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ABSTRACT Deterministic global optimization requires a global search
with rejection of subregions. To reject a subregion, bounds on the range of
the constraints and objective function can be used. Although often effective,
simple interval arithmetic sometimes gives impractically large bounds on
the ranges. However, Taylor models as developed by Berz et al may be
effective in this context. Efficient incorporation of such models in a general
global optimization package is a significant project. Here, we use the system
COSY-INFINITY by Berz et al to study the bounds on the range of various
order Taylor models for certain difficult test problems we have previously
encountered. Based on that, we conclude that Taylor models may be useful
for some, but not all, problems in verified global optimization. Forthcoming
improvements in the COSY-INFINITY interface will help us reach stronger
conclusions.

1 Deterministic Global Optimization

Deterministic global optimization involves exhaustive search over the do-
main. The domain is subdivided (“branching”), and those subdomains that
cannot possibly contain global minimizers are rejected. For example, if the
problem is the unconstrained problem

Enclose the minimizers of φ(x)
subject to x ∈ x, (1.1)

then evaluating φ at a particular point x gives an upper bound for the global
minimum of φ over the region x. Some method is then used to bound the
range of φ over subregions x̃ ⊂ x. If the lower bound φ, so obtained, for φ
over x̃ has φ > φ(x), then x̃ may be rejected as not containing any global
optima; see Figure 1 for the situation in one dimension.

A related problem is that of finding all roots within a given region, that
is,

Enclose all x with f(x) = 0
subject to x ∈ x. (1.2)
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In equation (1.2), bounds on f over a subregion x̃ ⊂ x are obtained; denote
the interval vector representing such bounds by f(x). If 0 6∈ f(x), that
is, unless the lower bound for each component of f is less than zero and
the upper bound is greater than zero, then there cannot be a solution of
f(x) = 0 in x̃, and x̃ can be rejected.
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FIGURE 1. Rejecting x̃ because of a high objective value

A simple interval evaluation φ(x̃) (or f(x̃)) of φ (or of f) over x̃ is
sometimes a practical way of obtaining the lower bound. (See [Han92],
[Kea96], or a number of other introductory expositions.) However, there
are some functions for which interval evaluation gives an extreme overesti-
mation, and other techniques are necessary. One such function arises from
Gritton’s second problem, a chemical engineering model that J. D. Seader
previously pointed out to us.

Example 1 (Gritton’s second problem) The eighteen real solutions of f(x) =
0 in x = [−12, 8] are sought, where f is defined by

f(x) = −371.93625x18 − 791.2465656x17 + 4044.944143x16

+978.1375167x15 − 16547.8928x14 + 22140.72827x13

−9326.549359x12 − 3518.536872x11 + 4782.532296x10

−1281.47944x9 − 283.4435875x8 + 202.6270915x7 (1.3)

−16.17913459x6 − 8.88303902x5 + 1.575580173x4

+0.1245990848x3 − 0.03589148622x2

−0.0001951095576x + 0.0002274682229,

(1.4)

This example can be treated by careful domain subdivision and use of



1. Taylor Series Models in Deterministic Global Optimization 3

point evaluations, as explained in [Kea97]. However, sharper bounds on
the range would provide power that would make the code much simpler.
Taylor models have shown promise for this.

2 Taylor Models and Global Optimization

An interval Taylor model in COSY-INFINITY for φ : Rn → R is of the
form

φ(x) ∈ Pd(x− x0) + Id, (1.5)

where Pd(x) is a degree-d polynomial in the n variables x ∈ Rn, x0 is a
base point (often the midpoint of the interval vector x), and Id is an in-
terval that encompasses the truncation error over the interval vector x and
possible roundoff errors in computing the coefficients of Pd. Early work in
interval computations did not indicate that Taylor models were promising.
In particular, if one merely evaluated Pm with interval arithmetic over a
box (i.e. over an interval vector) x, then the difference between the width
of Pm(x) + Id and the width of the actual range of φ over x decreases
no faster than the square of the widths of x, a rate that can already be
achieved with m = 2. A higher convergence order can be achieved if the
range of Pm can be estimated accurately, but computing such an estimation
is NP-complete in the length of the expression defining Pm; see [KLRK98,
Ch. 3 and Ch. 4].

However, Berz et al have found Taylor models to be highly effective at
computing low-overestimation enclosures of the range of functions [MB99].
Berz’ group has applied such models successfully to the analysis of sta-
bility of particle beams in accelerators [BH94], and has advocated its use
for global optimization in general [MB99]; this, among other applications,
is discussed in [MB00]. In an informal communication, Berz and Makino
illustrated that the overestimation in Gritton’s problem can be reduced by
many orders of magnitude simply by approximating the degree-18 function
with its degree-5 Taylor polynomial.

In summary, Taylor models, in principle, do not work, but, in practice,
are effective. The effectiveness can be viewed as a type of symbolic precon-
ditioning of the algebraic expression: If the domain widths are not excessive,
then interval dependencies are reduced when the original expression is re-
placed by a Taylor model. This indicates that additional careful study of
Taylor models in general deterministic global optimization algorithms is
warranted.
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3 Scope and Purpose of This Preliminary Study

During the past few years, with support from a SunSoft Cooperative Re-
search and Development contract, we have gained experience with various
practical problems within the GlobSol [Cor98, Kea96] interval global opti-
mization package. Although successful with some problems, GlobSol, and
another package Numerica [VHMD97], based on similar principles, cannot
solve certain problems without subdividing the region x into an impracti-
cally large number of subregions. To solve such problems via verified global
optimization, we need to identify the cause or causes of this algorithmic
failure. These causes may include the following (among possibly other rea-
sons).

(a) The stopping criteria for the subdivision process are inappropriate;

(b) the way that the boxes are subdivided (such as the method of selecting
the coordinate to bisect in a bisection process) is inappropriate;

(c) the bounds on the ranges have an excessive amount of overestimation;

(d) there is something inherent in the mathematics of the equations, such
as coupling between the components, that causes problems.

We have considered stopping criteria (item (a) above) in [Kea99], and feel
we understand the mechanisms in most cases. We [Kea96, §4.3.2] and others
(e.g. [Ber96, CR97, RC95]) have studied the criteria for subdividing the box
(item (b) above). We have also determined that such subdivision criteria
are best if consistent with the stopping criteria; such integrated subdivision
and stopping criteria have already been implemented in GlobSol.

Certain inherent conditions, such as manifolds of solutions, can result
in an impractically large number of subregions. In these cases, problem
reformulation is probably necessary for higher dimensions, although use of
more powerful equipment (for example, a sufficient number of parallel or
distributed processors) may be appropriate if the number of variables is not
too large. These cases may be hard to distinguish from overestimation on
the bounds (item (c)), and probably need to be studied on a case-by-case
basis.

Overestimation on bounds (item (c)) can potentially be handled using
various tools within the algorithm itself. As mentioned above in §2, below in
§4, and in [MB99, MB00], Taylor models can sometimes reduce overestima-
tion considerably. However, the computational differentiation techniques in
Taylor models, such as described in [Ber91, BH98], must be done efficiently
to be practical in general global optimization algorithms. This differentia-
tion process involves indexing schemes to reference the (generally) sparsely
occurring non-zero terms from among the (d + ν)!/(d!ν!) possible terms of
a polynomial of degree d in ν variables [Ber91]. This and other implemen-
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tation details make quality implementation of Taylor model computations
a major task.

Berz et al have a good Taylor model implementation in COSY-INFINITY
[BMS+96, Ber00]. Objective functions can be coded in the special COSY
language, translated and interpreted within the package. In the experiments
reported here, due to technical and licensing limitations, the objective had
to be coded the COSY language, and called in a stand-alone mode. How-
ever, Jens Hoefkens has recently developed a Fortran 90 module for access
to the COSY-INFINITY package. Future experiments will be easier and
more comprehensive with this module.

A thorough test of Taylor arithmetic for general global optimization will
need to integrate COSY-INFINITY computations within the global opti-
mization algorithm, since the effect of range bound overestimation is dif-
ferent at different points (say, near a solution and far away from one), and
since it is probably often advantageous to use local Taylor models specific
to smaller subregions; this will be done with Hoefkens’ module. However,
because of the aforementioned limitations, we have proceeded in this paper
as follows:

1. We have provided a simple translator that translates GlobSol’s “code
list” to the COSY-INFINITY language.

2. We have identified two interesting problems we have tried to solve
with GlobSol.

3. We have computed Taylor model ranges for several expansion points
and interval vector widths.

The goal of this study is to evaluate the potential usefulness of Taylor
models in verified global optimization. In particular, we wish to know what
order and degree are necessary. Can the same benefits be gotten by just
implementing lower-order or is there a benefit of full generality? Also, how
much of an impact is there on particular problems? Orders of magnitude
difference in widths of range bounds for larger boxes would be useful, but
small differences (perhaps less than a factor of 2) would be unimpressive,
since Taylor arithmetic is more expensive than ordinary interval arithmetic.

4 Our Results

Our investigations to date have been with two examples.

4.1 Gritton’s Second Problem

We initially tried Gritton’s Example (1). One troublesome point is x̌ ≈
1.381 with f(x̌) = 0. The range bounds over subintervals near this point
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should not contain zero, for such subintervals to be efficiently rejected. We
tried base point x0 = 1.36, and focused on the interval x̃ = [1.35, 1.37],
experimenting also with different widths. The result is Table 1.1. Here

TABLE 1.1. Widths of enclosing intervals for Example 1
Width 2 0.2 0.02

Degree 1 3.46× 10+06 1.76× 10+03 1.27× 10+01

Degree 2 1.08× 10+06 7.03× 10+01 9.25× 10−02

Degree 3 3.63× 10+05 4.03× 10+00 4.29× 10−02

Degree 4 1.16× 10+05 9.52× 10−01 4.27× 10−02

Degree 5 4.68× 10+04 8.16× 10−01 4.27× 10−02

Degree 10 3.20× 10+03 8.09× 10−01 4.27× 10−02

Simple interval 4.10× 10+06 3.22× 10+05 2.65× 10+02

rastering 2.64× 10+03 5.62× 10−01 4.03× 10−02

“rastering” is a heuristic method COSY-INFINITY uses to obtain inner
bounds on the range: In these tables, the functions are evaluated at the
end points of the component intervals and at three random values in the
interior of each component interval; the minimum and maximum value so-
obtained give a heuristic estimate for the range.

For Example (1), the Taylor model is definitely helpful. In particular,
a straightforward interval calculation over x̃ = [1.35, 1.37] gives f(x) ∈
[−1381, 1384], whereas the Taylor model of degree 5 gives f(x) ∈ [0.009023,
0.0431], close enough to the actual range of [0.0111, 0.0431] to determine
that there is no zero of f in x̃. This contrasts sharply with the simple
interval value, which is roughly 100,000 times too wide to be of use. In
fact, the interval evaluation at [1.3599995, 1.3600005], an interval of length
10−6, contains the interval [−.0436, .0939], whereas the interval evaluation
at [1.3599999, 1.3600001], an interval of length 2×10−7, is contained in the
interval [.01137, .03882]. Thus, intervals on the order of 2×10−7 are needed
to reject portions of the region as far out as 10−2 from the root, whereas
an interval of length 2 × 10−2 (or perhaps larger) can be rejected with a
degree-5 Taylor model.

4.2 A Six-Dimensional Quartic
Neither GlobSol nor Numerica could solve the following six-dimensional
polynomial system, whose components are of degree 4.

Example 2 Find a1, a2, a3, x1, x2, and x3 such that ci = 0, i = 1, . . . , 6,
where

c1 = 0.08413r + 0.2163q1 + 0.0792q2 − 0.1372q3,

c2 = −0.3266r − 0.57q1 − 0.0792q2 + 0.4907q3
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c3 = 0.2704r + 0.3536
(

a1(x1 − x3) + a2(x2
1 − x2

3) + a3(x3
1 − x3

3)

+ x4
1 − x4

3

)

c4 = 0.02383p1 − 0.01592r − 0.08295q1 − 0.05158q2 + 0.0314q3

c5 = −0.04768p2 − 0.06774r − 0.1509q1 + 0.1509q3

c6 = 0.02383p3 − 0.1191r − 0.0314q1 + 0.05158q2 + 0.08295q3, where

r = a1 + a2 + a3 + 1, and

pi = a1 + 2a2xi + 3a3x2
i + 4x3

i , i = 1, 2, 3,

qi = a1xi + a2x2
i + a3x3

i + x4
i , i = 1, 2, 3.

In Example 2, we took center point (a, x) = (1, 1, 1, 1, 1, 1), and took in-
tervals of widths 1, 0.1, and 0.01 (equal widths in each direction) about
this center point. The results appear in Table 1.2. In Table 1.2, we only

TABLE 1.2. Widths of enclosing intervals for c1 for Example 2

Domain Width 1 0.1 0.01
Degree 1 9.6 0.54 0.0509
Degree 2 8.52 0.53 0.0508
Degree 3 8.52 0.53 0.0508
Degree 4 8.49 0.53 0.0508

Simple interval 6.85 0.59 0.0588
rastering 6.24 0.51 0.0505

display the results for c1; the widths of the range bounds for the other five
components behave similarly. From Table 1.2, it is clear for this problem
that

• The simple interval computations do not have excessive overestima-
tion, at least for this problem.

• There is probably not an advantage to using the Taylor model repre-
sentations to compute interval range bounds on this particular prob-
lem, since they apparently do not lead to narrower-width enclosures.

• The Taylor model representations show order-1 convergence as the
interval widths are decreased.

All in all, there is evidence that, in Example 2, the difficulties of GlobSol are
probably not due to overestimation in function range bounds. Nonetheless
application of Taylor models reveals behavior of Taylor models not apparent
in Gritton’s problem (Example 1) or in Makino’s example [MB99].

Despite lack of advantage of interval computations in range estimation
for the components in Example 2, Taylor models may still be useful for
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such problems. In particular, coupling between the equations (i.e. cj and
ck both depend strongly on xi for the same index i) plays a role in the
difficulty. The equations are uncoupled with preconditioning. Hansen and
others have pointed out that, for larger independent variable widths, the
preconditioning is much more effective if it is done symbolically, before an
interval evaluation is attempted. To symbolically precondition a system,
the component functions need to be represented in terms of a basis and
coefficients. The multivariate Taylor form provides such a basis.

Some Additional Remarks

We note that the public version of COSY-INFINITY at the time of this
paper evaluates the polynomial part Pd(x−x0) by plugging the interval vec-
tor x̃ into the expression and performing simple interval arithmetic. Also,
since that version of COSY-INFINITY does not support the power function
for all data types, x2 is evaluated as x × x, so that e.g. [−1, 1]2 evaluates
to [−1, 1] rather than [0, 1]. We have observed slightly sharper (but non-
rigorous) Taylor bounds from computations with Mathematica compared
with COSY-INFINITY; we attribute the difference to COSY’s present
treatment of the power function. Nonetheless, as evidenced in Makino’s
example (ibid.) and both examples presented here, in at least some cases,
the Taylor model approach is either powerful without sharp bounding of
the polynomial part or else sharply bounding the polynomial part would
not help much. The COSY-INFINITY development group is presently test-
ing better bounding procedures, including sharp treatment of even powers,
use of linear trends, etc.

5 Some Conclusions

It is difficult to draw definitive conclusions from our still limited experi-
ence. However, it is apparent that Taylor models are sometimes helpful
and sometimes not helpful in verified global optimization. Given a hard
problem, a user of verified global optimization software should probably
first determine whether or not the intractability is due to overestimation in
range bounds or due to some other reason. Heuristic tools for this purpose
include stand-alone Taylor model evaluators (such as COSY-INFINITY)
and rastering schemes.

Although costing a significant implementation effort, Taylor model capa-
bility would be useful if bundled with verified global optimization software.
However, it should either be a well-documented user-controlled option or
automatically chosen with a good heuristic, since there is evidence that it
sometimes will provide great benefit and sometimes could make the algo-
rithm significantly slower.
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Taylor models also may be helpful in putting systems of equations into
a form in which we can symbolically precondition.

Actual implementation of Taylor models in a global optimization scheme
may be somewhat different from the current COSY-INFINITY system,
since models for first and second-order derivatives, in addition to the func-
tion itself, would be useful.

Acknowledgments: We wish to thank Martin Berz, who organized and sup-
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ter for us to discuss and become familiar with COSY-INFINITY and its
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