
Vol. 00, No. 00, Month 200x, 1–21

USER GUIDE

GlobSol User Guide

R. Baker Kearfott, Department of Mathematics, University of Louisiana, U.L. Box

4-1010, Lafayette, Louisiana, 70504-1010, USA (rbk@louisiana.edu).
(Received 00 Month 200x; in final form 00 Month 200x)

We explain installation and use of the GlobSol package for mathematically rigorous bounds on
all solutions to constrained and unconstrained global optimization problems, as well as non-
linear systems of equations. This document should be of use both to people with optimization
problems to solve and to people incorporating GlobSol’s components into other systems or
providing interfaces to GlobSol.

Keywords: nonconvex optimization; global optimization; GlobSol; constraint
propagation

2000 AMS Subject Classifications: 90C30; 65K05; 90C26; 65G20

1. Introduction and Purpose

GlobSol is an open-source, self-contained package for finding validated solutions
to unconstrained and constrained global optimization problems, and for finding
rigorous enclosures to all solutions to systems of nonlinear equations. GlobSol is
distributed under the Boost license [3]. GlobSol uses a branch and bound algo-
rithm for this purpose. Thus, the structure of GlobSol’s underlying algorithm is
somewhat similar to that of many optimization packages, such as BARON [18].
However, GlobSol’s goal is to provide rigorous bounds on all possible solutions.

That is, GlobSol’s output consists of lists of small intervals or interval vectors
within which GlobSol has proven with the rigor of a mathematical proof that any
possible solutions of the problem posed must lie1. (This is done by careful design
of algorithms and use of directed rounding.) GlobSol is thus well-suited to solv-
ing problems in which such bounds and guarantees are desired or important; for
problems where such guarantees are not necessary, other software may solve the
problems more efficiently, or may solve a wider range of problems.

This document focusses on:

• installation of GlobSol,

• quick use of GlobSol once installed,

• interpretation of GlobSol’s results,

• details on how to configure GlobSol,

• GlobSol’s components and package organization,
• improvements in the works.

There are the following overall goals:

(1) to help potential users decide the appropriateness of GlobSol for their ap-
plication,

1This forces the GlobSol algorithms to differ in various important respects from algorithms that do not
claim to provide solutions with mathematical rigor; see, for example, [8].
ISSN: 1055-6788 print/ISSN 1029-4937 online
c© 200x Taylor & Francis
DOI: 10.1080/03081080xxxxxxxxx
http://www.informaworld.com

(2) to guide users through the production and interpretation of results, and
(3) to give developer-users information and pointers they need to incorporate
GlobSol and its components into wider systems (such as input to GlobSol using
AMPL [5] or GAMS [16], or providing a matlab interface to GlobSol.)

This document does not trace the history of GlobSol, nor does this docu-
ment fully explain the underlying algorithms, their testing, and mathematical
justifications. For those topics, see the series of talks and publications listed at
http://interval.louisiana.edu/preprints.html. Example references are [7]
and [13]. In particular, [7] contains a description of various components the pack-
age INTOPT 90, a very early version of GlobSol. However, although [7] still contains
relevant background, the usage instructions in [7] are now partially obsolete.

2. Installation of GlobSol

Not only is GlobSol written in Fortran 95, but the description of the problem
to be solved is given to GlobSol is as a Fortran 95 program. For this reason, a
Fortran 95 compiler must be resident on the system where GlobSol is to be installed
and used, and this should be the same compiler with which GlobSol was built.
(However, see §9 for interfacing GlobSol to other systems so that Fortran 95 input
is not needed.) Fortunately, two high-quality open-source free Fortran compilers
have become available: the g95 compiler (see http://g95.sourceforge.net/ and
http://en.wikipedia.org/wiki/G95) and the gfortran compiler. Both of these
compilers are licensed under the GNU general public license, so can be distributed
freely with GlobSol itself. gfortran is desirable because it is slated to be an integral
part of the Gnu compiler suite (including gcc, etc.), but g95 was somewhat farther
in its development when the latest packaging of GlobSol was done.

2.1. Windows

For Windows environments, we have provided an executable installation package,
produced with the open-source 7-zip package. This executable installation comes
with an executable copy of g95. To install this version of GlobSol, simply perform
the following steps.

(1) Create a directory to be the root directory of the GlobSol installation.
Henceforth, we will refer to this directory as <GlobSol root dir>.
(2) Visit the registration page http://interval.louisiana.edu/GlobSol/

download_GlobSol.html.
(3) Once you have given instructions and have displayed the download
page click on the link to obtain one of the two installation executables
(GlobSol-win-gnu.correct IO.exe) and store it in <GlobSol root dir>.
(4) Run GlobSol-win-gnu.correct IO.exe from1 <GlobSol root dir>.
(5) Follow the remaining instructions on the GlobSol download page.

Executing GlobSol-win-gnu.correct IO.exe and following subse-
quent instructions installs a “production” version of GlobSol. The file
GlobSol-win-gnu.correct IO.exe installs a version of GlobSol that includes
correctly rounded output, based on David Gay’s “gdtoa” library2. The distribution

1It can be assured that GlobSol-win-gnu.correct IO.exe is run from 〈GlobSol root dir> by running it
from a command prompt in that directory.
2Included in this GlobSol distribution, and often included in Linux distributions.

also includes all of GlobSol’s source files and external (freely distributable) source,
and the GNU “make” program.

With this installation, the path should be set to include C:\GlobSol,
C:\GlobSol\executables and C:\g95, and the environment variable
LIBRARY PATH should contain C:\g95\lib and C:\GlobSol\executables.
This path is initially set in the command window during installation, but is not
set globally within Windows. This can be set in subsequently opened command
windows by executing setup path.bat in <GlobSol root dir>, or can be
changed globally in Windows.

2.2. Linux

For Linux, installation of GlobSol is not presently fully automatic, but should not
be difficult for most systems, provided a standard-conforming Fortran 95 compiler
is available. GlobSol is written totally in standard-conforming Fortran 95, except
that the distribution that includes correctly rounded output employs Fortran 2003
constructs for standardized interface to C. A makefile using simple “lowest com-
mon denominator” constructs1 with extensive in-line documentation is included,
while specific versions of this makefile for Windows and Unix / Linux2 can be
downloaded.

The steps for obtaining and installing GlobSol version and makefile for Unix or
Linux are as follows.

(1) Register to download GlobSol through the link http://interval.

louisiana.edu/GlobSol/download_GlobSol.html.
(2) Click on the link sent in the confirmation email.
(3) On the web page that displays, click on the link “Download the zip file
GlobSol.zip” to download the GlobSol source. Place this “zip” file into the
directory into which you wish to install GlobSol.
(4) From the same page, click on the link “unpack sun sun” to obtain a shell
script to unpack the zip file in the appropriate way3, and place this script into
the same directory as GlobSol.zip.
(5) Read the remainder of the “GlobSol Downloading Instructions” page care-
fully.
(6) Click on the link “install.html” from the “GlobSol Downloading Instruc-
tions” page.
(7) Read the “install.html” page carefully, then follow its instructions. You will
probably need to alter the system-dependent routines, but you may be able to
use unpack sun sun to ease the task.

Thus, persons with moderate knowledge of creating and using a makefile and
knowledge of their Fortran 95 compiler options should be able to compile and
install GlobSol within their own environment.

3. Initial Use of GlobSol

Solving problems with GlobSol involves

1So it will execute with many versions of “make.”
2The main difference between these two versions is the use of “\” in path names instead of “/”, and care
must be taken in converting between the two.
3This script is meant for Sun Solaris with the Sun Fortran compiler. However, the script is largely generic.

(1) making sure a copy of the general configuration file GlobSol.CFG is present
in the directory from which GlobSol is to be run,
(2) creating a Fortran 95 file that defines the problem and constraints,
(3) creating a “box data file” that defines the search region, overall tolerances,
and, within limits, how the boundary of the search region is handled.
(4) running GlobSol with the “globsol” script1.

We now give details and examples.

3.1. The GlobSol Input Files

Various sample input files are given in the directory
<GlobSol root dir>/integration test data. In particular, a GlobSol.CFG
file is there, and should be copied into the working directory where GlobSol is to
be run. A simple sample Fortran 95 file defining the problem for GlobSol appears
as follows:

! This is a simple example of mixed equality and inequality

! constraints, one of which is binding at the solution.

PROGRAM SIMPLE_MIXED_CONSTRAINTS

USE CODELIST_CREATION

! The independent variables are in the CDLVAR array passed

! to INITIALIZE_CODELST. The number of independent variables
! must be the exact dimension of this array.

TYPE(CDLVAR), DIMENSION(2):: X
! The objective function must be declared this way.

TYPE(CDLLHS):: PHI

! The dimension of this array should be the number of inequality
! constraints.

TYPE(CDLINEQ), DIMENSION(2):: G
! The dimension of this array should be the number of equality
! constraints.

TYPE(CDLEQ), DIMENSION(1) :: C

CALL INITIALIZE_CODELIST(X)

! This statement defines the objective
PHI = -2*X(1)**2 - X(2)**2

! These two statements define the inequality constraints
! G(1) <= 0 and G(2)<= 0.

G(1) = X(1)**2 + X(2)**2 - 1
G(2) = X(1)**2 - X(2)

! This statement defines the equality constraint C(1) == 0.
C(1) = X(1)**2 - X(2)**2

CALL FINISH_CODELIST

END PROGRAM SIMPLE_MIXED_CONSTRAINTS

This file, stored as mixed.f90 in <GlobSol root dir>/integration test data,
is largely self-explanatory. It defines the problem

minimize ϕ(x) = −2x2
1 − x2

2

subject to equality constraint c(x) = x2
1 − x2

2 = 0,

and inequality constraints g1(x) = x2
1 + x2

2 − 1 ≤ 0,

g2(x) = x2
1 − x2 ≤ 0.

In such Fortran 95 problem definition files, most Fortran 95 syntax, including
subroutine calls, can be used, with some exceptions. The exceptions are due to the

1A copy of this script, named “globsol.bat” on Windows systems and “globsol” on Unix or Linux
systems, resides on <GlobSol root dir>.

fact that operator overloading is used to create the internal representation of the
problem GlobSol employs in its algorithms. The following rules apply.

(1) The independent variables must be in a single array, declared to be of type
CDLVAR, and whose dimension is the dimension of the domain space1. This
array must be passed as an argument to the routine INITIALIZE CODELIST,
which should be called as the first executable statement.
(2) The objective must be declared to be of type2 CDLLHS.
(3) The equality constraint functions must be declared to be of type CDLEQ.
(4) The inequality constraint functions must be declared to be of type CDLINEQ.
(5) Any intermediate quantities that are stored and that depend on the inde-
pendent variables must be declared to be of type CDLVAR

(6) Binary operations may occur between variables of type CDLVAR and between
variables of type CDLVAR and integers, double precision, or TYPE(INTERVAL)

variables or constants. To prevent a common programming misconception that
reduces the precision of results, operations between CDLVAR variables and single
precision real constants and variables are not supported. For instance, if T is
declared to be of type CDLVAR then the operation 0.1*T will result in a compile-
time error, whereas the operation 0.1D0*T will not.
(7) Variables of type CDLLHS, CDLEQ, and CDLINEQ are “write-once” variables.
That is, they can only appear on the left side of an assignment statement,
and they can only be assigned once. If one of these quantities, say PHI, is the
result of an accumulation, for example, it may be assigned by first computing
its value in a variable of type CDLVAR, say SUM, then assigning SUM to PHI.
(8) Variables of type CDLVAR cannot appear within the decision part of a
branch statement. For example, if V is of type CDLVAR, then “IF (V < 0)”,
“WHILE (V > 1),” etc., are invalid. This is because the actual value of V is
not known until GlobSol itself runs, while compiling and running programs
such as mixed.f90 merely produces an internal symbolic representation of the
function. To describe branching for GlobSol, the χ function, explained in [7,
p. 211], can be used.

The following is the contents of a box data file. This box data file should be
named mixed.DT1 to correspond to mixed.f90 and to be designated as instance3

“1” of the data.

1D-5

0 1
0 1

F F
F F

The first line of this file gives an overall tolerance. The largest difference between
a lower bound and an upper bound of a solution component is on the order of the
square root of this tolerance. Because of the interplay between tolerances within
GlobSol’s algorithms, this tolerance4 will be automatically reset to a larger value if
it is set less than the square root of the double precision machine epsilon5. The next
two6 lines of this file represent the bounds on the components of the independent
variables within which the global optimizers are sought, that is, they define the

1However, portions or elements of the array can be passed as arguments to a subroutine, in which the
individual arguments are given different names.
2The name stands for “code list left hand side.”
3The box data file may have a file type DT?, where “?” can be any digit between zero and 9. This digit is
passed to the globsol script to control which of possibly several box data files is used.
4In the present version of GlobSol.
5About 1.49 × 10−8 in IEEE standard arithmetic.
6
n lines for n independent variables.

search box7.
The next two lines of this box data file are used to describe how the boundaries

of the search box are to be treated. Each line consists of two characters, and
each character can be either “F” or “T”. “T” signifies that the corresponding
bound is to be treated as a bound constraint, but “F” signifies that the bound
is not a bound constraint, but merely a bound on the search region. (This has
consequences for interpretation of the results, as we explain below.) Caution should
be exercised when setting these boundary indicators to be anything other than
“F”. In particular, a preprocessing algorithm produces sub-problems the number
of which increases exponentially with the number of boundary indicators set to
“T”. For example, if there are n independent variables and each of the 2n boundary
indicators is set to “T,” then the preprocessing algorithm produces potentially 3n

sub-boxes. In such cases, boundary constraints should expressed in the *.f90 file
as general inequality constraints, and the boundary indicators in the box data file
should be set mostly to “F.” Nonetheless, for small problems, expressing some
or all bound constraints through boundary indicators may be the most efficient
way1 of using GlobSol. (For larger problems, with more bound constraints, at
most one or two of the boundary indicators should be set to “T,” while the other
bound constraints should be expressed simply as inequality constraints. Setting a
boundary indicator to be “T” causes the “peeling” process explained in [7, §5.2.3]
to be used.)

There are optional lines that may appear after the boundary indicators in the box
data file. Immediately after the boundary indicators, an initial guess for a global
optimizer may appear, one component per line. If such an initial guess appears in
the box data file, then an additional line, giving “T” or “F,” may occur; a value of
“T” on this line signifies that the initial guess is sufficiently good that an attempt
to refine it is unnecessary.

3.2. Interpretation of Results

With the problem definition file mixed.f90 and box data file mixed.DT1 as above,
we may run GlobSol with the command line2

globsol mixed 1

If everything is installed properly, this script produces the file mixed.OT1, portions
of which are as follows3.

Output from FIND_GLOBAL_MIN on 12/22/2007 at 19:34:43.
Version for the system is: February 2, 2007

Codelist file name is: mixedG.CDL
Box data file name is: mixed.DT1

Initial box:
[0, 1], [0, 1]

BOUND_CONSTRAINT:

F F F F

7If there are n independent variables, then there will be n such lines.
1Because this method may result in better upper bounds on the global optimum, due to less overestimation
in the interval computations, because some of the variables in the evaluation are fixed at their point
boundary values.
2Provided the <GlobSol root dir> directory is in the search path.
3We have abridged the output to save space and for clarity. Lines that we have omitted consist mainly of
echoing of configuration variables and of performance statistics; we have replaced groups of such lines with
a single line consisting of “.”.

CONFIGURATION VALUES:

EPS_DOMAIN: 0.1000D-04 MAXITR: 20000
MAX_CPU_SECONDS: 3600

.

THERE WERE NO BOXES IN THE LIST OF SMALL BOXES.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1
Box coordinates:

[.7071, .7072], [.7071, .7072]

PHI:

[-1.501, -1.499]

Box contains the following approximate root:
.7071, .7071

OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT:
[-1.501, -1.5]

.

ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER,

20000 OF BOXES.
Number of bisections: 1

.

Total number of boxes processed in loop: 4
BEST_ESTIMATE: -1.5

Overall CPU time: .01001
.

This output represents the best possible behavior one can expect from GlobSol.
In particular, there is only one output box, and this output box has been verified to
contain a feasible point. However, we must be cautious in interpreting these results.
In particular, we cannot say without further analysis that there is only one global
optimizer and that it has coordinates x1 ∈ [.7071, .7072] and x2 ∈ [.7071, .7072],
with optimum value in [−1.501,−1.499]. The only thing that we can say for sure
based only on this output is that any possible global optimizers within the initial
box must lie within x1 ∈ [.7071, .7072] and x2 ∈ [.7071, .7072], and, if such an
optimizer exists within those bounds, then its value must lie within the interval
[−1.501,−1.499]. Here, BEST ESTIMATE represents a rigorous upper bound for the
global optimum, provided such an optimum exists.

Nonetheless, we can say more in many cases. If the problem has a global min-
imizer within the search box, then each global minimizer within the search box,
must lie in one of the output boxes, and the bounds given for PHI must contain the
global minimum. An analysis of the constraints in the simple problem represented
by mixed.f90 reveals that the feasible set is

{

(x1, x2) | x2 = x1, x1 ≤
√

2
}

.

Since this set is unbounded, we still cannot conclude that a global optimizer exists
within the search box. However, in this simple example, we can see that the global
optimizer must indeed be as given in GlobSol’s output. Furthermore, if we set all
boundary indicators to “T,” then the set defined by the constraints and boundary
indicators is compact, and since the objective is continuous, we know a global
minimum must exist. The corresponding box data file is

1D-5
0 1

0 1

T T

T T

and the corresponding (abridged) GlobSol output file is

Output from FIND_GLOBAL_MIN on 12/22/2007 at 20:18:25.

Version for the system is: February 2, 2007

Codelist file name is: mixedG.CDL

Box data file name is: mixed.DT3

Initial box:
[0, 1], [0, 1]

BOUND_CONSTRAINT:
T T T T

CONFIGURATION VALUES:

EPS_DOMAIN: 0.1000D-04 MAXITR: 20000

MAX_CPU_SECONDS: 3600

.

THERE WERE NO BOXES IN THE LIST OF SMALL BOXES.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1
Box coordinates:

[.7071, .7072], [.7071, .7072]

PHI:
[-1.501, -1.499]

.

ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER,

20000 OF BOXES.
Number of bisections: 1

.

Total number of boxes processed in loop: 7
BEST_ESTIMATE: -1.5
Overall CPU time: .04006

CPU time in PEEL_BOUNDARY: .03004
CPU time in REDUCED_INTERVAL_NEWTON: 0

In summary, if we know that the constraints combined with the boundary indi-
cators define a set that, when intersected with the search region, is compact, then
the problem must contain a global optimizer within the search region, and any
global optimizers within the search region must be within the output boxes. How-
ever, there may be extraneous boxes that do not correspond to global optimizers.
This happens in ill-conditioned problems where GlobSol cannot resolve all boxes
to within the tolerance.

As a first example, if we increase the search region for mixed.f90 to x1 ∈ [−2, 2]
and x2 ∈ [−2, 2], then the disk defined by the constraint x2

1 + x2
2 ≤ 1 must lie

completely within the search region, so the intersection of the feasible region with
the search region must necessarily be compact, so GlobSol must find all global
minimizers. In fact, running GlobSol with the box data file

1D-5
-2 2
-2 2

F F
F F

gives the result

.
THERE WERE NO BOXES IN THE LIST OF SMALL BOXES.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1

Box coordinates:
[-.7072, -.7071], [.7071, .7072]

PHI:
[-1.501, -1.499]

.
ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER,

20000 OF BOXES.
Number of bisections: 5
.

Total number of boxes processed in loop: 11
BEST_ESTIMATE: -1.5

Overall CPU time: .02003
CPU time in PEEL_BOUNDARY: 0
.

For a second example, consider minimizing x2
1 − x2

2 subject to x1 − x2 ≤ 0, with
search region x1 ∈ (−1, 1), x2 ∈ (−1, 1). (The open intervals correspond to not
treating the bounds on the search region as bound constraints.) This problem has
no minimizer within the search region, and, indeed, has no minimizer globally.
However, the infimum of ϕ over the intersection of the feasible set with the search
region is −1, and it occurs at (x1, x2) = (0, 1). Corresponding *.f90 and *.DT?
files are

PROGRAM EXAMPLE_2

USE CODELIST_CREATION

TYPE(CDLVAR), DIMENSION(2):: X
TYPE(CDLLHS):: PHI

TYPE(CDLINEQ) :: G

CALL INITIALIZE_CODELIST(X)

PHI =X(1)**2 - X(2)**2

G = X(1) - X(2)

CALL FINISH_CODELIST

END PROGRAM EXAMPLE_2

and

1D-5

-1 1
-1 1
F F

F F

The corresponding output contains 63 “boxes with verified feasible points,” all lying
on the boundary of the region defined by the inequality constraint, and it gives
“BEST ESTIMATE: 2.5e-11.” If we change the box data file to include (x1, x2) =
(0, .999) as a good approximation1 to a global minimizer, that is, if we use the
following box data file

1D-5

-1 1
-1 1

F F
F F

0
.999D0
T

then we obtain only one box [-.03163, .03163], [.9673, 1], with
BEST ESTIMATE: -.998. Furthermore, the intersection of each of the 63 boxes ob-
tained in the previous run is empty. This is not a contradiction, since the problem
itself has no global optimizer within the search region.

On the other hand, if we set a lower bound constraint on x1 and an upper bound
constraint on x2, then the intersection of the feasible region with the search box is
compact, and a global optimizer exists within the feasible region. The correspond-

1GlobSol does not allow this point to be too near to the boundary relative to the tolerance, if that boundary
does not represent a bound constraint.

ing box data file is

1D-5

-1 1
-1 1

T F
F T

and the GlobSol output file contains only one box:

.
THERE WERE NO BOXES IN THE LIST OF SMALL BOXES.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1
Box coordinates:

[-2.226e-308, 2.226e-308], [1, 1]

PHI:

[-1.001, -0.999]
.

ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER,
20000 OF BOXES.

.

Total number of boxes processed in loop: 7
BEST_ESTIMATE: -1

Overall CPU time: .01001
CPU time in PEEL_BOUNDARY: .01001
.

The undesirable result with the configuration file

1D-5
-1 1

-1 1
F F

F F

is not a contradiction, but it represents a performance issue with GlobSol that can
be improved. In fact, with an experimental version1 of GlobSol that uses linear
relaxations as described in [10] and with the configuration file immediately above,
the output consists of a single box, as follows:

.

THERE WERE NO BOXES IN THE LIST OF SMALL BOXES.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1

Box coordinates:
[-0.3162D-02, 0.3162D-02] [0.9968D+00, 0.1003D+01]

PHI:

[-0.1006D+01, -0.9937D+00]
.

Total number of boxes processed in loop: 2
.

BEST_ESTIMATE: -0.1000D+01
Overall CPU time: 0.2504D+00
CPU time in PEEL_BOUNDARY: 0.0000D+00

.

3.3. Standard Functions Supported

GlobSol presently has partial or full support for:

ABS, ACOS, ASIN, ATAN, COS, COSH, EXP, LOG, MAX, MIN,
SECH, SIN, SINH, SQRT, TAN, and TANH.

For example, with

PROGRAM EXAMPLE_SIN

USE CODELIST_CREATION

TYPE(CDLVAR), DIMENSION(1):: X

1We hope to publicly release this version within a year of this report.

TYPE(CDLLHS):: PHI

CALL INITIALIZE_CODELIST(X)

PHI =(SIN(X(1)) - (X(1)/2))**2

CALL FINISH_CODELIST

END PROGRAM EXAMPLE_SIN

and box data file

1D-5
0 6.29d0

T T

GlobSol produces

.
THERE WERE NO BOXES IN THE LIST OF SMALL BOXES.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1

Box coordinates:
[1.895, 1.896]

PHI:
[0, 3.379e-24]

.

Box no.: 2

Box coordinates:
[-7.555e-12, 1.065e-11]

PHI:
[0, 6.976e-23]

.
Total number of boxes processed in loop: 5

BEST_ESTIMATE: 2.225e-308
Overall CPU time: .04006
CPU time in PEEL_BOUNDARY: 0

.

GlobSol can even handle some non-differentiable functions. For example, with

PROGRAM EXAMPLE_ABS

USE CODELIST_CREATION

TYPE(CDLVAR), DIMENSION(1):: X
TYPE(CDLLHS):: PHI

CALL INITIALIZE_CODELIST(X)

PHI = ABS(X(1))

CALL FINISH_CODELIST

END PROGRAM EXAMPLE_ABS

and box data file

1D-5
-2 1

T T

GlobSol gives:

.

THERE WERE NO BOXES IN THE LIST OF SMALL BOXES.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1

Box coordinates:
[-7.348e-07, 7.476e-06]

PHI:
[0, 7.476e-06]

.

Total number of boxes processed in loop: 1
BEST_ESTIMATE: 3.91e-07

Overall CPU time: 0

CPU time in PEEL_BOUNDARY: 0

.

However, use of non-smooth functions may not always lead to desirable results in
general. See [7, Chapter 6] for some theory and further discussion.

3.4. Auxiliary Capabilities

The experimental version of GlobSol and the version obtained from running
GlobSol-win-gnu.correct IO.exe have an easy facility for obtaining values and
derivatives of the objective and constraints, through the rg script. For example,
suppose we want to obtain an interval enclosure for the range of values for the prob-
lem mixed.f90 (on page 4), over the range specified in mixed.DT1. The program
that does this is eval if. To run the program, we execute the command

rg eval if mixed 1

This produces a file mixed.IF1, which contains the following.

Version for the system is: February 2, 2007

Codelist file name is: mixed.CDL

Box data file name is: mixed.DT1

File: EVAL_IF.F90 -- F
Reference: Kearfott page 95, SUBROUTINE F(X,FVAL)

This subroutine returns a set of bounds on the ranges of the function

components over the box represented in the interval vector X(:) in the
interval vector FVAL.

Initial box:

[0, 1], [0, 1]

Interval value F(X) using the natural interval extension:

[-3.001, 2.226e-308]

The list of available programs1 appears in Table 1. The function make tex only gives
good results when the objective and constraints do not have too many operations,
since it typesets the objective as a one-line formula2.

4. Configuration of GlobSol

The file GlobSol.CFG contains definitions of global variables in GlobSol that specify

(1) limits on memory used in creation of the internal representation of the
objective and constraints,
(2) amount of printing in various parts of the algorithm,
(3) number of digits to be printed in the output,
(4) tolerances used in various parts of the algorithm, and
(5) which algorithm paths are followed,

The syntax in the GlobSol.CFG file, developed by George Corliss et al., includes
simple assignment statements and in-line documentation. The in-line documenta-

1Other programs are available, as seen in <GlobSol root dir>/executables, but are not normally of
interest since they do not add significant functionality above those listed.
2Also, because of the g95 compiler’s handling of “\” in output character strings, make tex as distributed
may work for the g95 versions, but not other versions.

Table 1. Auxiliary functions available in GlobSol

Name Function

Output
file
exten-
sion

eval cd interval bounds on the ranges of the equality constraints CD?

eval cgd
interval bounds on the ranges of the gradients of the equal-
ity constraints

CG?

eval djm
interval bounds on the ranges of the components of the
gradient of the objective

JM?

eval dsm
slope bounds on the ranges of the components of the gradi-
ent of the objective, using the center of the input intervals
as base point

DS?

eval f2 interval bounds on the range of the objective using a mean
value extension

F2?

eval icd interval bounds on the ranges of the inequality constraints IC?

make cosy
creates a function to be used with the COSY [2] system to
evaluate the objective

fox

make f77
creates a Fortran 77 function subroutine to evaluate the
objective

f

make tex
creates a LATEX representation of the objective, equality,
and inequality constraints

tex

prntcodl creates a readable version of the code list (see §5) RCL

tion describes each variable. Variables that do not occur in GlobSol.CFG are given
default values after GlobSol parses GlobSol.CFG.

Although there are scores of control variables in the file, those of most interest
include the following.

4.1. Time Limits

• MAX CPU SECONDS specifies the total number of seconds GlobSol is allowed to
run, before the search for optimizers is aborted.

• MAXITR specifies the total number of nodes to be considered in the branch-
and-bound search for optimizers, before the search is aborted.

4.2. Printing

• PRINT LENGTH specifies the number of digits to be printed in each floating
point number, in the “correct I/O” version of GlobSol. In the older version
of GlobSol, PRINT LENGTH = 1 signifies that four digits are to be printed, and
PRINT LENGTH = 2 signifies that 16 digits are to be printed.

• PRINTING IN OVERALL ALGORITHM is a non-negative integer that controls the
amount of printing done during algorithm execution. Setting it to successively
higher values (0, 1, 2, . . . , 7) gives successively more information.

• WANT TABLE is set to either “T” or “F”. If WANT TABLE = T, then a ta-
ble of values, suitable for importation into a spreadsheet, is placed in
the file OPTTEST.TBL. This table includes date and time stamps, some of
the configuration values, and performance data. Successive runs of Glob-
Sol append to this table, rather than overwriting it. This table printing
is actually done in internal subroutine PRINT OPT SPREADSHEET LINE in file
<GlobSol root dir>/f90intbi/finish find global min.f90.

In addition to the output <filename>.OT1, issuing “globsol <filename> 1”
will produce a file <filename> verified list.txt if any boxes containing veri-
fied feasible points are produced, and a file <filename> unverified list.txt if
any answer boxes not containing verified feasible points are produced. These files
contain the interval coordinates of the boxes in list format, one output box per line;
for n variables, there are 2n floating point values, representing the lower bounds
and upper bounds for each coordinate. Such files can be imported directly into,
e.g., matlab. Once these files are imported directly into matlab, the boxes can
be plotted with matlab “m” files found in <GlobSol root dir>/IO, as follows:

(1) Run GlobSol data to box.m to convert the array resulting from the default
import of the GlobSol box list into matlab.
(2) Run plotboxes.m on the array output from GlobSol data to box.m to
plot the list of boxes.

4.3. Nonlinear Systems

There is a special algorithm path for solving square nonlinear systems of equations
in GlobSol, that is usually more efficient than simply posing the system as a global
optimization problem1 with the equations as equality constraints. In particular,
if NONLINEAR SYSTEM = T, then GlobSol attempts to solve the nonlinear system
represented as the equality constraints; the objective and inequality constraints can
still appear, to help eliminate portions of the search space. For example, suppose
we set NONLINEAR SYSTEM = T in GlobSol.CFG, and we use the following NLS1.f90
and NLS1.DT1 files.

PROGRAM NLS1

USE CODELIST_CREATION

TYPE(CDLVAR), DIMENSION(2):: X
TYPE(CDLLHS):: PHI

TYPE(CDLINEQ) :: G
TYPE(CDLVAR), DIMENSION(2) :: E

TYPE(CDLEQ), DIMENSION(2) :: EQUATION

CALL INITIALIZE_CODELIST(X)

E(1) = X(1)**2 - X(2)**2

E(2) = X(1)**2 + X(2)**2 - 1

EQUATION(1) = E(1)
EQUATION(2) = E(2)

PHI = E(1)**2 + E(2)**2

G = -X(1) -X(2)

CALL FINISH_CODELIST

END PROGRAM NLS1

1D-10
-1 1

-1 1
F F
F F

Issuing “globsol NLS1 1” then gives

Output from FIND_GLOBAL_MIN on 12/25/2007 at 01:44:00.
Version for the system is: February 2, 2007

Codelist file name is: NLS1G.CDL

Box data file name is: NLS1.DT1

Initial box:

1With either constant objective or with objective equal to the sum of squares of the residuals, etc.

[-1, 1], [-1, 1]

.

CONFIGURATION VALUES:

EPS_DOMAIN: 0.1000D-09 MAXITR: 20000
MAX_CPU_SECONDS: 3600

.
NONLINEAR_SYSTEM: T

.

THERE WERE NO BOXES IN THE LIST OF SMALL BOXES.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1

Box coordinates:
[.707, .7073], [.707, .7073]

PHI:

[0, 1.601e-07]

.

Box no.: 2
Box coordinates:

[.7071, .7072], [-.7072, -.7071]

PHI:

[0, 1.604e-23]

.

Box no.: 3
Box coordinates:

[-.7072, -.7071], [.7071, .7072]

PHI:

[0, 1.604e-23]

.

ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER,
20000 OF BOXES.

Number of bisections: 4

.
Total number of boxes processed in loop: 11

BEST_ESTIMATE: 0
Overall CPU time: 0

.

Note: Although the nonlinear systems path shares elements in common with the
separate algorithm explained in [7, Chapter 4], the overall algorithm in the present
version of GlobSol is the same algorithm as for general global optimization. The
main differences are as follows.

• Where an interval Newton method is used, the system is formed from the
equations only, rather than as a Kuhn–Tucker or Fritz–John system.

• The sum of squares of the residual is used as objective, and the best upper
bound for the optimum is initialized to 0.

4.4. Problems with Uncertain (Fuzzy) Coefficients

It sometimes occurs that certain coefficients in a problem are not known precisely,
and cannot be computed more precisely from available data. In that case, it makes
sense to treat those coefficients as imprecisely known constants, rather than as
variables, and to find the range of all possible solutions to the problem as the
coefficients range over all possible values. For a further discussion of the distinction
between unknown variables and imprecisely known coefficients, and consequences
thereof, see [11].

To express an imprecisely known constant in GlobSol, one simply declares it
to be an interval value. GlobSol then adjusts the stopping tolerances1 so that the
output bounds fit the actual bounds on the range of possible solutions. For example,
suppose

PROGRAM UNKNOWN_CONSTANT
USE CODELIST_CREATION

IMPLICIT NONE

INTEGER, PARAMETER:: NN=1

TYPE(CDLVAR), DIMENSION(NN):: X
TYPE(CDLLHS) :: PHI

TYPE(INTERVAL) :: A

CALL INITIALIZE_CODELIST(X)

A = INTERVAL(-1,1)

PHI = (X(1) - A)**2 + 10*A**2

CALL FINISH_CODELIST

END PROGRAM UNKNOWN_CONSTANT

is stored in unknown constant.f90 and

1d-9 -10 10 F F

is stored in unknown constant.DT1. Then, issuing globsol unknown constant 1
results in the following in file unknown constant.OT1.

Codelist file name is: unknown_constantG.CDL

Box data file name is: unknown_constant.DT1

Initial box:
[-10, 10]

BOUND_CONSTRAINT:

F F

.
LIST OF SMALL BOXES:

Box no.: 1
Box coordinates:

[-1.001, -.0003162]

PHI:
[0, 14.01]

.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1
Box coordinates:

[-.0003163, 1.001]

PHI:
[0, 14.01]

.

ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER,
20000 OF BOXES.

.
Total number of boxes processed in loop: 2
BEST_ESTIMATE: 11

Overall CPU time: .01001
.

GlobSol also has a facility for storing up to 10 constants that can be reset during
execution of GlobSol. For example, to set constant 1 to [2, 3], one would place CALL
SET CONSTANT(1,IVL(2,3)) in the *.f90 program defining the problem, but would
refer to that constant with the global variable SETTABLE CONSTANT(1) (of type

1Finer control over the stopping tolerances can be obtained by adjusting particular variables in the
GlobSol.CFG file. These tolerances are described in [11], and are documented in-line in GlobSol.CFG.

INTERVAL) in routines that executed during the optimization. In the expressions or
computations defining the objective and constraints in the *.f90 program defining
the problem, that constant would be referenced as C (1), without declaration.
This facility is envisioned mainly for people modifying GlobSol’s algorithms and
experimenting with them.

5. GlobSol’s “CODELIST” Files

The operations performed during execution of the *.f90 problem definition pro-
gram produce an “unrolled” sequence of operations that we call a “code list.” This
code list is written to a file, which is then differentiated, optimized1, and used
within GlobSol to evaluate the objective, constraints, and derivatives. The code
list is very similar to the DAG produced in the “COCONUT” environment [19].
The basics of construction of the code list appear in [7, p. 83 ff.], with operation
codes listed in [7, Table 2.6, p. 84]. The code list in the present GlobSol distribution
has the same basic structure, with some additional operations added, etc. For ex-
ample, running “globsol mixed 1” creates the files mixed.CDL, mixedG.CDL, and
mixedGO.CDL, representing the code list, derivative code list, and optimized deriv-
ative code list corresponding to mixed.f90. In the present distribution of GlobSol,
only a binary representation of code lists is available. However, once the present
experimental version is released, there will be an option to store small code lists in
ASCII format.

6. The GlobSol Script

The “globsol” command used in earlier examples in this document is an operating
system command line script that successively calls components of the GlobSol
package. In particular, the command “globsol <filename> ?” does the following,
in sequence.

(1) compiles the file <filename>.f90 to produce an executable;
(2) executes <filename> to produce the code list <filename>.CDL;
(3) executes the GlobSol program “makegrad” to produce a code list
“<filename>G.CDL” that contains instructions for computing partial deriv-
atives of the objective and constraints.
(4) executes the GlobSol program “optimize codelist” to remove redun-
dant operations from <filename>G.CDL and place the resulting code list in
<filename>GO.CDL;
(5) renames <filename>GO.CDL to <filename>G.CDL;
(6) runs the main GlobSol optimization program “find global min, which
uses the files GlobSol.CFG, <filename>G.CDL, and <filename>.DT? to
produce the output files <filename>.OT?, <filename> verified list.TXT,
<filename> unverified list.TXT, and, optionally, OPTTEST.TBL.

Here, the optimize codelist process in step (4) is an O
(

ν2
)

process, where ν is
the number of operations in a single evaluation of the objective, constraints, and
gradients thereof. Thus, for complicated functions, such as functions whose values
depend on accumulations within a long-running loop, the optimize codelist step
may be a limiting factor. In such cases, it may be useful to remove this step.

1This means that redundant operations are removed.

7. GlobSol’s Components and Package Organization

Highlights of the GlobSol directory tree are as follows.

(1) The root directory <GlobSol root dir> contains
a) the makefile,
b) license information files1,
c) Fortran module information files2,
d) the documentation files install.html and install-win-gnu.html,
e) the Gnu make program mingw32-make.exe, and
f) the scripts globsol, rg, etc.

(2) The directory <GlobSol root dir>/integration test data contains a
copy of GlobSol.CFG with default settings, and also contains a number of
sample problem files, such as mixed.f90 and mixed.DT1.
(3) <GlobSol root dir>/executables contains the executable codes, as well
as the library3 for linking with GlobSol components.
(4) <GlobSol root dir>/f90intbi contains the source
code for the overall branch and bound algorithm in file
<GlobSol root dir>/f90intbi/rigorous global search.f90, as well
as initialization and completion routines.
(5) <GlobSol root dir>/intlib.alt contains a slightly modified version of
the INTLIB library [12] for interval arithmetic.
(6) <GlobSol root dir>/linpack.alt contains the LINPACK library [4] for
solving dense linear systems of equations on serial machines.
(7) <GlobSol root dir>/minpack.alt contains the MINPACK-1 [14] rou-
tines for local unconstrained approximate optimization and local approximate
root-finding.
(8) <GlobSol root dir>/overload contains the modules used throughout
GlobSol. Some of these are as follows.
a) intarith.f90 contains a modified version of the INTERVAL ARITHMETIC

module described in [6].
b) overload.f90 contains the source for module CODELIST CREATION, used in

creating code lists from *.f90 problem definition files.
c) optimize codelist.f90 contains the main program for removing redun-

dant operations from a code list.
d) makegrad.f90 contains the driver program for symbolically differenti-

ating a code list, while gradvars.f90 contains the source for module
GRADIENT VARIABLES, which defines how the differentiation is done for each
operation.

e) prints.f90 contains the source for module PRINT ROUTINES, where the
generic PRINT VECTOR for general printing in GlobSol is defined.

f) Other modules in <GlobSol root dir> define data structures and global
variables used throughout GlobSol routines.

(9) <GlobSol root dir>/function contains subdirectories with the source
code for functions that evaluate the objective, constraints, derivatives, second-
order derivatives, and Fritz John matrices by interpreting the code list.

(10) In the version of GlobSol distributed in executable form with the g95

compiler, <GlobSol root dir>/IO contains the “C” source for David Gay’s

1Such as BOOST license.txt and gnu Fortran 95 and gnu make license.txt
2for most builds
3GlobSol.a on Unix builds and on the build distributed for the g95 compiler, and GlobSol.lib on other
MS-Windows builds

gdtoa routines, as well as Fortran source for interfaces to gdtoa for use with
GlobSol’s output of intervals.

(11) <GlobSol root dir>/symbolic contains a module in source file
cdllatex.f90 and source code, such as that in make tex.f90 for producing a
LATEX representation from a code list.

8. GlobSol as a Callable Subroutine Library

As part of the installation process, a subroutine library for GlobSol is constructed
and placed in the directory <GlobSol root dir>/executables. (In the default
installation, the file in which this library resides is called “GlobSol.a.”) All of the
components of GlobSol corresponding to source files reside in this directory. These
routines can be called by any program compiled with a compatible compiler, and
may be linked by including “GlobSol.a” in the list of libraries to be linked1. Al-
though not all of the individual components of GlobSol are presently thoroughly
documented, examples of use are available by examining the source code for the
auxiliary functions listed in Table 1. These source routines are found in the directo-
ries “<GlobSol root dir>/evaluate” and “<GlobSol root dir>/symbolic.”

9. Towards Interfacing with Other Systems

During December, 2006, Hermann Schichl at the University of Vienna and the
author of this guide developed and tested a converter to convert the DAG [19]
format2 from the COCONUT system [15] to GlobSol’s code list format. This gives
the experimental version of GlobSol access to the large libraries of test problems
available in DAG format [20]. Furthermore, the COCONUT system has facilities for
conversion of AMPL representations and GAMS representations into DAG format,
thus making problems expressed in both the AMPL and GAMS languages available
to GlobSol3.

The author of this guide also sees significant benefit in a tighter interface of
GlobSol with matlab, and will do so, time permitting. Advantages would be

• direct input and output of initial bounds, tolerances, and lists of bounds on
answers;

• defining the problem through matlab “m” files with standard syntax (except
for branching);

• no need for a Fortran compiler4 to run GlobSol.

A straightforward interface would include

• a matlab user-defined data type for generation of GlobSol code lists5;

• matlab interfaces to the routines
<GlobSol root dir>/overload/makegrad.f90,
<GlobSol root dir>/overload/optimize codelist.f90, and

1The Fortran 2003 standardized interface to the “C” language may be useful in this context.
2DAG stands for “Directed Acyclic Graph,” and is the internal representation of the objective and con-
straints within the COCONUT system.
3provided the COCONUT environment is installed and provided AMPL and GAMS are installed with
appropriate licenses.
4but a need for matlab

5Defining this data type can be done by translating the GlobSol module CODELIST CREATION in file
<GlobSol root dir>/overload/overload.f90 into matlab syntax.

<GlobSol root dir>/f90intbi/find global min.f90 (with possible modifi-
cation of the argument lists to these.)

• a matlab function1 to invoke the functions defining the objective and con-
straints and to invoke the interfaces to GlobSol.

A more ambitious interface would involve use of matlab’s linear algebra within
the operations of GlobSol, and use of intlab [17] for GlobSol’s interval arithmetic.

10. Other Future Work

Among other improvements, the present experimental version of GlobSol includes
use of linear relaxations. This provides extremely significant performance improve-
ment on many problems; see [1, 10]. That version also provides access to Taylor
arithmetic through the COSY system; see [9], and uses the IPOPT solver [21] for
approximate local optimization. Putting this version into releasable form is the
next step.

Acknowledgements

The author of this guide wishes to thank others who have worked on GlobSol
and have made it possible. In particular, he wishes to thank his former students,
the authors of [12], who also worked on early versions of GlobSol, he wishes to
thank Bill Walster and SunSoft for support during development, and he wishes to
thank George Corliss for testing, use of early versions, contributions of some of the
modules and scripts, and much advice on software development. The author also
wishes to thank Arnold Neumaier and the Erwin Schrödinger Institute for support
while in Vienna in December, 2006.

References

[1] R. Baker Kearfott, Discussion and empirical comparisons of linear relaxations and alternate tech-
niques in validated deterministic global optimization, Optimization Methods and Software 21 (2006),
pp. 715–731.

[2] M. Berz et al., COSY INFINITY and its applications to nonlinear dynamics, in Computational
Differentiation: Techniques, Applications, and Tools, M. Berz et al., eds., SIAM, Philadelphia, PA
(1996), pp. 363–365.

[3] B. Dawes, D. Frey, and D. Abrahams, Information about the boost software, World-Wide Web docu-
ment (2004), URL \url{http://www.boost.org/more/license_info.html}.

[4] J.J. Dongarra et al., LINPACK Users’ Guide, SIAM, Philadelphia (1979).
[5] R. Fourer, D. Gay, and B. Kernighan, AMPL A Modeling Language for Mathematical Programming,

Boyd and Frazer, Danvers, Massachusetts (1993).
[6] R.B. Kearfott, Algorithm 763: INTERVAL ARITHMETIC: A Fortran 90 module for an interval

data type, ACM Transactions on Mathematical Software 22 (1996), pp. 385–392.
[7] ———, Rigorous Global Search: Continuous Problems, no. 13 in Nonconvex optimization and its ap-

plications, Kluwer Academic Publishers, Norwell, MA, USA, and Dordrecht, The Netherlands (1996).
[8] ———, Verified branch and bound for singular linear and nonlinear programs (2007), submitted.
[9] R.B. Kearfott and A. Arazyan, Taylor series models in deterministic global optimization, in Automatic

Differentiation: From Simulation to Optimization, G. Corliss et al., eds., chap. 44, Computer and
Information Science, Springer-Verlag, New York, NY (2001), pp. 365–372.

[10] R.B. Kearfott and S. Hongthong, Validated linear relaxations and preprocessing: Some experiments,
SIAM J. on Optimization 16 (2005), pp. 418–433.

[11] R.B. Kearfott and G.W. Walster, On stopping criteria in verified nonlinear systems or optimization
algorithms, ACM Transactions on Mathematical Software 26 (2000), pp. 373–389.

[12] R.B. Kearfott et al., Algorithm 737: INTLIB: A portable Fortran-77 elementary function library,
ACM Transactions on Mathematical Software 20 (1994), pp. 447–459.

1in an “m” file

[13] ———, Libraries, tools, and interactive systems for verified computations: Four case studies, in
Numerical Software with Result Verification, Lecture Notes in Computer Science no. 2991, R. Alt
et al., eds., Springer-Verlag, New York (2004), pp. 36–63.

[14] J.J. Moré, B.S. Garbow, and K.E. Hillstrom, User guide for MINPACK-1, Tech. Rep. ANL-80-74,
Argonne National Laboratories (1980).

[15] A. Neumaier, Complete search in continuous global optimization and constraint satisfaction, in Acta
Numerica 2004, A. Iserles, ed., Cambridge University Press (2004), pp. 271–369.

[16] R.E. Rosenthal, GAMS — A User’s Guide (2008), http://www.mat.univie.ac.at/~neum/glopt/
coconut.

[17] S.M. Rump, INTLAB – INTerval LABoratory (1999–2008), http://www.ti3.tu-harburg.de/rump/
intlab/.

[18] N.V. Sahinidis, BARON: A general purpose global optimization software package, J. Global Optim.
8 (1996), pp. 201–205.

[19] H. Schichl and A. Neumaier, Interval analysis on directed acyclic graphs for global optimization, J.
of Global Optimization 33 (2005), pp. 541–562.

[20] O. Shcherbina et al., Benchmarking global optimization and constraint satisfaction codes, in COCOS,
C. Bliek, C. Jermann, and A. Neumaier, eds., Lecture Notes in Computer Science, vol. 2861, Springer-
Verlag (2003), pp. 211–222.

[21] A. Wächter, Homepage of IPOPT (2002), https://projects.coin-or.org/Ipopt.

