
1 date: November 10, 1998 file: kearfo06

INTERVAL ANALYSIS: INTERMEDI-
ATE TERMS

Introduction.
In global optimization algorithms, the com-

puter must repeatedly evaluate an objective
function, as well as, possibly, inequality and
equality constraints. Such functions are given as
algebraic expressions or as subroutines or sec-
tions of computer code. When such computer
code is executed, operations are applied to the
independent variables, producing intermediate
terms. These intermediate terms are, in turn,
combined to produce other intermediate terms,
or, eventually, the objective function value. For
example, consider the problem

minimize φ(x) = x2
1 − x2

1x
2
2 + x2

2
over the box x = ([−1, 1], [−1, 1])T .

(1)

To evaluate φ, the computer may start with the
independent variable values v1 = x1 and v2 = x2

internally produce quantities v3, v4, v5, and v6,
to finally produce the dependent variable value
φ(x) = v7. The following table indicates how
this may be done.

v1 = x1,
v2 = x2,

(i) v3 = v2
1,

(ii) v4 = v2
2,

(iii) v5 = v4v3,
(iv) v6 = v3 − v5,
(v) v7 = v6 + v4.

(2)

A list such as in (2) may be represented as
a table of addresses of variables and operations.
For example, if the operation xp ← x2

q corre-
sponds to operation code 5, xp ← xqxr corre-
sponds to operation code 4, xp ← xq + xr corre-
sponds to operation code 20, and xp ← xq − xr

corresponds to operation code 21, then the set

of relations (2) is represented by the table

OP p q r
5 3 1 -
5 4 2 -
4 5 4 3
21 6 3 5
20 7 6 4

(3)

Such a sequence of operations is called a code
list , but is sometimes called other things, such
as a tape. Assuming the axioms of real arith-
metic hold for evaluation, code lists for a given
algebraic expression or portion of a computer
program are not unique.

The concept of a code list is familiar to com-
puter science students who have worked with
compilers, since a compiler produces such lists
while translating algebraic expressions into ma-
chine language. However, code lists and access
to the intermediate expressions are of particular
importance in interval global optimization, for
the following reasons.

• Code lists provide a convenient internal
representation for the objective and con-
straints, to be used for automatic differen-
tiation, for both point and interval evalu-
ation of objectives, gradients, and Hessian
matrices.

• The values of the intermediate quantities
can be used within the optimization algo-
rithm in processes that reduce the size of
the search region.

• Symbolic manipulation can reduce the
overestimation, or interval dependency
that would otherwise occur with interval
evaluations.

Details are given below.
In Automatic Differentiation.

A code list can be used either as a pattern to
specify the computations in the forward mode of
automatic differentiation or as a symbolic repre-
sentation of the system of equations to be solved

independent variables
intermediate terms
code list
automatic differentiation
Hessian matrices
interval dependency
forward mode→ automatic differentiation: forward mode



file: kearfo06 date: November 10, 1998 2

in the backward mode. See [5] for an in-depth
look at the forward mode of automatic differ-
entiation, and see [3] for somewhat more recent
research on the subject. See [4, pp. 37–39] for
some examples and additional references. Also
see the articles on automatic differentiation in
this encyclopedia.
In Constraint Satisfaction Techniques.
Since each intermediate variable in the code list
is connected to one or two others via an elemen-
tary, invertible operation, narrow bounds on one
such intermediate variable can be used to obtain
narrow bounds on others. For example, suppose
that the code list (2) has been symbolically dif-
ferentiated, to get the code list (5). Then, if the
sub-box x = ([0.5, 1], [−1,−0.5])T is to be con-
sidered for possible inclusion of optima, the de-
rivative code list (5) can be evaluated by for-
ward substitution to obtain the interval set of
intermediate values (6). Furthermore, since (1)
is an unconstrained problem, an optimum must
occur where ∂φ/∂x1 = 0 and ∂φ/∂x2 = 0. In
particular, any global optimizer x∗ must have

v10(x∗) = 0. (4)

Using (4) in line (viii) of the derivative code list
(5),

v9 = v8 − v10,

whence

ṽ9 ← [1, 2]− 0

v9 ← ṽ9 ∩ v9 = [1, 2].

Now, using (vii) of (5),

ṽ4 ← v9

v8
=

[1, 2]
[1, 2]

= [0.5, 2],

v4 ← ṽ4 ∩ v4 = [0.5, 1].

Now using (ii) of (5) gives

ṽ2 ←
√

v4 ∪ −
√

v4

⊆ [0.70, 1] ∪ [−1,−0.70],

v2 ← ṽ2 ∩ v2 = [−1,−0.70].

The last computation represents a narrowing of
the range of one of the independent variables.

v1 = x1,
v2 = x2,

(i) v3 = v2
1,

(ii) v4 = v2
2,

(iii) v5 = v4v3,
(iv) v6 = v3 − v5,
(v) v7 = v6 + v4,
(vi) v8 = 2v1,
(vii) v9 = v8v4,
(viii) v10 = v8 − v9,
(ix) v11 = 2v2,
(x) v12 = v3v11,
(xi) v13 = −v12,
(xii) v14 = v13 + v11,

φ = v7,
∂φ
∂x1

= v10,
∂φ
∂x2

= v14.

(5)

v1 = [.5, 1],
v2 = [−1,−.5],
v3 = [.25, 1],
v4 = [.25, 1],
v5 = [.0625, 1],
v6 = [−.75, .9375],
v7 = [−.5, 1.9375],
v8 = [1, 2],
v9 = [.25, 2],

v10 = [−1, 1.75],
v11 = [−2,−1],
v12 = [−2,−.25],
v13 = [.25, 2],
v14 = [−1.75, 1],

φ ∈ [−.5, 1.9375],
∂φ
∂x1

∈ [−1, 1.75],
∂φ
∂x2

∈ [−1.75, 1].

(6)

(A similar computation could also have been
carried out to obtain narrower bounds on v1.)

If in addition an upper bound φ = 0 for the
global optimum of φ is known, then

v7 ∈ [−∞, 0] ∩ [−0.5, 1.9375] = [−0.5, 0].

backward mode→ automatic differentiation:backward mode
forward substitution



3 date: November 10, 1998 file: kearfo06

This can now be used in (v) of (5), along
with new intermediate variable bounds, wher-
ever possible, to obtain

ṽ4 ← v7 − v6

= [−0.5, 0]− [−0.75, 0.9375]

= [−1.4375, 0.75],

v4 ← v4 ∩ ṽ4 = [0.5, 0.75].

Now using (vii) of (5),

ṽ9 ← [1, 2][0.5, 0.75] = [0.5, 1.5],

v9 ← ṽ9 ∩ v9 = [1, 1.5],

then using (viii) and v10 = 0 gives v8 = [1, 1.5].
Finally, using (vi) of (5) gives

v1 ← [0.5, 0.75] ∩ [0.5, 1] = [0.5, 0.75]. (7)

Now, evaluating φ in (1) (or redoing the forward
substitution represented in (6)) at (x1, x2) =
([0.5, 0.75], [−1,−0.70]) gives

φ ∈ [.5, .75]2 − [.5, .75]2[−1,−.7]2

+[−1,−.7]2

= [.25, .5625]− [.25, .5625][.49, 1] + [.49, 1]

= [.25, .5625] + [−.5625,−.1225] + [.49, 1]

= [.1775, 1.44],

contradicting the known upper bound φ = 0.
This proves that there can be no global opti-
mizer of (1) within ([0.5, 1], [−1,−0.5])T . (Note
that, in fact, there are no global optimizers in
([−1, 1], [−1, 1])T if the problem is considered to
be unconstrained.)

The above procedure is easily automated, as
is done in, say, GlobSol [2, 4], UniCalc [1], or
other interval constraint propagation software.

This example illustrates a more general tech-
nique, associated with constraint propagation
and logic programming . See [6] for an introduc-
tion to this view of the subject, and see [7] for
alternate techniques of interval constraint satis-
faction.
In Symbolic Preprocessing.

To understand how symbolic analysis based
on the code list may help, consider the following

example.

Find all solutions to f(x) = 0,
f = (f1, f2)T , within the box
x = ([−2, 0], [−1, 1])T , where
f1(x1, x2) = x3

1 + x2
1x2 + x2

2 + 1
f2(x1, x2) = x3

1 − 3x2
1x2 + x2

2 + 1.

(8)

A possible code list is

v1 = x1,
v2 = x2,

(i) v3 = v2
1,

(ii) v4 = v2
2,

(iii) v5 = v3v2,
(iv) v6 = v3

1,
(v) v7 = v6 + v4,
(vi) v8 = v7 + 1,
(vii) v8 + v5 = 0,
(viii) v8 − 3v5 = 0.

(9)

There is much interval dependency in this sys-
tem, both in the individual equations (since each
variable occurs in various terms), and between
the equations (since the equations share com-
mon terms). However, examination of the code
list (9) reveals that a change of variables can
make the system more amenable to interval com-
putation. Seeing that (vii) and (viii) are linear
in v5 and v8 = v4 + v6 + 1, define

y1 = v5 = x2
1x2,

y2 = v4 + v6 = x3
1 + x2

2.
(10)

Then the system becomes

y2 + y1 + 1 = 0
y2 − 3y1 + 1 = 0.

(11)

Thus, the linear system (11) may be solved eas-
ily for y1 and y2. The interval bounds may then
be plugged into (10) to obtain x1 and x2. There
is no overestimation in any of the expressions
for function components or partial derivatives
in either (11) or (10).

Additional research should reveal how to au-
tomate this change of variables process.

constraint propagation
logic programming



file: kearfo06 date: November 10, 1998 4

References
[1] Babichev, A. B., Kadyrova, O. B., Kashe-

varova, T. P., Leshchenko, A. S., and Se-
menov, A. L.: ‘UniCalc, a Novel Approach to Solv-
ing Systems of Algebraic Equations’, Interval Com-
putations 1993, no. 2 (1993), 29–47.

[2] Corliss, G. F., and Kearfott, R. B.: ‘Rig-
orous Global Search: Industrial Applications’, in
T. Csendes (ed.): (Special issues of the journal “Re-
liable Computing”), Kluwer, 1998.

[3] Griewank, A., and Corliss, G. F. (eds.): Au-
tomatic Differentiation of Algorithms: Theory, Im-
plementation, and Application (Philadelphia, 1991),
SIAM.

[4] Kearfott, R. B.: Rigorous Global Search: Con-
tinuous Problems, Kluwer, Dordrecht, Netherlands,
1996.

[5] Rall, L. B.: Automatic Differentiation: Techniques
and Applications, Lecture Notes in Computer Sci-
ence no. 120. Springer, Berlin, New York, etc., 1981.

[6] Van Hentenryck, P.: Constraint Satisfaction in
Logic Programming, MIT Press, Cambridge, MA,
1989.

[7] Van Hentenryck, P., Michel, L., and Deville,
Y.: Numerica: A Modeling Language for Global Op-
timization, MIT Press, Cambridge, MA, 1997.

R. Baker Kearfott
Department of Mathematics

University of Southwestern Louisiana
U.S.L. Box 4-1010, Lafayette, LA 70504-1010 USA

E-mail address: rbk@usl.edu

AMS1991SubjectClassification: 65G10, 65H20.
Key words and phrases: expression parsing,
constraint satisfaction techniques, interval de-
pendencies, verification, interval computations,
global optimization.


