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INTERVAL ANALYSIS: NONDIFFER-
ENTIABLE PROBLEMS

Introduction.
Nondifferentiable problems arise in various

places in global optimization. One example is
in l1 and l∞ optimization. That is,

min
x

φ(x) = min ‖F‖1 = min
x

m
∑

i=1

|fi(x)| (1)

and

min
x

φ(x) = min ‖F‖∞ = min
x

{

max
1≤i≤m

|fi(x)|
}

(2)

where x is an n-vector, arise in data fitting,
etc., and φ has a discontinuous gradient. In
other problems, piecewise linear or piecewise
quadratic approximations are used, and the gra-
dient or the Hessian matrix are discontinuous. In
fact, in some problems, even the objective func-
tion can be discontinuous.

Much thought has been given to non-
differentiability in algorithms to find local op-
tima, and various techniques have been devel-
oped for local optimization. Some of these tech-
niques can be used directly in interval global op-
timization algorithms. However, the power of in-
terval arithmetic to bound the range of a point-
valued function, even if that function is dis-
continuous, can be used to design effective al-
gorithms for non-differentiable or discontinuous
problems whose structure is virtually identical
to that of algorithms for differentiable or con-
tinuous problems.
Posing as continuous problems.

Several techniques are available for re-posing
problems as differentiable problems, in particu-
lar for Problem 1 and Problem 2. One such tech-
nique, suggested in [4, p. 74] and elsewhere, in-
volves rewriting the forms |e|, max{e1, e2}, and
min{e1, e2} occurring in variable expressions in
the objective and constraints in terms of addi-
tional constraints, as follows:

• Replace an expression |e| by a new variable
xn+1 and the two constraints xn+1 ≥ 0 and
x2

n+1 = e2.

• Replace max{e1, e2} by

(e1 + e2 + |e1 − e2|)/2

.
• Replace min{e1, e2} by

(e1 + e2 − |e1 − e2|)/2

.

Alternately, as explained in [1] and elsewhere,
the entire Problem 1 and Problem 2 can be re-
placed by constrained problems. In particular,
Problem 1 can be replaced by

minimize
m

∑

i=1

vi

subject to vi ≥ fi(x), i = 1, . . . , m,
vi ≥ −fi(x), i = 1, . . . , m,

where the vi are new variables.
(3)

Likewise, Problem 2 can be replaced by

minimize v

subject to v ≥ fi(x), i = 1, . . . ,m,
v ≥ −fi(x), i = 1, . . . , m,

where v is a new variable.
(4)

A special method for minimax problems.
In [3], a special interval algorithm for Prob-

lem 2 is presented.
Treating as continuous problems.

Due to inclusion properties of interval arith-
metic, interval algorithms based on a particular
degree of smoothness can be effective, essentially
unchanged when less smoothness is present. In
particular,

• If the objective function is discontinuous,
algorithms designed for continuous objec-
tive functions can be used effectively.

• If the function is non-smooth (that is, if
the gradient has discontinuities), then al-
gorithms based on second-order informa-
tion can often be used effectively.
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For a brief discussion and further references for
these general algorithms, see Interval analy-
sis: Unconstrained and constrained opti-
mization. For a more in-depth discussion of
how continuous algorithms can be used for dis-
continuous problems, see [2, Ch. 6]. The main
ideas are highlighted below.

Minima of φ : Rn → R1 can still be located
when the objective φ is discontinuous because
bounds on the range of φ are all that is neces-
sary to do a branch and bound search. For a
simple example, suppose

φ(x) =
{

x2 if x ≤ 1,
1 + x if x > 1,

}

(5)

and suppose the interval [−2, 2] is to be searched
for global minima. For illustration purposes,
suppose φ(0.25) = 0.125 has been evaluated, so
that 0.125 is an upper bound on the global opti-
mum, and suppose the subinterval x = [0.5, 1.5]
is to be analyzed. To obtain an interval enclosure
for the range of φ over x, we take

φ(x) ∈ [0.5, 1.0]2 ∪ (1 + [1.0, 1.5])

= [0.25, 1.0] ∪ [2.0, 2.5] = [0.25, 2.5],

where a ∪ b is the smallest interval that con-
tains both a and b. Thus, since 0.125 <
[0.25, 2.5], a minimum of φ cannot possibly oc-
cur within the interval [0.5, 1.5].

Similar considerations apply if the gradient
∇φ is discontinuous. In such cases, the gradient
test (see Interval analysis: Unconstrained
and constrained optimization) will keep
boxes that either contain zeros of the gradient
or critical points corresponding to gradient dis-
continuities where the gradient changes sign.

When the gradient is discontinuous, interval
Newton methods can still be used for iteration,
as well as to verify existence. (See [2, (6.4) and
(6,5),p. 217] for a formula, and see Interval
analysis: Interval Newton methods for an
introduction to interval Newton methods, and
see Interval analysis: Interval fixed point
theory for an explanation of interval fixed point

theory.). Application to problems with discon-
tinuous gradients is based on extended interval
arithmetic (with infinities) and astute compu-
tation of slope bounds; see Interval analysis:
The slope interval Newton method for an
explanation of slopes, and see [2, pp. 214–215]
for details.
An example.

Consider

f(x) = |x2 − x| − 2x + 2 = 0. (6)

This function has both a root and a cusp at x =
1, with a left derivative of −3 and a right deriva-
tive of −1 at x = 1. If 1 ∈ x, then a slope enclo-
sure is given by S(f, x, x) = [−1, 1](x+x−1)−2.

Consider using the interval Newton method

x̃ ← x̌(k) − f(x̌(k))/S(f, x(k), x̌(k))

x(k+1) ← x(k) ∩ x̃,

with x̌(k) equal to the midpoint x̌ = 0.9 of x(k),
and x(0) = [0.7, 1.1], where S(f, x(k), x̌(k)) is a
bound on the slope enclosure of f at x̌. (See the
figure for the concept of slope range.)
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The concept of a slope range for
a non-differentiable function.

An initial slope enclosure is then
S(f, [0.7, 1.1], 0.9) = [−3,−1],

x̃ = .9− .29/[−3,−1] = [.996, 1.19],

Interval analysis: Unconstrained and constrained optimization
Interval analysis: Unconstrained and constrained optimization
Interval analysis: Interval Newton methods
Interval analysis: Interval fixed point theory
Interval analysis: The slope interval Newton method
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and x(1) = [0.996, 1.1]. If this interval Newton
method is iterated, then on iteration 3, exis-
tence of a root within x(3) was proven, since
x(3) ⊂ int(x(2)), where int(x(2)) is the interior
of x(2). For details, see [2, pp. 224–225].

References
[1] Gill, P. E., Murray, W., and Wright, M.: Prac-

tical Optimization, Academic Press, New York, 1981.
[2] Kearfott, R. B.: Rigorous Global Search: Con-

tinuous Problems, Kluwer, Dordrecht, Netherlands,
1996.

[3] Shen, Z., Neumaier, A., and Eiermann, M. C.:
‘Solving Minimax Problems by Interval Methods’,
BIT 30 (1990), 742–751.

[4] Van Hentenryck, P., Michel, L., and Deville,
Y.: Numerica: A Modeling Language for Global Op-
timization, MIT Press, Cambridge, MA, 1997.

R. Baker Kearfott
Department of Mathematics

University of Southwestern Louisiana
U.S.L. Box 4-1010, Lafayette, LA 70504-1010 USA

E-mail address: rbk@usl.edu

AMS1991SubjectClassification: 65G10, 65H20.
Key words and phrases: non-differentiability, in-
terval slopes, verification, interval computa-
tions, global optimization.


