
GlobSol: History, Composition, and Advice on
Use

R. Baker Kearfott

University of Louisiana at Lafayette
Department of Mathematics, Box 4-1010

Lafayette, LA 70504-1010, USA
Telephone: (337) 482-5270

rbk@louisiana.edu

Abstract. The GlobSol software package combines various ideas from
interval analysis, automatic differentiation, and constraint propagation
to provide verified solutions to unconstrained and constrained global op-
timization problems. After briefly reviewing some of these techniques and
GlobSol’s development history, we provide the first overall description of
GlobSol’s algorithm. Giving advice on use, we point out strengths and
weaknesses in GlobSol’s approaches. Through examples, we show how to
configure and use GlobSol.

Keywords: verified global optimization, interval analysis, GlobSol, constraint
propagation, automatic differentiation

1 Introduction

Specific forms of the following related problems occur throughout scientific com-
puting:

Given a system of equations F (x) = 0, find a point
x̌ such that F (x̌) = 0, (1)

and
minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,
where ϕ : Rn → R and ci, gi : Rn → R.

(2)

Numerous algorithms, such as those in [4, 6], use heuristics to find points x̌
to approximately solve (1) or (2). Although successful and in wide use for a
number of practical problems, such algorithms come with no guarantees or error
bounds on the resulting approximate solutions x̌. Indeed, there are instances
where approximate solutions x̌ have been published as true, but have been far
from true solutions, and where subsequent rigorous investigation has revealed
true solutions to the model. Furthermore, these true solutions happen to be
more meaningful physically; see [5].

Thus, although more difficult with regard to both computational complexity
and implementation, it is sometimes useful to validate approximate solutions
x̌. For problem(2) (and with related algorithms for problem (1)), this is done
with deterministic global optimization. In the context of deterministic global
optimization, problem (2) becomes1

Given a box x = ([x1, x1], . . . [xn, xn]), find narrow boxes
x∗ = ([x∗1, x

∗
1], . . . [x

∗
n, x∗n]) such that any solutions of

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . ,m2,
where ϕ : Rn → R and ci, gi : Rn → R
are guaranteed to be within one of the x∗ that has been found.

(3)

Deterministic global optimization algorithms, instances of branch and bound
procedures, contain a method of bounding the ranges of ϕ, c, and g over x and
over sub-boxes of x, combined with some method of subdividing a box x into
smaller sub-boxes. In interval-based algorithms, interval arithmetic is used to
bound the ranges. Since, with directed rounding, interval arithmetic is rigorous,
interval-based branch and bound algorithms give bounds on the solution with
mathematical certainty.

2 Elements of GlobSol

Specific interval branch and bound algorithms contain additional techniques to
more efficiently eliminate subregions of the original region x that do not contain
solutions, and to provide time-saving user interfaces. Such techniques include

1. automatic differentiation,
2. constraint propagation,
3. interval Newton methods,
4. additional, specialized techniques.

The GlobSol software is a Fortran 90-based package for global optimization that
uses an interval branch and bound procedure with these additional techniques.
Before describe GlobSol’s overall algorithm, we provide pointers to the literature
for these underlying techniques, along with synopses of how the techniques are
used in GlobSol.

2.1 Automatic Differentiation

GlobSol uses automatic differentiation so the user need only input the objective
ϕ and constraints ci and gi, without need to worry about programming gra-
dients and Hessian matrices or about programming separate floating point and
1 Throughout, as in formula (3), we denote interval vectors with boldface.

interval versions, etc. Although various methods are possible, GlobSol uses op-
erator overloading in a preprocessing step to first compute an internal, symbolic
representation of the objective and gradients, which we call a “code list.” The
actual GlobSol branch and bound procedure then interprets this code list. The
user inputs the objective and constraints by programming it in Fortran 90; see
§5 below.

GlobSol’s automatic differentiation was designed for small problems whose
code lists are not difficult to evaluate. Although some removal of redundant op-
erations is done, both the structure of GlobSol’s code list and interpretive nature
of its evaluation lead to less efficiency than possible by hand-coding functions
and derivatives. For example, at present, the code list for the function and gra-
dients is evaluated in its entirety, even if only a specific gradient component is
required.

The operator overloading technique in GlobSol is similar to the “tape” con-
cept in the ADOLC automatic differentiation system [8]. We give simple exam-
ples of our code list creation scheme in [16, §1.4 and §2.2.2 to §2.2.4].

An early reference on automatic differentiation is [28], while well-edited con-
ference proceedings include [9, 1, 2]. A recent book detailing sophisticated effi-
ciency measures is [7].

2.2 Constraint Propagation

GlobSol uses constraint propagation as an efficiency-gaining device in its overall
branch and bound algorithm. GlobSol applies constraint propagation at the level
of individual operations in the code list. For example, such an operation may be

xp = xq + xr,

where xp, xq, and xr are intermediate variables in the process of evaluating
and objective, constraint, gradient, or Hessian matrix. If, say, better bounds on
xp are obtained, then a constraint propagation step would be to form xq =
xp − xr and xr = xp − xq to try to obtain better bounds on xq and xr. This
is in contrast to some systems, where constraint propagation is applied across
larger expressions, or where the system itself is written in a language specifically
designed for constraint propagation. We give examples of our use of constraint
propagation in [16, Chapter 7], while our original study of the technique appears
in [13].

A system more heavily emphasizing constraint propagation than GlobSol is
Numerica [31]. However, the designers of Numerica have also recognized that
constraint propagation alone could not provide all the needed efficiency in the
branch and bound algorithm, when there is significant coupling between the
equations of the gradient; Newton-type iterations are used then.

2.3 Interval Newton Methods

Interval Newton methods are perhaps the most important acceleration technique
for larger problems. Abstractly, an interval Newton method is of the form

x̃ = N(F ; x, x̌), (4)

where F represents a system of nonlinear equations as in (1), where x is a domain
box, where x̌, generally taken so x̌ ∈ x, is an initial guess point, and where x̃ is
the image of the interval Newton method.

The primary advantages of an interval Newton method are the following.

1. Under conditions that usually hold for small enough box widths, interval
Newton methods reduce the diameter (i.e. reduce the maximum coordinate
width) of a box x at a rate such that the diameter d(x̃) of the image x̃
obeys d(x̃) = O (

d(x)2
)
. This is particularly true when F represents an ap-

proximately linear or quadratic system, and interval dependencies have been
eliminated symbolically Also, obtaining x̃ can be done in O (

n3
)

operations,
when F represents a dense system of n equations in n unknowns.

2. Any solutions x∗, F (x∗) = 0 with x∗ ∈ x must have x∗ ∈ x̃.
3. Under weak additional conditions, if x̃ ⊂ x, then this proves that there is a

unique x∗ ∈ x such that F (x∗) = 0.

Numerous authors have discussed interval Newton methods. We introduce them
(with more pointers to the literature) in [16, §1.5 and §6.2], and in [19]. See [27]
for a careful theoretical treatment.

Within GlobSol, our interval Newton method is used with the Fritz–John
(i.e. generalized Lagrange multiplier) system to reduce the sizes of boxes x pro-
duced during the subdivision process. However, GlobSol does not presently use
the Fritz–John system within the context of verifying that given boxes contain
unique solutions; instead, GlobSol works with the system of equality constraints
c(x) = 0 and active inequality constraints g(x) to prove existence of a feasi-
ble point. This is because, even though some coordinates can be reduced when
the Fritz–John system is used with the interval Gauss–Seidel method over large
boxes, we have found practical difficulties getting interval Newton methods ap-
plied to the Fritz–John system to reduce each coordinate. (In some cases, the
interval Newton method may only be effective over very small boxes, or good
Lagrange multiplier estimates cannot be produced.)

GlobSol combines the interval Gauss–Seidel method with special precondi-
tioners. The interval Gauss–Seidel method generally produces narrower image
boxes x̃ than, say, the Krawczyk method. (See [27, p. 138].) Furthermore, our
Linear programming preconditioners for the interval Gauss–Seidel method, de-
scribed in [16, Chapter 3], are more effective for wide boxes x; also, our timings
within GlobSol have shown that obtaining these preconditioners is not overly
costly within the overall branch and bound algorithm.

2.4 Additional Techniques

Use of Already-Found Optima One additional fairly common technique is
use of approximate optima x̌ to eliminate portions of the original box x that
do not contain optima other than those already found. We explain this in [17].
GlobSol contains a special variant of the technique that avoids excessive work
when the Jacobi matrix of F is ill-conditioned or singular near solutions; see
[16, step 4(c), p. 148]. This is closely related to the procedure in [12, step 4,
Algorithm 2.6].

Van Iwaarden refers to such use of approximate optima as “back-boxing”
[32].

Bound Constraints GlobSol has a special pre-processing step, called “peel-
ing,” used to handle bound constraints, when one or more of the lower coordinate
bounds xi or upper coordinate bounds xi of the original box x represents not
only a limit of the search region, but also a bound constraint. See [16, §5.2.3],
and see §5 below for advice on use of this technique.

Choice of Coordinate to Bisect GlobSol uses a scaled version of “maximum
smear” advocated by Ratz [29]. (See also [16, (5.1), p. 175].) For constrained
problems, the technique is applied to the sum of the objective function and
active constraints.

3 History of GlobSol

Our original validated nonlinear systems solver, developed jointly with Manuel
Novoa, was INTBIS, now an ACM Transactions on Mathematical Software al-
gorithm [22]. In this small FORTRAN 77 package, polynomial systems can be
solved with validation, merely by inputting the coefficients, in the format de-
scribed in [26]. INTBIS follows closely [12, Algorithm 2.6], where the “root in-
clusion test” TF of step 3 of that algorithm is represented by an interval Newton
method. The interval Newton method in INTBIS differs from that of GlobSol
mainly in the use of preconditioners: Jacobi matrices are preconditioned only by
the inverse of the midpoint matrix, and not by the special linear programming
preconditioners of [16, Ch. 3].

Subsequently, we provided a Fortran 77 interval transcendental function li-
brary INTLIB [20], with which users of INTBIS could write their own function
and Jacobi matrix routines, for more or less arbitrary functions. Stadtherr et al
have specially modified INTBIS to obtain impressive success in solving practical
problems in chemical engineering, including an early success with larger sparse
problems [30], parameter-fitting problems where previous non-verified solutions
were erroneous [5], etc. Stadtherr continues to use these specially developed codes
derived from INTBIS, as the overhead associated with using interpretive code
lists, etc. in GlobSol appears to add substantially to execution time (perhaps
a factor of 10 in some cases). The main disadvantage, besides certain outdated

algorithms in the distribution version of INTBIS, is that objective and residuals
must be programmed with subroutine calls, in an assembly-language-like way.

Prior to development of the automatic differentiation foundation of GlobSol,
we experimented in FORTRAN 77 with our version of constraint propagation
(“substitution-iteration”, [13]) and with bound-constrained optimization [14]; in
[14], we introduced both our aforementioned “peeling” idea and experimented
with our special preconditioners as well.

During our experiments, we found ourselves struggling to hand-program
various examples. This led us to initially develop the Fortran 90 interface to
INTLIB (subsequently polished, with John Reid’s help, and published as mod-
ule INTERVAL ARITHMETIC [15]). At that time, with aid from a National Science
Foundation grant, we also developed the basic automatic differentiation inter-
face and interpreters, represented in GlobSol by module CODELIST CREATION in
overload/overload.f90 and various interpreters in GlobSol’s function subdi-
rectory, such as FORWARD SUBSTITUTION POINT in the file
function/intermediate variable evaluators/forwsubpt.f90.
This early version of our package, which we called “INTOPT90”, contained a
separate nonlinear systems solver and optimizer. It also contained various al-
ternate specific subalgorithms (such as different preconditioner computations,
interval Gauss–Seidel versus interval Gaussian elimination, and different nor-
malizations for the Fritz–John equations), as well as a facility for performance
statistics, including timing information. While much of the specific information
about our package in [16] remains valid for the present version of GlobSol, some
of that information applies only to this early version.

In 1998–1999, collaborating with George Corliss and others under G. William
Walster in a Sun Microsystems Cooperative Research and Development project,
we extensively polished the user interface to GlobSol, including providing scripts
to unify the code list creation, code list optimization, and search phases, cleaning
the configuration file, etc. At this time, we also enhanced the underlying pack-
age, providing inequality constraints, providing additional functions recognizable
by the code list creator and interpreter, making certain changes to increase ef-
ficiency, etc. We also reorganized the directory structure in which GlobSol is
shipped to make it clearer, and we reorganized the top-level subroutine call-
ing structure to make it easier to call GlobSol and utilize its results in other
packages. As part of this Sun Microsystems project, we did extensive formal
testing, leading to the discovery and correction of significant numbers of bugs.
The Sun Microsystems project also prominently included utilization of GlobSol
for various practical problems [3].

Unfortunately, due to constraints on our time, not all of the possible experi-
mental paths (e.g. not all possible formulations of the Fritz–John equations) have
been uniformly tested; only those previously proven to be generally better were
tested. Users of GlobSol should not find problems with default configurations;
see §5 below.

We added additional capabilities to the distribution version of GlobSol subse-
quent to completion of the Sun Microsystems project. For example, we provided

a facility for dealing with non-zero-width parameters, considered as “constants,”
but alterable after the code list is created; see [24] for a study of such parameters.

The distribution version of GlobSol is presently available at
http://interval.louisiana.edu/GlobSol/download GlobSol.html

This includes source code and installation scripts, free of charge.
In addition to the distribution version of GlobSol, we maintain an experi-

mental version, with capabilities that, due to either licensing restrictions or lack
of thorough testing, are not presently included in the distribution version. See
§6 below.

Any history of interval-based global optimization should mention Eldon Hansen,
whose pioneering techniques are summarized in [10].

4 GlobSol’s Overall Algorithm

Verified solution of a global optimization problem proceeds most conveniently
with the “globsol” script, which does the following:

1. Compile and run the user-provided Fortran 90 program defining the objective
and constraints, to produce the code list.

2. Optimize the code list (removing redundant operations).
3. Run the global search algorithm.
4. Clean the directory of temporary files.

The actual global search algorithm consists of

1. Initial I/O (in routine INITIALIZE FIND GLOBAL MIN in file
f90intbi/initialize find global min.f90)

2. The “peeling” process of [16, §5.2.3] (in routine PROCESS INITIAL BOX in file
f90intbi/process initial box.f90.

3. The actual global search routine (in routine RIGOROUS GLOBAL SEARCH in file
f90intbi/rigorous global search.f90)

4. Final I/O (in routine FINISH FIND GLOBAL MIN in file
f90intbi/finish find global min.f90)

These four routines are called from the driver routine FIND GLOBAL MIN in file
f90intbi/find global min.f90.

The actual search routine RIGOROUS GLOBAL SEARCH contains the following
algorithm.

Algorithm 1 (GlobSol’s global search algorithm)
INPUT: A list L of boxes x to be searched.
OUTPUT: A list U of small boxes and a list C of boxes verified to contain feasible
points, such that any global mimimizer must lie in a box in U or C.
DO WHILE (L is non-empty)

1. Remove a box x from the list L.
2. IF x is sufficiently small THEN

(a) Place x on either U or C.
(b) CYCLE
END IF

3. (Constraint Propagation)
(a) Use constraint propagation to possibly narrow the coordinate widths of

the box x.
(b) IF constraint propagation has shown that x cannot contain solutions

THEN CYCLE
4. (Interval Newton)

(a) Perform an interval Newton method to possibly narrow the coordinate
widths of the box x.

(b) IF the interval Newton method has shown that x cannot contain solutions
THEN CYCLE

5. IF the coordinate widths of x are now sufficiently narrow THEN
(a) Place x on either U or C.
(b) CYCLE

6. (Subdivide)
(a) Choose a coordinate index k to bisect (i.e. to replace [xk, xk] by [xk, (xk+

xk)/2] and [(xk + xk)/2, xk]).
(b) Bisect x along its k-th coordinate, forming two new boxes; place these

boxes on the list L.
(c) CYCLE

END DO

End Algorithm 1
Notes:

1. Traditional techniques, such as the “midpoint test” and “gradient test” for
rejecting boxes with high values of the global optimum or boxes that cannot
contain critical points, are included in steps 3 and 4, but are irrelevant here.

2. Determining when a box x is “small enough” is more sophisticated than
simply checking the widths of the coordinates; see [24] for details.

3. Steps 2 and 5 of Algorithm 1 are more involved in GlobSol than simply
placing the result box on the list. In particular, an attempt is made to find
approximate optima and do ε-inflation (as in [16, §4.2]), to avoid excessive
subdivisions around solutions. The process includes the box complementa-
tion scheme of [16, §4.3.1]. Embodied in internal subroutine HANDLE LEAF
in file f90intbi/rigorous global search.f90. This process is subject to
change in the future, with an eye towards simplification.

GlobSol has numerous sub-algorithms. For example, when there are equal-
ity constraints, the “midpoint test” for determining a rigorous upper bound on
global minima necessarily is more complicated than evaluating the objective
function at a point. In particular, the point of evaluation must be known to be
feasible. We explain the process in GlobSol for verifying feasibility in [18] and

[16, §5.2.4]. This process is presently a weakness that prevents some equality-
constrained problems from being handled as efficiently as unconstrained or cer-
tain inequality-constrained problems.

GlobSol also attempts to find approximate feasible points, for use in the
midpoint test. A generalized Newton method is used for this purpose. See the
report “An Iterative Method for Finding Approximate Feasible Points” at

http://interval.louisiana.edu/GlobSol/
Dian-approximate-optimizer.pdf

5 Use of GlobSol: Examples and Advice

Once installed, GlobSol requires the following files to run.

GlobSol.CFG: The GlobSol configuration file, this comes with default settings
that the user need not initially change; however, see below.

*.DT?: The box data file, this user-supplied file defines the limits of the search
box x and specifies which of the coordinate bounds are to be considered
bound constraints for the purposes of “peeling”.

*.f90: The user supplies a Fortran 90 program to define the objective and
constraints.

An example is the simple illustration of mixed constraints, found in the
integration test data subdirectory of GlobSol. The supplied box data file,
named “mixed.DT1”, is:
1D-5
0 1
0 1
F F
F F

The first line signifies a tolerance of 10−5; actual answer boxes can be ex-
pected to have relative widths up to the square root of this tolerance. The second
and third lines specify bounds x1 = [0, 1] and x2 = [0, 1] on the initial search
region x. The last two lines specify that none of the search region bounds are to
be considered as bound constraints for the purposes of the peeling process.

The supplied Fortran 90 source file, named “mixed.f90”, is:
PROGRAM SIMPLE_MIXED_CONSTRAINTS
USE CODELIST_CREATION

PARAMETER (NN=2)
TYPE(CDLVAR), DIMENSION(NN):: X
TYPE(CDLLHS), DIMENSION(1):: PHI
TYPE(CDLINEQ), DIMENSION(2):: G
TYPE(CDLEQ), DIMENSION(1) :: C

CALL INITIALIZE_CODELIST(X)

PHI(1) = -2*X(1)**2 - X(2)**2
G(1) = X(1)**2 + X(2)**2 - 1
G(2) = X(1)**2 - X(2)
C(1) = X(1)**2 - X(2)**2

CALL FINISH_CODELIST
END PROGRAM SIMPLE_MIXED_CONSTRAINTS

Here, the objective is defined with the special variable type CDLLHS (“code
list left hand side”), the inequality constraints with CDLINEQ, and the equality
constraints with CDLEQ. (Observe the slight difference with the explanation in
[16].) Each of these variables should be considered “write-once;” that is, they
should appear only once and in left-hand-sides of assignment statements.

Issuing the command “globsol mixed 1” invokes the GlobSol script to pro-
duce the output file mixed.OT1. Here is an abridgement of this file:
Output from FIND_GLOBAL_MIN on 07/28/2002 at 14:53:47.
Version for the system is: October 10, 2000

Codelist file name is: mixedG.CDL
Box data file name is: mixed.DT1

Initial box:
[0.0000D+00, 0.1000D+01] [0.0000D+00, 0.1000D+01]
BOUND_CONSTRAINT:

F F F F

CONFIGURATION VALUES:
EPS_DOMAIN: 0.1000D-04 MAXITR: 20000
MAX_CPU_SECONDS: 0.3600D+04
DO_INTERVAL_NEWTON: T QUADRATIC: T FULL_SPACE: F
...
(additional configuration variables are printed here.)
...
Default point optimizer was used.

THERE WERE NO BOXES IN THE LIST OF SMALL BOXES.
LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:
Box no.: 1
Box coordinates:
[0.7071D+00, 0.7071D+00] [0.7071D+00, 0.7071D+00]
PHI:
[-0.1500D+01, -0.1500D+01]
B%LIUI(1,*):
F F
B%LIUI(2,*):
F F
B%SIDE(*):
F F
B%PEEL(*):
T T
Level: 1
Box contains the following approximate root:

0.7071D+00 0.7071D+00
OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT:
[-0.1500D+01, -0.1500D+01]
Unknown = T Contains_root = T
Changed coordinates:
T F
U0:
[0.3852D+00, 0.3852D+00]
U:
[0.5777D+00, 0.5777D+00] [0.0000D+00, 0.1000D+01]
V:
[0.1926D+00, 0.1926D+00]
INEQ_CERT_FEASIBLE:
F T
NIN_POSS_BINDING: 1

ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER,

20000 OF BOXES.
Number of bisections: 1
No. dense interval residual evaluations -- gradient code list: 53
...

(Additional performance information is printed here.)
...
Total number of boxes processed in loop: 4
BEST_ESTIMATE: -0.1500D+01
Overall CPU time: 0.1001D-01
CPU time in PEEL_BOUNDARY: 0.0000D+00
CPU time in REDUCED_INTERVAL_NEWTON: 0.0000D+00

Here, the “default point optimizer” is the generalized Newton method of
[21]. The components LIUI, SIDE, and PEEL of the box data type B need not
concern the user. Generally, the “approximate root” is the midpoint of the box,
while U0, U, and V represent bounds on the generalized Lagrange multipliers for
the objective, inequality constraints, and equality constraints. Bounds of [0, 1]
often correspond to inequality constraints that are not active; this is the case for
this problem, since, from the line below the Lagrange multiplier bounds, we see
that the second inequality constraint is “certainly feasible,” meaning an interval
evaluation gave a non-positive result2 . The BEST ESTIMATE is the best estimate
for the global minimum, obtained through point evaluations or, when equality
constraints are present, through evaluation of the objective over a small box
within which a feasible point has been proven to exist. (This value is called f in
some of the literature.)

5.1 Advice on Interpretation of Results

The only guarantees with GlobSol’s algorithm are that any possible global min-
imizers must be contained in the union of the two lists of output boxes. Occa-
sionally, the problem will not have global minimizers, but one or both lists are
non-empty3 . If a reasonable BEST ESTIMATE has been found, then the boxes in
the output lists should have relatively low objective values, even if they don’t
correspond to minimizers.

Conversely, GlobSol may complete with both the list of small boxes and list
of boxes containing verified feasible points empty. For example, we expect both
lists to be empty for a linear objective function without constraints. Adding
constraints (or setting a sufficient number of flags in the box data file to indicate
bound constraints) will cause GlobSol to output non-empty lists. Conceptually
(although not from an implementation point of view), one can think of box limits
not corresponding to bound constraints as topologically “open,” and box limits
corresponding to bound constraints as “closed”; extrema are guaranteed to exist
only over closed, bounded regions.

5.2 Advice on the Configuration File

With numerous in-line comments, GlobSol’s configuration file is to a large extent
self-documenting. The file is organized into sections, consisting of:
2 If a constraint is certainly feasible over a box, the constraint is dropped from the

computation, but the corresponding Lagrange multiplier is actually zero. A future
version of GlobSol will print “0” for such Lagrange multipliers.

3 This can happen, for example, for a monotonic function without constraints, where
interval overestimation prevents monotonicity from being detected.

1. limits associated with code list creation,
2. switches to control printing,
3. stopping tolerances,
4. limits on the algorithm, such as CPU time,
5. miscellaneous algorithm controls.

The limits associated with code list creation are necessary since not all mem-
ory could be dynamically allocated during this process. GlobSol should give an
appropriate error message indicating which of these limits has been exceeded, if
it is necessary to change these.

Levels of printing are independently available for the overall algorithm and
various sub-algorithms. Most of these levels are for debugging, and will result
in excessive output on practical problems. However, some may reveal useful
information to aid in solving problems efficiently. Users may wish, for example,
to set PRINTING IN OVERALL ALGORITHM to 2 (from its default of 0).

Resource Limits and Tolerances We recommend setting MAX CPU SECONDS
as desired, and setting MAXITR, representing the maximum number of boxes to
be processed, higher if the default is exceeded.

Stopping tolerances may possibly be changed from defaults to enable GlobSol
to complete for certain problems. Users should read [24] to understand the mean-
ing of these tolerances.

Except as noted below, we do not envision it as usually appropriate for the
user to change other switches that control the algorithms.

Turning On and Off Constraint Propagation Constraint propagation as
explained in §2.2 above is “on” by default; experimentation has shown that,
within GlobSol’s overall algorithm, this constraint propagation usually saves
significant amounts of computational effort. However, constraint propagation is
not useful for a few problems. Furthermore, since GlobSol does not yet have
full implementations for all inverses of all functions supported by the code list,
constraint propagation is not possible for certain functions. GlobSol’s constraint
propagation at the code list level can be turned off by setting the configuration
variable USE SUBSIT to “F”.

We at one time contemplated having the user define relations and inverses at
a higher level than the elemental operations of the code list, for use in constraint
propagation. Although this may be useful, it is not fully implemented in the
present version of GlobSol.

5.3 Advice on Using the “Peeling” Process

The peeling process is an effective way of handling bound constraints when
the number of variables n is small or when the number of actual bound con-
straints is small, especially when the number of additional equality constraints
is small. This is because, during the process, we evaluate the objective on

lower-dimensional sub-boxes representing the bound constraints and intersec-
tions of bound constraints, and can thus obtain better upper bounds (i.e. better
BEST ESTIMATE or f) with minimal overestimation due to interval dependency.

However, although only subfaces with sufficiently low BEST ESTIMATE are
processed, peeling generates up to 2m sub-boxes, where m is the number of
bound constraints that have been set. (The number is 3m if both lower and
upper bounds correspond to bound constraints.) Therefore, for large numbers of
variables, it is not advisable to set large numbers of bound constraints for peeling.
One alternative is to selectively set a few bound constraints, experimenting until
GlobSol gives non-empty answer lists. Another alternative is to make the search
box slightly larger, and define the bound constraints as equality constraints.
However, see below.

5.4 Advice on Equality Constraints

A present weakness in GlobSol is its treatment of equality constraints. In partic-
ular, because GlobSol verifies feasibility by forming a system from the equality
and active inequality constraints, the number of equality constraints cannot ex-
ceed the number of unknowns. We are presently working on alternate paradigms
to circumvent this problem. (See below.)

5.5 Advice on Data Fitting

GlobSol presently does not seem to handle data fitting problems (least squares,
minimax, or least absolute value) well when there are large numbers of data
points. (However, see [5].) We are presently working on an alternate paradigm;
see §6.1 below.

6 The Experimental Version and GlobSol’s Future

Nonlinear Systems We have quit maintaining the separate nonlinear system
solver that was in early versions of the GlobSol package. Instead, in our ex-
perimental version of GlobSol, we are including a “nonlinear system” algorithm
path. This allows us to maintain a single overall algorithm, as well as to take
advantage of GlobSol’s inequality constraint handling capabilities.

Taylor Models Our experimental version of GlobSol includes an ability to
switch on and off Taylor arithmetic in evaluation of the objective and constraints,
as well as to “symbolically” precondition interval Jacobi matrices with Taylor
arithmetic, for interval Gauss–Seidel iteration;. See [2, 23] for results of using
such Taylor models within our experimental version of GlobSol. For the Taylor
arithmetic, we have interfaced GlobSol with the COSY-Infinity package of Berz
et al, using Jens Hoefkens’ Fortran 90 module [11].

6.1 Nonlinear Data Fitting

Although least squares, minimax, and `1 data fitting problems can be formu-
lated within the present distribution GlobSol environment using Lemaréchal’s
conditions [25], directly as sums of squares, or with use of the augmented system
(using the LEAST SQUARES configuration variable), these approaches lead to ex-
cessive computation times for many problems. We speculate that this is because,
with many data points, the resulting constraints or equations are approximately
linearly dependent.

In [33], we proposed a new paradigm for linear least squares. This paradigm
can be adapted to the nonlinear case. We have an algorithm path in the exper-
imental version of GlobSol within which we are presently experimenting with
this possibility.

References

[1] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differ-
entiation: Techniques, Applications, and Tools, Philadelphia, 1996. SIAM.

[2] G. Corliss, Ch. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Auto-
matic Differentiation of Algorithms: From Simulation to Optimization, New York,
2002. Springer-Verlag.

[3] G. F. Corliss and R. B. Kearfott. Rigorous global search: Industrial applica-
tions. In Developments in Reliable Computing, pages 1–16, Dordrecht, Nether-
lands, 2000. Kluwer.

[4] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Opti-
mization and Nonlinear Least Squares. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[5] C.-Y. Gau and M. A. Stadtherr. Nonlinear parameter estimation using interval
analysis. AIChE Symp. Ser, 94(304):445–450, 1999.

[6] P. E. Gill, W. Murray, and M. Wright. Practical Optimization. Academic Press,
New York, 1981.

[7] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

[8] A. Griewank. ADOL-C, a package for automatic differentiation of algorithms writ-
ten in C/C++, 2002. http://www.math.tu-dresden.de/wir/project/adolc/.

[9] A. Griewank and ed. Corliss, G. F., editors. Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, Philadelphia, 1991. SIAM.

[10] E. R. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, Inc.,
New York, 1992.

[11] J. Hoefkens. Rigorous Numerical Analysis with High-Order Taylor Models. PhD
thesis, Department of Mathematics, Michigan State University, 2001.

[12] R. B. Kearfott. Abstract generalized bisection and a cost bound. Math. Comp.,
49(179):187–202, July 1987.

[13] R. B. Kearfott. Decomposition of arithmetic expressions to improve the behavior
of interval iteration for nonlinear systems. Computing, 47(2):169–191, 1991.

[14] R. B. Kearfott. An interval branch and bound algorithm for bound constrained
optimization problems. Journal of Global Optimization, 2:259–280, 1992.

[15] R. B. Kearfott. Algorithm 763: INTERVAL ARITHMETIC: A Fortran 90 module for
an interval data type. ACM Trans. Math. Software, 22(4):385–392, December
1996.

[16] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht,
Netherlands, 1996.

[17] R. B. Kearfott. Empirical evaluation of innovations in interval branch and bound
algorithms for nonlinear algebraic systems. SIAM J. Sci. Comput., 18(2):574–594,
March 1997.

[18] R. B. Kearfott. On proving existence of feasible points in equality constrained
optimization problems. Math. Prog., 83(1):89–100, September 1998.

[19] R. B. Kearfott. Interval analysis: Interval Newton methods. In Encyclopedia of
Optimization, volume 3, pages 76–78. Kluwer, 2001.

[20] R. B. Kearfott, M. Dawande, K.-S. Du, and C.-Y. Hu. Algorithm 737: INTLIB,
a portable FORTRAN 77 interval standard function library. ACM Trans. Math.
Software, 20(4):447–459, December 1994.

[21] R. B. Kearfott and J. Dian. An iterative method
for finding approximate feasible points, 1998. preprint,
http://interval.louisiana.edu/GlobSol/Dian-approximate-optimizer.pdf.

[22] R. B. Kearfott and M. Novoa. Algorithm 681: INTBIS, a portable interval New-
ton/bisection package. ACM Trans. Math. Software, 16(2):152–157, June 1990.

[23] R. B. Kearfott and Walster G. W. Symbolic preconditioning with Taylor models:
Some examples, 2001. accepted for publication in Reliable Computing.

[24] R. B. Kearfott and G. W. Walster. On stopping criteria in verified nonlinear
systems or optimization algorithms. ACM Trans. Math. Software, 26(3):373–389,
September 2000.

[25] C. Lemaréchal. Nondifferentiable optimization. In M. J. D. Powell, editor, Non-
linear Optimization 1981, pages 85–89, New York, 1982. Academic Press.

[26] A. P. Morgan. Solving Polynomial Systems Using Continuation for Engineering
and Scie ntific Problems. Prentice-Hall, Englewood Cliffs, NJ, 1987.

[27] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge, England, 1990.

[28] L. B. Rall. Automatic Differentiation: Techniques and Applications. Lecture Notes
in Computer Science no. 120. Springer, Berlin, New York, etc., 1981.

[29] D. Ratz and T. Csendes. On the selection of subdivision directions in interval
branch-and-bound methods for global optimization. J. Global Optim., 7:183–207,
1995.

[30] C. A. Schnepper. Large Grained Parallelism in Equation-Based Flowsheeting Us-
ing Interval Newton / Generalized Bisection Techniques. PhD thesis, University
of Illinois, Urbana, 1992.

[31] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language
for Global Optimization. MIT Press, Cambridge, MA, 1997.

[32] R. J. Van Iwaarden. An Improved Unconstrained Global Optimization Algorithm.
PhD thesis, University of Colorado at Denver, 1996.

[33] J. Yang and R. B. Kearfott. Interval linear and nonlinear regression: New
paradigms, implementations, and experiments, or new ways of thinking about
data fitting, 2002, available at
http://interval.louisiana.edu/preprints/2002 SIAM minisymposium.pdf

