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SIAM J. NUMER. ANAL. (?) 1994 Society for Industrial and Applied Mathematics 
Vol. 31, No. 3, pp. 892-914, June 1994 016 

AN INTERVAL STEP CONTROL FOR CONTINUATION METHODS* 

R. BAKER KEARFOTTt AND ZHAOYUN XINGt 

Abstract. The authors present a step control for continuation methods that is deterministic in 
the sense that (i) it computationally but rigorously verifies that the corrector iteration will converge 
to a point on the same curve as the previous point (i.e., the predictor/corrector iteration will never 
jump across paths), and (ii) each predictor step is as large as possible, subject to verification that 
the curve is unique with the given interval extension. The authors present performance data and 
comparisons with an approximate step control method (PITCON version 6.1). A comparison of plots 
obtained from both step controls reveals that an approximate step control will behave erratically in 
situations where the interval step control leads to orderly progression along the curve. This is true 
even if the maximum allowable stepsize for the approximate method is set to be smaller than many 
of the steps actually taken by the interval algorithm. Limitations of interval step controls are also 
discussed. 

Key words. automatic verification, interval iteration, uniqueness, Gauss-Seidel iterations, 
continuation methods, step control, PITCON 

AMS subject classifications. 65G10, 65H10, 65H20 

1. Notation and introduction. Throughout this paper, we use boldface low- 
ercase letters (such as x) for interval vectors, uppercase letters (such as X) for point 
vectors, and lowercase letters with subscripts (such as xi) for scalar variables. An 
exception will be the symbol q, which will denote a vector of real numbers qi. We 
will use notation such as H(x) to denote an interval extension of H(x) over x 3 x. 

In this paper, we consider following problem: 
Compute a sequence of points on the solution manifold 

Z ={Y E Rn+11H(Y) = O}, where H: Rn-I Rn, 

with a guarantee that all the points are on the same continuous path. For an intro- 
duction to classical methods for following paths in Z, as well as a large number of 
references, see [1]. So far, most of the literature on the following curve (such as [3]) is 
based on approximate step control. Approximate step control methods are successful 
and fast when the curve is smooth and isolated, but problems arise when there are 
many paths near some points. In that case, algorithms based on approximate step 
control methods may jump from one path to another, as the numerical results in ?4 
show. Also, if rapid changes in curvature occur along the path, the method based on 
approximate step control sometimes even erroneously reverses orientation. However, 
appropriate use of interval analysis gives us a guarantee that the predictor algorithm 
will not jump from one path to another, or, indeed, jump over different legs of the 
same path. 

We assume that our algorithms start with a point Xo e Rn+1 on Z (i.e., H(Xo) = 

0). If the Jacobian matrix H'(X) is of full rank at Xo, then the tangent vector B(Xo) 
can be computed to within length and orientation. This information can then be 
used to choose an appropriate parameter coordinate. Following [3], we choose the 
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AN INTERVAL STEP CONTROL FOR CONTINUATION METHODS 893 

parameter coordinate adaptively, so that curve following is as fast as possible and is 
successful. That is, we choose io such that 

IB0Il = ma IBi. I ol1<i<n+11l- 

If sgn(Bi,) = -sgn(Bi(P), where io and BM1) are the previous parameter number and 
tangent vector, respectively, we change the orientation of this tangent vector B(Xo). 
This action rigorously maintains constant orientation, as is proven in Theorem 3.5. 

We use a real vector i7(Xo) with positive components as well as the predictor 
stepsize 6 to control the shape of the box.1 If the curve can be parametrized locally 
in terms of the parameter coordinate xio, then a box x containing Xo on one of its 
faces and further specified by 7, 6, and B is constructed according to Algorithm 2.3. 
The box x is chosen to make it likely that a piece of the curve passes through the 
faces that are perpendicular to the parameter coordinate axis. The algorithm will 
then rigorously verify this with the interval Gauss-Seidel method, as we now outline. 

Given x, define xo by 

{ Xo,i, for i $& io; 
o 

xio, for i = io. 

Here, xo has an interval instead of a point in its parameter coordinate (io). This 
is because we wish to prove uniqueness of the solution with respect to the other 
coordinates, for every value Xio E xi,. Thus, the preconditioned "point" function 
value ki must be an interval. We have not seen an alternative in our analysis. 

Given the solution bounds xi, i $& io, we will compute new solution bounds xi by 
the optimally preconditioned interval Gauss-Seidel method [4] as follows. The box x 
is constructed to make it likely that the curve passes through the faces perpendicular 
to the parameter coordinate. Theorems 3.2 and 3.3 then guarantee that the curve is 
contained in a suitably constructed box x, and Theorem 3.4 guarantees that, under 
certain circumstances, Algorithm 2.1 will eventually be successful. We make use of 
the following notation and definition. 

For suitably chosen preconditioning (row) vectors Yi, define 

ki = YiH(xo), 

Gi = YiH'(x),I 

and, for suitably chosen preconditoning row vectors Yi, let 

Xi = Xo,i - ki + E Gij(xj - xo,j)] 

where Gi,j is the jth entry of Gi. If -i C int(xi) for all i 78 io, where into denotes 
the topological interior, then by Theorem 3.1, there is a unique curve in the box x 
passing through the two faces of x defined by: 

xio = inf(xio) and xio = sup(xio). 

1 A "box" is a rectangular parallelepiped, representable as an interval vector. 
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894 R. BAKER KEARFOTT AND ZHAOYUN XING 

DEFINITION 1.1. If xi C int(xi), we say that we have inclusion for the ith com- 
ponent. 

If 3i Z int(xi), that is, if we do not have inclusion for some component, our step 
control algorithm will change the shape of the box in an appropriate way, then repeat 
the above computation. 

2. Specific algorithms. Our algorithms are based upon heuristics for adjusting 
both a shape vector q and the predictor stepsize 6. The heuristics affect the efficiency 
of the algorithm, but not its rigor. 

Theorems 3.2-3.5 below tell us that, under certain circumstances, the larger gr, is, 
the more likely it is to get inclusion for the ith component. Also, larger stepsizes 6 are 
desirable for various reasons. Therefore, if inclusion is not signaled in the algorithm, we 
consider increasing ti before decreasing 6. However, overly large box widths may result 
in overestimation, which may be reflected by the inability to compute the optimal 
preconditioner2 of [4]. For this reason, we decrease r7i if preconditioner computation 
is unsuccessful. After a successful preconditioner computation, we increase lb if we 
do not have inclusion. 

However, if T7i has been cut in a previous step because of failure of the precondi- 
tioner computation, then, to avoid cycling, r7i should not be increased. In this case, if 
inclusion is not obtained in the ith coordinate, we decrease the stepsize 6. We use a 
logical flag 2i to record whether r7 has ever been cut, and we set a flag L1 to the bound 
for the number of times 6 can be cut after r7i has been cut. If, after N1 adjustments of 
b7i and 6, we still cannot get inclusion, we increase L1. Another algorithm parameter 

K is used: if we still cannot get inclusions for all components after KNM iterations, 
we say that the algorithm fails. 

After the new point is computed, we set the new stepsize according to the follow- 
ing: An algorithm parameter L2 is used to detect when caution should be exercised 
when increasing 6. Normally, we double the stepsize 6. However, if L1 was increased 
to the point that L, > L2, we increase 6 by a smaller amount, say, 6 +- 1.26. 

Details of the adjustment process for ii and 6 are presented in Algorithm 2.4, 
executed in Step 5 of the following overall algorithm. 

ALGORITHM 2.1 (Overall algorithm). 
1. Input the known point Xo on the curve; the functions H and H'; the stepsize 6; 

and parameters 6max, 7lmin, 77max, ?71 K, n, N1, L1, and L2. Also input an initial 
tangent vector BM1) and parameter coordinate number io, to be used to orient the 
tangent vector on the first step. 

2. For all 1 < i < n + 1, set 
Ii - 0, 

3. (Compute the tangent vector B(Xo) and parameter io, using previous values for 
orientation) 

Execute Algorithm 2.2. 
Store B and io: 

BM , By 
ito+ io- 

4. is 1, 

k -O. 
5. If k > K, then 

2 If inclusion can be obtained, then it is possible to compute an optimal preconditioner. 
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AN INTERVAL STEP CONTROL FOR CONTINUATION METHODS 895 

Print "This algorithm fails, " then stop. 
else 

If i < N1, then 
(a) (Construct the box x.) Execute Algorithm 2.3. 
(b) (Do a sweep of Gauss-Seidel iteration and possibly alter 77 and 6.) Ex- 

ecute Algorithm 2.4. Return if inclusion is obtained for all components 
of x. 

(c) If there is a component for which inclusion is not obtained, then 
(a) i -i+1. 
(/B) Goto Step (a). 
else 

Continue. 
endif 

else 
(d) L1 <- L1 + 1, 

i - 
1,7 

k*- k+ 1. 
(e) Goto Step (a). 

endif 
endif 

6. Use the classical multivariate Newton method to find an approximation to the new 
point X, on the curve. That is, find an approximation to the point of intersection 
of the curve with the hyperplane xi, = sup(xti) if Bi, > 0 and xi, = inf(xi,) if 

Bio <0. 
7. If the stopping criterion is satisfied, then 

Stop. 
else 
(a) If L1 > L2 then 

6 1.26; 
else 

6 26. 
endif 

(b) If 6 > ?max, 6 6max. 

(c) L1 <- L- 1. 

(d) Goto Step 2. 
endif 
In our experiments in ?4, we use the following LU-decomposition-based technique 

to compute the tangent vector. 

ALGORITHM 2.2. (Finding the tangent vector) 

1. Input the present point Xo on the curve, the tangent vector BM1) corresponding 
to the point on the curve computed immediately before Xo and the parameter 
coordinate io corresponding to this previous point. 

2. Compute the n x (n + 1) Jacobian matrix H'(Xo) of H at the point Xo. 
3. Initially set ioo = n + 1, then delete the iooth column of H'(Xo) to obtain an 

n x n matrix Ho'(Xo). 
4. Obtain an LU factorization and estimate of the condition number for the matrix 

Ho'(Xo) from Step 3 (e.g., with the LINPACK routine DGECO). If the estimate 
for the condition number is higher than a given tolerance (e.g., 10-4), locate the 
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896 R. BAKER KEARFOTT AND ZHAOYUN XING 

column of U with the approximate 0 on the diagonal, and label its index ioo. 
5. Delete the iooth column from the original Jacobian matrix H'(Xo) to produce a 

new HO'(Xo). Solve the resulting linear system H'(XO)Y = -H!iOO for Y, where 
H!iOO represents the iooth column of H'(Xo). 

6. Construct the tangent vector B by first setting Bioo = 1, then setting the other 
components of B equal to corresponding components of Y. 

7. Find io such that IBioI = maxl<i<n+l{IBil}. 
8. (Set the orientation) If Bi Bi(,'T < 0, set B +- -B. 
9. (Normalize) Set B +- B/Bio 1. 

In the following algorithm, we construct a box that contains the point Xo in the 
interior of one of its faces, which contains the line segment from XO corresponding to 
linearization of the path, which contains Xo,i in the interior of its ith coordinate for 
i 7& io, which takes account of tangent information, and whose widths heuristically 
account for nonlinearities and overestimation in the interval extensions through the 
parameter vector qj. When ij is small and the component Bio is relatively small, the 
construction makes XO,i into the midpoint of the coordinate interval xi. We believe 
this makes it more likely to have inclusion. 

ALGORITHM 2.3. (Use the known point XO and tangent B(Xo) to construct the 
box shape.) 

1. Input 6, i7, Xo, and B(Xo). 
2. If i = io, then 

set 
x f| [Xo,i Xo,i + Bio6] if Bio > 0 and 

Xi = 
[Xo,i-Bio 6Xo,i] if Bio < 0 

else 
set 

Pi,1 = Xo,i + Bi6 - ni 

Pi,2 = Xo,i + Bib + 11 

and 

[2Xoi-Pi,2,Pi,2] if Pi,1 > XO,i, 

xi [p,l2X0o,i- Pi,1] if Pi,2 < XO,i, and 

[Pi, 1 iPi,2) Xo,i e (PiJi,Pi,2]* 

end if 
See Fig. 2.1 for a graphical illustration of the above construction. 
The following algorithm is similar to Algorithm 1.2 in [4] and elsewhere, except 

that we use information about the preconditioner computation to determine how to 
adjust the box dimensions. 

ALGORITHM 2.4. (Do one sweep of the interval Gauss-Seidel iteration to deter- 
mine whether there is a unique curve in the constructed box. Also adjust the box 
shape as appropriate.) 

1. Input the previously computed point on the curve XO; the constructed box x; and 
on the stepsizes 8, 8min, 77? 77miny 77maxy L1, and i1. (Here, il is the number of 
times 6 has been cut due to failure to compute a preconditioner, when checking 
the jth component and 7j = 1.) Here, the components of the vector I indicate 
whether preconditioner computation for the corresponding variable was successful 
in the previous invocation of this algorithm. 
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AN INTERVAL STEP CONTROL FOR CONTINUATION METHODS 897 

Bib 

FIG. 2.1. Construction of xi, i A io in the case Xo,i E (Pi,l,Pi,2). 

2. Compute xo, where 
f xi if i=io 

xo,i = {X0i otherwise. 

While i$ io and 1 < i < n + 1 Do Step 3 to Step 7. 
3. Compute an interval extension H'(x) to the Jacobian matrix and compute the 

interval function value H(xo). 
4. Compute the preconditioner row Yi as in [4] or [5]. 

If preconditioner computation was not successful then 
(a) 2i <- 1, 
(b) (Either decrease all components of q or decrease 6.) 

(a) rqj +- qj /8, for all I < j < n + 1 
(p3) If qj < 7min, for some j, then 

11J ? l7mini 

endif 
(-y) If ?)7 = iimin for all 1 < j ? n + 1 then 

6 <- 6/2. 
endif 

(c) Return 7 and 6. 
else Set 

ki= YiH(xo), 
Gi= YiH(x), and 

i= xo,i - [ki + En+=1i Gi,j(xj - xoj)] Gii. 

If xi C int(xi), then 
(a) key <- 1, 
(b) i < i+1, 
(c) Return to the beginning of Step 4. 

else 
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898 R. BAKER KEARFOTT AND ZHAOYUN XING 

(d) key +- 2, 
(f) If 1i = 1, then 

If i1 < L1, then 
6 6/2, 
il il+ 1. 

else 
ni 2ii. 
If b7i > ?7max X T7i 7lmax X 

6 -6/2. 
endif 

else 
If r7i > 7/max then 

l7i E 77max, 
6 +- 6/2. 

endif 
endif 

(g) Return q and 6. 
endif 

endif 

3. Mathematical theorems. 
Assumption 1. Assume H: Rn+1 Rn has continuous derivatives. Assume xi, 

is the parameter coordinate chosen in Algorithm 2.2. For simplicity but without loss 
of generality, assume throughout this section that the parameter coordinate io = 1. 
Let x denote the (n + 1)-dimensional box and let x-1 denote the n-dimensional box 
obtained from x by omitting the first coordinate. Similarly, assume x_1 is obtained 
from x, the image box of x under one step of the Gauss-Seidel iteration described in 
Algorithm 2.4, by omitting the first coordinate of x. Also assume that aH/0X-1 is 
nonsingular in the box x, where aH/OX-i is the Jacobian matrix of H with its ith 
column removed. 

THEOREM 3.1. Suppose Assumption 1 is true; also assume that 

X-1 C int(x1,), 

where int(x) represents the interior of the set x. Then there exists a unique smooth 
path passing through the two faces of the box x defined by 

(1) {X E X I Xi = sup{xl}} 

and 

(2) {X E x I xi = inf{xi}}. 

Proof. For any fixed x1 E xi on the hyperplane Xi = x1, execute Algorithm 2.4 
(a sweep of the preconditioned interval Gauss-Seidel method) with x' = xi x x-, in 
place of x and x' in place of xo, where 

= (X1 wheni=1, 

xOi i otherwise. 

Since xi E xl, x4 C xo. Since x' c x, inclusion monotonicity implies for all i 7& 1, we 
have 

Xi C Xi C int(xi). 
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AN INTERVAL STEP CONTROL FOR CONTINUATION METHODS 899 

If we define x' 1 in the same way as ki1, with x-1 = x' 1, then 

x' 1 C int(x/L). 

According to [7, Thm. 5.1], there is a unique solution to 

{H(X) = 0 

lX1 = X1 

for any fixed value xi E x1. Denote this point by 

(Xl, X2(Xl), X3(Xl),.., Xn+1(Xl))'. 

Define a space Y by 

Y = {(Xl,X2(Xl), * xn+l(Xl)) I Xl E Xl}, 

where 7r((xi, x2(xl), x3(xl), .. ., Xn+l(xi))T) = xi. The space Y has a topology defined 
by the subspace topology inherited from Rn . Define a map 

7r : y -X X 

where xl is viewed topologically as a subspace of R1. A projection 7r is well defined. 
Since, by Assumption 1, aH/0X_1 is nonsingular in x, the implicit function theorem 
implies that there is a unique locally differentiable curve 

xi = xi (xl), i = 2, ... ., n +1 

defined in some neighborhood (xl - 6x, xi + 6x5 ) of x1 E x1, and (xl - 6x1, x1 + 6xJ) 
is homeomorphic to 

r1r (Xl - 6x,, Xl + 6x,) = (Xl, X2 (Xl), * ,Xn+1 (X1)) IX E (X1 -X 6x X1 x,+ 6X1)} 

Therefore, since the point (xl, x2(xl), X3(Xl),. . ., Xn+1 (Xl))T is unique, 7r defines a 
one-to-one correspondence and thus a covering map from Y to x1. Since x1 is convex, 
a: I -* x1, ae(t) = (1 - t)inf(x1) + tsup(xi) is a path in x1. Suppose 

7r(Yi) = inf(xi), 7r(Y2) = sup(xl). 

By Proposition 9.1.2 in [2], there is a unique path 

a: [0,1] -+Y 

such that &(O) = yi, and 7r(&(t)) = ae(t) for all t E [0,1]. Since 7r is one-to-one and 

7r(o(l)) = at(l) = sup(xi), 

we have 

&(1) = Y2- 

That is, & is the unique smooth path that connects y' and Y2 0 
THEOREM 3.2. Let x be the box described in Algorithm 2.3. If Assumption 1 is 

true and if 

7ri-1 > Mi = max Det I ) Det aH 
XEx X_ij ax-,} 
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900 R. BAKER KEARFOTT AND ZHAOYUN XING 

for all i f 1 and X E x, then any curve entering the face (1) of the box x at the point 
XO will leave the box x through the face (2). 

Proof. Without loss of the generality, assume B1 > 0 so that 

X1 = inf(xi) = Xo,0. 

Since aH/0X1 is nonsingular at XO, the implicit function theorem implies that there 
is a 6., such that in the interval xl = [Xo,1, Xo,1 + &x], there is a unique continuously 
differentiable path 

{(Xl, X2(X1),** Xn+1(xl)) I Xl E X1}. 

By the chain rule, 

di = -Det ( 
H 

Det 
a 

, 
dxi a\ - X/OAL1 1 

and by Assumption 1, H has continuous derivatives. Therefore, since O3H/OX-1 is 
nonsingular in x, there must exist an mi such that 

|Det ( X < Mi' 

and 

Det (9HX ) > m > O. 

Thus, 

dxi < mi M 
dxl - m 

in [Xo,1, Xo,i + 6x,] = xl. By the mean value theorem, 

xj(xl) = xi(Xo,i) + d (i)(xl - X0,1), xi E x. (O ) dxl 

Thus, 

Xo,i - Mi(xi - X0,i) < Xi(X1), 

and 

Xo,i + Mi (x - XO,i) > xi (xi) 

Therefore, by our construction xi(x1) is contained within the two straight lines, and 
hence xi(xi) e xi. Since this argument holds for all i -& 1, the locally unique curve is 
contained in the box x. O 

Theorem 3.1 asserts that any curve entering the box at the present point Xo will 
exit the box on the face opposite the one on which Xo lies. The following corollary 
and theorem assert that this curve will be unique within the box. 

COROLLARY 3.1. Suppose Assumption 1 is true. Also suppose that 

(3) 7i -1 > Mi = max Det (a ) Det OH 
XEx OX-i1 ax_, 
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AN INTERVAL STEP CONTROL FOR CONTINUATION METHODS 901 

is true in the constructed box x, for all i : 1 and all X E x. Suppose that there is a 
unique solution to H(X) = 0 on each face (1) and (2). Then there is a unique curve 
passing through face (1) and (2) .3 

Proof. Assumption 1 and Theorem 3.2 imply that there is at least one continuous 
curve in the wedge-shaped volume bounded by the box x and the hyperplanes corre- 
sponding to the two straight lines defined in the proof of Theorem 3.2. By assumption, 
there is a unique curve passing through the left face (1) of the box, and Theorem 3.2 
implies that this curve must pass through the right face (2) of the box. However, by 
an assumption of this theorem, only one such curve passes through the hyperplane 
(2). The assertion of the theorem immediately follows. O 

Remark 1. If we could verify (3) easily, Corollary 3.1 would make it more efficient 
than the following theorem to check uniqueness, since there is less overestimation when 
one of the coordinates is held fixed. Verification of (3) should be easier using automatic 
differentiation; this will be the subject of future work. 

THEOREM 3.3. Make Assumption 1, so that there is a curve passing through XO. 
Further assume that H has continuous derivatives up to order 2, so that the derivatives 
d2xI/dxX2 are continuous.4 Finally assume that 

> 
1 

m d2X, IB 16 2 XEX dix, 

for all i $& 1. Then there is a unique curve passing through the faces (1) and (2) of 
the box x described in Algorithm 2.3. 

Proof. By Taylor's theorem, 

xi(xi) = xi(Xo,1) + dix - X01) + 2 d_2 ((i)(xl-XO,1)2 dxl 2 dX 

for all i : 1 and x1 E x1 = [Xo,1,Xo,1 + 6]. In Algorithm 2.3 Pi,1 and Pi,2 are 
defined by 

Pi,, = Xo,i + Bi6 -i6, 

Pi,2 = Xo,i + Bi6 +qi6- 

But by assumption, 

bi > 2max d2X| (Xl -X0,1) 

for all i :& 1, and xl E x1. Thus, 

Pol< Xi(Xl) <Pi,2, 

and xi(xi) is contained in the box xi. Applying this argument to each coordinate 
completes the proof of the theorem. 0 

The above two theorems motivate that heuristic in Algorithms 2.4 which dictates 
that we increase the ri to obtain inclusion. However, since too large qi may cause 
deleterious overestimation in the interval Jacobian matrix and hence preclude com- 
putation of the preconditioner, we decrease qi whenever a preconditioner cannot be 
computed. 

3 This holds true even though other curves may intersect x. 
4 Actually, in this situation the chain rule implies that d2xi/dX2 can be expressed in terms of 

H and its derivatives. 
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902 R. BAKER KEARFOTT AND ZHAOYUN XING 

Remark 1. Corollary 3.1 does not guarantee that there is a unique curve within 
the box, but only that there is a unique curve passing through the two faces (1) and 
(2). 

Remark 2. If we can verify (3) easily, Corollary 3.1 makes it more efficient to 
check uniqueness, since there is less overestimation when one of the coordinates is 
held fixed. Verification of (3) should be easier using automatic differentiation; this 
will be the subject of future work. 

The following theorem clarifies when our interval step control will succeed. 
THEOREM 3.4. Make Assumption 1. Also assume 

71min > max{2IBiI,2M2}, 

where M2 is determined in the proof. Finally, assume that H(X) is Lipschitz at the 
point Xo, an approximation to the most recently computed point on the curve. Assume 
that Xo has been computed to sufficient accuracy to ensure that 0 E H(xo), where xo is 
defined in the proof below. Then, for small enough 6, Algorithm 2.4 must be successful; 
that is, the overall algorithm (Algorithm 2.1) in conjunction with Algorithm 2.4 will 
adjust ij and 6 so that the inclusion 

Xi1 C int(x-i) 

will eventually hold. In particular, the largest acceptable 6 depends only on the second 
derivative tensor of H and on the parameters 71min and 71max. 

Proof. Without loss of generality, suppose B1 > 0. Since aH/0X_1 is nonsingular 
in x, by the implicit function theorem, there is a unique locally differentiable curve 
Xi = Xi(x1), i = 2,.. ., n + 1 defined in some neighborhood (Xo,1, Xo,1 + 6) of Xo,1. 
FRom the construction of the box x, XO,1 E xl. From the construction of the box xo 
in Algorithm 2.4, 

fxi if i= 1, 
?'i XO,i otherwise. 

Thus, Xo E xo. By assumption, 0 E H(xo), so 

0 E YiH(xo). 

The construction of Algorithm 2.3 also implies 

xo,j = XO,j c xj, 

whence 
0 E H'(x)j (xj - xo,j). 

For i 74 1, xo,i = Xo,i, and a Gauss-Seidel sweep in Algorithm 2.4 may be written as 

(4) xi = Xo, - [YiH(xo) + E [YiH'(x)]j (xj - Xoj)] [YiH'(x)]i. 

3#i 

Hence, the numerator of (4) contains 0. Also, from the definition of an optimal 
preconditioner in [4], inf([YiH'(x)]i) = 1. Letting w(x) denote the width of the interval 
x, this and the fact that zero is in the numerator of (4) imply 

n+1 

w(x- Xo,i) = w YiH(xo) + Z[YiH'(x)](xj -Xoj)]. 

3#i 
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Let C = [HL1 (Xo)]-1 and let Ci be the ith row of C. Then, since 0 is in the numerator 
in (4), Yi minimizes the w(xi) (see [4]), and it follows that 

n+1 

(x- Xo,i) < w CiH(xo) + Z[CiH'(x)]j(xj - Xo,j) 
j=2 

_~~~~~~~: ji 

By the mean value theorem, it is easy to see that 

H'(x) C H'(Xo) + Ml (1)nx(n+1) (x - Xo) 

for some positive number M1, where (1)nX (n+1) stands for the n x (n+ 1) matrix with 
all components equal to 1. By the Lipschitz condition, 

H(xo) C Ml (l)nxl((xl -Xo1)i 

for some positive number Ml, where (1)nx1 stands for the n x 1 matrix with all 
components equal to 1. Then, 

w(-i- X0,i) < w(CiMl(1)nx1(xi-X0j)) 

+ '. ( [C%(H'(xo) + Ml (1)nx(n+l)(X-X0))] (x3-X0oj)) 

ioi 

? w(CiMl (1)nx 1 (xi-Xo, 1)) 

+ w(E [CiMl(1)nx(n+l)(x-X ) (Xj-Xo,j)) 

? M2( + max[w(xj -X0,j)]2), 

for some M2, which depends on M1, Ml, and C. By assumption, 

,qj > 2IBiI = max 2IBi|. 
1<i<n+l 

The construction of Algorithm 2.3 then implies Xo,j E int(pji,,Pi,2) and 

Xi= (pi,1,Pi,2), 

so 

277minb < w(xj - Xo,j) = 2r&jb < 277maxb. 

Therefore, 
w (x - Xo,7i) < M2 (462772ax + 6) 

< M2 (46772ax + 1) (27mjn&) 
277min 

<M(46772 ax + 1) < M2 2 w(xi -X0i) 

Letting p =min{IXo,i - inf(xi)I, IXo,j - sup(xi)I} and observing that Xo,j E int(piji, 
Pi,2), it is easy to see from Algorithm 2.3 that 

P = lni-Bi 6. 
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904 R. BAKER KEARFOTT AND ZHAOYUN XING 

The width of xi is 2ib6, so 

w(xi - 2ri 

p lqi -Bi I 

< 2+ 2Bi 

< 2 + 2Bi 
- Bi 

< 4. 

If M2 (46772ax + 1)/2?7min < 1, that is, 
m 4~~~_ 

(5) 6< (2M2 i 
4i ax 

then 
w(i- XO,i) <P. 

Since 0 is contained in the numerator of (4), Xo,i is in both xi and xi; and M2 is 
independent of 6. Thus, if 6 is small enough to make (5) true, then 

Ri C int(xi) for all i $ 1.[ 

THEOREM 3.5. Suppose io, Bio, and Bl, are as in Algorithm 2.1. Then, after 0 0 ~~~~0 
execution of Step 3 of Algorithm 2.1, B represents the same orientation along the 
curve as in the previous step. 

Proof. In the previous box, there is a unique curve that can be parametrized in 
terms of the previous parameter xi,. However, if the ioth component Bi, changes 
sign within that box, then there must be a turning point with respect to i', which 
contradicts the fact that there is a unique curve with respect to io in the previous 
box. Therefore, to maintain orientation, it is necessary and sufficient that sgn(Bi) = 

sgn(Bi, ), provided B and B1 are both in the null space of H' at the previous and 

present points on the curve, respectively. [ 
Remark 1. If the null space of H' is computed using standard floating point 

arithmetic, then it cannot be rigorously verified that sgn(Bi,) is correct. However, 
this occurrence is highly unlikely at best, since iB1', I = maxl<i<n+l IB1i 1. It is more 

likely that uniqueness could not be proven in this situation, and a smaller stepsize 
would then be taken. The algorithm can be made totally rigorous by computing the 
null space of H' using interval arithmetic. 

4. Numerical experiments. As a rigorous step control method, interval step 
control guarantees that the curve followed is unique, i.e., that it is not possible to 
jump from one path to another. Thus, the interval step control follows the curve 
properly, regardless of how the initial, minimum, and maximum stepsizes are chosen. 
In contrast, the success of approximate step controls depends on how we choose these 
parameters, and we may need to be overly conservative. The following numerical 
results illustrate this. 

The experiments with the approximate step control were carried out with the 
software package PITCON 6.1. (See [8] and [9] for an explanation of the original 
version.) In this package, unless otherwise stated, we set the absolute error to 10-5 
and relative error to 10', and we did not request the algorithm to locate limit points. 
We supplied a subroutine with an analytic representation of the Jacobian matrix, 
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AN INTERVAL STEP CONTROL FOR CONTINUATION METHODS 905 

rather than using finite differences. Furthermore, we allowed the program to choose 
the parameter coordinate. In the following tables, we use steps to indicate the number 
of predictor steps taken by the step controls from the starting point. Finally, we 
configured PITCON to reevaluate the Jacobian matrix after each step of the corrector 
iteration.5 

Comparisons in two dimensions. Many experiments revealed that, for two- 
dimensional problems, the interval step control computed stepsizes that were some- 
what large in relation to acceptable stepsizes in the approximate step control. For 
example, we tried Brown's two-dimensional almost linear curve and Layne Watson's 
two-dimensional exponential cosine curve, defined as follows: 

(i) BROWN'S ALMOST LINEAR CURVE 

fi(X) = Xi + Xn+1 ( ; xj-n -1) 1< i <n-1, 
1<j<n 

and 

fn(X) = (1 -Xn+l)Xn + Xn+I xj-1 
1 <j<n 

(ii) THE LAYNE WATSON EXPONENTIAL COSINE CURVE 

fi(X) = xi- xn+jecos{i(E<j<n xj)} 1 < i <n. 

The following table indicates the number of new points computed by the algo- 
rithms and the average stepsize used to follow the curves corresponding to the above 
two functions from X3 = 0 to X3 = 1. In PITCON 6.1 (the approximate algorithm), 
the minimum stepsize was set to 0.001; the maximum stepsize, to 0.02; and the initial 
stepsize, to 0.01. 

TABLE 4.1 

Results for n = 2. 

Brown's Almost Linear Function 

Steps Average stepsize 

interval 119 0.19674 x 1o-1 
approximate 95 0.19773 x 10-1 

Layne Watson's Exponential Cosine Function 

Steps Average stepsize 

interval 110 0.11901 x 1Q-1 
approximate 84 0.19762 x 10-1 

Behavior as the dimension increases. Consider the following initial-boun- 
dary problem: 

f + AeY = 0, 

ly(O) = 0, y'(l) = O. 

5 That is, we configured PITCON to use the classical Newton method as its corrector iteration. 
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906 R. BAKER KEARFOTT AND ZHAOYUN XING 

Letting N be the number of meshpoints, one may discretize the above problem into: 

H(X) = 0, 

where 
J X1, 

Hi(X) = xi, -2x + xi+, + XNexi * d, i = 2, ... N-2; 

XN-1-XN-2, i = N-1, 

where d = 1/(N - 2)2 and XN = A. To include portions of the curve with changing 
curvature, we follow the curve from A = 0 and xi = 0, i = 1,... , N -1, past a turning 
point of XN with respect to XN-1. This turning point occurs at XN .9. See Fig. 
4.2, where N = 60. 

Table 4.2(a) shows how the interval step control behaves as the number of mesh- 
points increases. In the table, CPU ratio is used to indicate the ratio of CPU times of 
experiments corresponding to the previous and present rows of the table. We set the 
maximum stepsize in both PITCON and the interval step control to 0.2 x 10-1. This 
is a reasonable stepsize for obtaining an accurate plot. 

TABLE 4.2(a) 
Results for the discretized mesh problem with interval step control. 

N Steps Average 6 CPU(s) CPU ratio N3 ratio 

10 252 0.19910 x 10-1 27.35 
20 315 0.19921 x 10-1 198.00 7.24 8 
30 371 0.19910 x 10-1 732.19 3.70 3.37 
40 420 0.19950 x 10-1 1968.17 2.69 2.37 
50 464 0.19954 x 10-1 4425.24 2.25 1.95 
60 504 0.19957 x 10-1 8510.62 1.92 1.73 

From the preceding table, we see that the CPU time increases approximately as 
the cube of N. This is because, in our implementation, we are using a dense LP solver, 
and we are handling the interval Jacobi matrix as a dense matrix. Using a banded 
solver and a band (or sparse) structure in the interval Jacobi matrix should lead to 
an increase of order N2 alone. 

Table 4.2(b) was obtained from PITCON applied to the same problem, with the 
same maximum stepsize. We report results with both the full storage user Jaco- 
bian matrix and the band storage central difference Jacobian matrix. Since PITCON 
algorithms with either full storage user Jacobian or band storage central difference 
Jacobian give the same number of steps and average stepsize, only different CPUs are 
given in the following table. 

The preceding table shows low CPU time and weak dependence on N for PIT- 
CON. However, the interval arithmetic in Fortran-SC is implemented with subroutine 
calls. The CPU times should be substantially faster for hardware interval arithmetic. 
Table 4.2(c) indicates that on the IBM3090 machine with ACRITH, interval arithmetic 
is slower than real arithmetic by a factor of at least 15. 

Interval arithematic in microcode can be only a factor of 2 slower than floating 
point arithmetic, and good a compiler may provide code for which the factor is only 
5 or less. 
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AN INTERVAL STEP CONTROL FOR CONTINUATION METHODS 907 

TABLE 4.2(b) 
Results for the discretized mesh problem with approximate step control: PITCON with the full 

storage user Jacobian matrix and the band storage central difference Jacobian matrix. 

N Steps Average 6 CPU(s)-full CPU(s)-band 

10 251 0.19960 x 10-1 0.37 0.49 
20 317 0.19968 x 10-1 0.98 1.05 
30 373 0.19973 x 10-1 2.09 1.74 
40 423 0.19976 x 10-1 4.74 2.56 
50 467 0.19976 x 10-1 6.03 3.46 
60 507 0.19980 x 10-1 9.04 4.48 

TABLE 4.2(c) 
CPU ratios for simple computations with ACRITH and with double precision arithmetic. 

Experiment CPU ratio of interval and real 

Z106 1.0 39.7 

J106 1.0 34.6 
Compute sin(1.0) 106 times 17.7 

Behavior on the discretized problem with a bigger maximum stepsize, 
for N = 60. We reran the programs for the discretized problem with N = 60, trying 
both PITCON and the interval step control with the same initial configuration, except 
with a maximum stepsize of 0.5 instead of 0.02, as it was in Tables 4.2(a) and 4.2(b). 
We set the initial stepsize to 0.05. Table 4.2(d) indicates the behaviors of both step 
controls. 

TABLE 4.2(d) 
Results for the discretized mesh problem, N = 60, with interval step control and PITCON with 

the full storage user Jacobian matrix and the band storage central difference Jacobian matrix. 

Step controls Steps Average 6 CPU(s) 

Interval step control 23 0.44401 487.736 
Approximate step control 26 0.45357 0.5541 

Behavior of the discretized problem near a solution tending to infinity 
as A tends to 0. After the curve passes the local maximum, A tends to zero, while the 
other components of the solution X tend to infinity, and the condition number of the 
Jacobian matrix tends to infinity. These conditions cause the stepsize in interval step 
control to become smaller. However, PITCON follows the curve without decreasing 
the stepsize. However, the experiment shows that PITCON also follows the curve. 
Tables 4.2(d) and 4.2(e) show how the stepsize 6 is decreased as a function of A, for 
each of these methods. 

When A tends to zero, the Jacobian matrix is singular enough to cause interval 
step control to reduce the stepsize, but the approximate step control PITCON does 
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908 R. BAKER KEARFOTT AND ZHAOYUN XING 

TABLE 4.2 (e) 
Results from PITCON, for the discretized mesh problem near a singularity, with full storage 

user Jacobian and N = 10. 

Steps A Stepsize 6 

10 x 101 8.6834 x 10-1 2.0 x 10-2 
10 X 102 8.0191 X 10-2 2.0 x 10-2 
12 x 102 1.6420 x 10-3 2.0 x 10-2 
15 x 102 1.3567 x 10-4 2.0 x 10-2 
18 x 102 1.0214 x 10-5 2.0 x 10-2 
20 x 102 1.7596 x 10-6 2.0 x 10-2 

TABLE 4.2(f) 
Results for the discretized mesh problem near a singularity with interval step control and 

N= 10. 

Steps A Stepsize 6 

10 x 101 8.9672 x 10-1 2.0 x 10-2 
10 X 102 2.3591 X 10-2 1.3 x 0-3 

20 x 102 9.4530 x 10-3 8.7 x 10-4 
15 x 103 8.7438 x 10-4 9.6 x 10- 
20 x 103 6.2045 x 10-5 7.3 x 10- 

not reduce the stepsize. Table 4.2(f) shows behavior of the interval step control near 
such a singularity. 

More dimension dependence: Brown's almost linear function. In a sep- 
arate experiment to observe the dependence of the interval step control on the di- 
mension of the problem, we ran experiments with Brown's almost linear function for 
n = 5, n = 10, n = 15, and n = 20. Table 4.3 gives average stepsizes and numbers of 
new points computed for the 5-, 10-, 15-, and 20-dimensional Brown curves, using the 
interval step control. The maximum allowable stepsize never becomes binding during 
the algorithm's execution. The table gives the average stepsize actually used by the 
algorithm to get from xn+1 = 0 to xn+1 = 1. These experiments illustrate that, for 
some problems, the computational work required to use the interval step control does 
not increase unduly with dimension. (However, the work associated with the linear 
algebra in our present implementation increases relatively rapidly, especially for the 
banded problems.) 

TABLE 4.3 
Results for Brown's function. 

n Steps Average 6 

5 403 0.3747 X 10-2 
10 163 0.1015 x 10-1 
15 332 0.5214 x 10-2 
20 498 0.3575 x 10-2 
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Behavior of the Layne Watson exponential function n = 5. We ran in- 
terval step control for the Layne Watson exponential cosine curve for n = 5. The 
algorithm took 39,896 steps that had an average stepsize of 0.2843 x 10-3. Though, 
in this case, the stepsize is somewhat smaller, it is still reasonable when the interval 
step control is used. 

Since, in practical problems, it is hard to know beforehand how rapidly the curva- 
ture will change, it not easy to decide which maximum allowable stepsize is appropriate 
for a specific problem. For example, when we use large initial or large maximum allow- 
able stepsizes in PITCON 6.1, the resulting path following is not successful, though 
these stepsizes pose no problem for the interval step control. 

In all cases, we used maximum stepsize in PITCON equal to 2.5. This is the value 
to which it was set in the test drivers packaged with PITCON. This maximum stepsize 
is large in relation to the portion of arc we wish to follow. Thus, the algorithm's 
behavior will depend on the step control, and not on the maximum stepsize. 

Figure 4.1 gives graphs obtained for the Layne Watson exponential function with 
n = 5, from both Algorithm 2.1 and PITCON. In PITCON, the initial stepsize was 
set equal to 0.1, while the minimum stepsize was set equal to 10-7. Our interval step 
control had no minimum stepsize, and the minimum stepsize never became binding in 
PITCON. In other words, the actual stepsizes that PITCON took would not change, 
even if we made the minimum allowable stepsize smaller. Rerunning the problem using 
PITCON with minimum stepsizes up to .01, we obtained exactly the same sequence 
of steps. 

We reran PITCON with minimum stepsize equal to 10-7 and initial stepsize 
equal to 10-4. Surprisingly, a worse problem than that depicted in Fig. 4.1 occurred. 
PITCON lost orientation near the beginning of the curve, and the computed points 
X5 and x6 had coordinates that were negative. However, when we reran PITCON 
with minimum stepsize equal to 10-7 and initial stepsize equal to 10-7, the algorithm 
behaved nicely. In the latter case, it produced a plot similar to the interval step control 
and took only 48 steps. 

With a minimum stepsize of 1010 and an initial stepsize of 10-8, PITCON ran 
to completion in 20 steps. However, the actual curve has four local maxima of X5 with 
respect to x6, and PITCON skipped the one closest to the starting point. (See Fig. 
4. 1(b).) 

The point we wish to make is not that approximate step controls cannot do well, 
but only that they may require careful analysis of the output and extensive interaction 
for us to be confident of the results. A faithful rendering of the graph of the curve 
would occur with an approximate step control with a sufficiently small maximum 
stepsize. However, how small is small enough may not be clear beforehand. 

Behavior on the topologist's sine curve. The topologist's sine curve is de- 
fined as 

{(x, t) = (x, sin(1/x)) I x $4 0}. 

It is well known that the curve has a severe oscillation near x = 0, and approximate 
curve-following algorithms tend to "skip" or lose orientation. The graphs in Fig. 4.3 
were obtained by running Algorithm 2.1 and PITCON with (0.019, sin(1/0.019)) as 
the starting point. In PITCON, we used initial stepsize 0.1, minimum stepsize 0.05, 
and maximum stepsize 0.5. 

This is an artificial problem. However, changes in curvature become more severe 
as x tends to 0, so it is a reasonable test of curve-tracking. The interval step control 
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FIG. 4.1(a). Layne Watson's exponential function with n =5. (b) PITCON with initial 
stepsize 10-8, minimum stepsize 10-10, and n = 5. 

can adjust to these changes in curvature, increasing and decreasing the stepsize as 
appropriate. If we wish to follow the curve to x a specified distance from 0, we can set 
the maximum stepsize in PITCON small enough to make it as successful as interval 
step control. We can estimate that, at x- 0.006, where we let interval continuation 
stop, the maximum stepsize can be no larger than 10'. However, using this as 
the maximum stepsize from the starting point would cause PITCON to proceed very 
slowly. 

We can also take another point of view: The interval algorithm with the same 
initial stepsize and maximum stepsize as we used in PITCON proceeds successfully 
past the point where PITCON 6.1 started to "skip." This- is because the interval step 
control guarantees that there is only one point on the curve in the slice of the box 
perpendicular to the parameter coordinate. Therefore, when the algorithm approaches 
a point where the curvature is larger, it decreases the stepsize as much as necessary, 
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FIG. 4.2. Discretized mesh problem (N =60) with interval step control. 
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FIG. 4.3. Topologist's sine curve. 

then increases the stepsize after passing this point. But approximate step controls do 
not always correctly anticipate such points. 

Behavior on a parametrized family of hyperbolas. Define a parametrized 
family of functions f (x, t) : R' -> R by 

f (xI t) = x2 -_(t - 0 5)2 _ p21 

where p is a shape parameter. f = O defines the simple hyperbolic curve. The curve 
has two disjoint branches, with vertices (-p, 0.5) and (p, 0.5). As p tends to 0, the 
two branches become closer and closer, and the curve degenerates into two straight 
lines, as in the left graph of Fig. 4.4. 

This experiment was done by setting p-= 0-5 and using starting point (0.5, O), 
initial stepsize 0.01, minimum stepsize 0.0001, and maximum stepsize 0.01. In addi- 
tion, we tried p = 10-15; in this case, the distance between the two vertices is only 
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INTERVAL STEP CONTROL 

-0.5 0.0 0.5 

FIG. 4.4. Almost degenerate hyperbola. 

2p 2 x 10-15. But the interval step control is still successful. We note that 10-16 is 
near the double precision machine epsilon on the IBM3090. 

The family of hyperbolas can be viewed as an imperfect bifurcation, in which 
the parameter controls both the change in curvature and the distance from a true 
bifurcation problem. In situations where it is reasonable to interpret such an imperfect 
bifurcation as a bifurcation, the behavior of the approximate step control may be 
acceptable, provided not all branches are required. In all cases, the interval step 
control correctly rendbrs the actual mathematical curve, or else stops short, indicating 
that it cannot proceed further. 

The following table gives x, t and the stepsize 6 near the vertex (p, 0.5), for 
p = 10-15, for our interval step control. This table does not include all points (x, t) 
that were computed within this range, but it is meant to show the way that the stepsize 
is decreased harmonically as t tends to 0.5. 

TABLE 4.4 
Around a hyperbola's vertex. 

x t 6-stepsize 

0.48612 x 10-00 0.01318750000000000 x 1000 0.75937 x 10-02 

0.36692 x 10-04 0.49996406427866499 x 1000 0.75608 x 10-06 
0.29184 x 10-09 0.49999999970816975 x 1000 0.25637 x 10-11 
0.31129 x 10-10 0.49999999996887090 x 1000 0.28518 x 10-12 

0.27481 x 10-11 0.49999999999725195 x 1000 0.56908 x 1O-13 

0.47811 X 10-12 0.49999999999952188 x 1000 0.29706 x 1O-14 

0.67378 x 10-13 0.49999999999993297 x 1000 0.27818 x 10-15 

0.61542 x 10-14 0.49999999999999398 x 1000 0.73431 x 10-16 

0.10834 x 10-14 0.50000000000000040 x 1000 0.29203 x 10-16 
0.57733 x 10-14 0.50000000000000562 x 1000 0.40494 x 10-15 

0.24800 x 10-13 0.50000000000002445 x 1000 0.18997 x 1O-14 
0.32370 x 10-12 0.50000000000031981 x 1000 0.23674 x 1O-13 
0.20241 x 10-11 0.50000000000200362 x 1000 0.16346 x 10-12 
0.39149 x 10-10 0.50000000003863578 x 1000 0.29980 x 10-11 
0.14356 x 10-04 0.50001435591026541 x 1000 0.10581 x 10-06 

0.27344 x 10-01 0.52734443705535122 x 1000 0.20037 x 10-02 
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5. Summary, conclusions, and future work. We have presented algorithms 
for interval step control for continuation methods. We have developed a theory to 
clarify how these algorithms are qualitatively more reliable than algorithms based on 
approximate step controls. We have presented several classes of numerical experiments 
that illustrate the immunity of these interval methods to certain types of failures that 
illustrate that these methods can also be practical on various problems and that show 
that dimension is not an intrinsic limitation. 

Our method differs from that in [6], since the method of [6] requires tesselation 
of the entire initial box. Numerical comparisons would be interesting. 

State-of-the-art implementations of continuation methods based on noninterval 
step controls function efficiently and fairly predictably, provided sufficient knowledge 
is known about the problem to set the algorithm tolerances appropriately, or provided 
it is possible to repeatedly redo the computation after human interaction. However, 
interval step controls should be considered in cases in which rigor is critical or in which 
human interaction with the method is not possible. 

If n = 1, a separate idea that substantially reduces the inherent overestimation 
may be used. We are developing this method and associated software. Though less 
universal than the general case, this software will be both rigorous and efficient. 

Further improvements in efficiency are undoubtedly possible. Also, methods to 
estimate the bounds Mi and second derivative bounds appearing in Theorems 3.2 
through 3.5 will allow for an algorithm that, besides not giving erroneous results, will 
always succeed in following the curve, without human intervention. 

The interval step control in this paper makes use of an explicit representation of 
the Jacobi matrix for the system. Also, rows of a matrix similar to the inverse of the 
Jacobi matrix are computed and used, one row at a time. Though the entire inverse 
does not need to be stored (only one row at a time does), the amount of computation 
may increase more rapidly in n than with some approximate step controls. For exam- 
ple, quasi-Newton updates can be used with approximate step controls, but they do 
not make sense with an interval step control. In principle, automatic differentiation 
may be used to obtain numerical values of an "analytic" Jacobi matrix, in fairly gen- 
eral contexts, such as when the function is given by an involved subroutine. However, 
it is unclear when this will be practical. In practice, there are many continuation prob- 
lems with explicit representation by analytic expressions. These include, for example, 
finding the roots of a polynomial system with moderate n, or finding the solutions of 
some of the systems obtained by discretization of boundary value problems. 
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