., eds.: Modern Software Tools in Scientific Computing,
Birkhäuser Press (1997) 163–202

26. Neumaier, A.: COCONUT Web page (2001-2003) http://www.mat.univie.ac.

at/~neum/glopt/coconut.
27. Kreinovich, V.: Interval Computations (2006) http://www.cs.utep.edu/

interval-comp/main.html.
28. Parnas, D.L.: Software Fundamentals: Collected Papers by David L. Parnas.

Addison-Wesley (2001)
29. Knuth, D.E.: Literate programming. The Computer Journal 27(2) (1984) 97–111
30. LiterateProgramming: Literate Programming Web page (2000–2005) http://www.

literateprogramming.com/.
31. Burke, E.M., Coyner, B.M.: Java Extreme Programming Cookbook. O’Reilly,

Sebastopol, CA (2003)
32. Beck, K.: Test-Driven Development: By Example. Addison Wesley (2003)
33. Hull, T., Enright, W., Fellen, B., Sedgwick, A.: Comparing numerical methods for

ordinary differential equations. SIAM J. Numer. Anal. 9 (1972) 603–637
34. Mazzia, F., Iavernaro, F., Magherini, C.: Test set for IVP solvers, release 2.2 (2003)

http://pitagora.dm.uniba.it/~testset/.

35. Pryce, J.D.: A test package for Sturm-Liouville solvers. ACM Trans. Math. Soft-
ware 25(1) (1999) 21–57

36. Pryce, J.D.: Algorithm 789: SLTSTPAK, a test package for Sturm-Liouville solvers.
ACM Trans. Math. Software 25(1) (1999) 58–69

37. Corliss, G.F., Yu, J.: Testing COSY’s interval and Taylor model arithmetic. In
Alt, R., Frommer, A., Kearfott, R.B., Luther, W., eds.: Numerical Software with
Result Verification: Platforms, Algorithms, Applications in Engineering, Physics,
and Economics. Number 2992 in Lectures Notes in Computer Science. Springer,
Heidelburg (2004) 91–105

38. Kirchner, R., Kulisch, U.W.: Hardware support for interval arithmetic. Reliable
Computing 12(3) (2006) 225–237

