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INTERVAL ANALYSIS: UNCON-
STRAINED AND CONSTRAINED
OPTIMIZATION

Introduction.
Interval algorithms for constrained and un-

constrained optimization are based on adaptive,
exhaustive search of the domain. Their overall
structure is virtually identical to Lipschitz opti-
mization as in [4], since interval evaluations of
an objective function φ over an interval vector
x correspond to estimation of the range of φ
over x with Lipschitz constants. However, there
are additional opportunities for acceleration of
the process with interval algorithms, and use of
outwardly rounded interval arithmetic gives the
computations the rigor of a mathematical proof.

The interval algorithms are both complicated
and accelerated by the presence of constraints,
as is explained below.

See Interval analysis: Introduction, in-
terval numbers, and basic properties of
interval arithmetic for background on inter-
val computations. See [5], [2] or [3] for further
details of concepts in this article.

The basic problem is

minimize φ(x)

subject to
{

c(x) = 0 and
g(x) ≤ 0,

}

(1)

where φ : x ⊂ Rn → R, c : x → Rm1 , and
g : x → Rm2 , where x is an interval vector

x = ([x1, x1], . . . , [xn, xn])T .

The values m1 = 0 and m2 = 0 will be allowed,
in which case the problem is considered to be
unconstrained. It is emphasized here that, in
problem 1, a global optimum, that is the low-
est possible value of φ over the feasible set, is
sought.
The basic branch and bound algorithm for
unconstrained optimization.

The overall outline of an interval branch and
bound algorithm for unconstrained global opti-
mization is as follows:

INPUT: an initial box x0.
OUTPUT: a list C of boxes that have been proven
to contain critical points and a list U of boxes
with small objective function values, but which
could not otherwise be resolved.

1. Initialize a list of boxes L by placing the
initial search region x0 in L.

2. DO WHILE L 6= ∅.
(a) Remove the first box x from L. (The

boxes in L are in general inserted in a
particular order, depending on the ac-
tual algorithm.)

(b) (Process x) Do one of the following:
• reject x;
• reduce the size of x;
• determine that x contains a

unique critical point, then find the
critical point to high accuracy;

• subdivide x to make it more likely
to succeed at rejecting, reducing, or
verifying uniqueness.

(c) Do the following to the box(es) result-
ing from Step 2b:
• If x was rejected, do nothing.
• If more than one box was derived

from x, insert all but one of them
into L. Call the remaining box de-
rived from x x̃.

• If there is a x̃ that has been proven
to contain a critical point, insert it
into C.

• If there is a x̃ that is small, but
has not been proven to contain a
feasible point, insert it into U.

END DO

One way that a box is rejected in step 2b is
by using a bound on the range of the function φ
over the interval vector (box) x. In particular,
suppose the value φ(x) at a point x is known.
Then φ(x) is an upper bound for the global opti-
mum. (In fact, if φ has been evaluated at various
points, then the minimum of the resulting values
is a usable upper bound on the global optimum.)
Now suppose a lower bound φ on the range of φ
over a box (or more generally, a region) x ⊂ Rn

Lipschitz optimization
Interval analysis: Introduction, interval numbers, and basic properties of interval arithmetic
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can be computed, and that φ > φ(x). Then there
cannot be any global optimizers of φ within x.
The value φ can be obtained through an interval
function value. This process is illustrated in the
following figure.
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The midpoint test: Rejecting x̃ be-
cause of a high objective value

The lower bound φ for the objective over the
box x need not be obtained via interval compu-
tations. Indeed, if a Lipschitz constant Lx for φ
is known over x, and φ(x̌) is known for x̌, the
center of x, then, for any x̃ ∈ x,

φ(x̃) ≥ φ(x̌)− 1
2
Lx ‖w(x)‖ ,

where w(x) is the vector of widths of the compo-
nents of the interval vector x. However, getting
rigorous bounds on Lipschitz constants can re-
quire more human effort than the interval com-
putation, and often results in bounds that are
not as sharp as those from interval computa-
tion. Similarly, automated computations for Lip-
schitz constants as presently formulated result in
bounds that are provably not as sharp as inter-
val computations. Furthermore, use of properly
rounded interval arithmetic, if used both in com-
puting φ and φ(x), allows one to conclude with
mathematical rigor that there are no global op-
tima of φ within x.

Use of this lower bound for φ is sometimes
called the midpoint test , since the points x at
which φ(x) is evaluated are often taken to be

the vectors of midpoints of the boxes x produced
during the subdivision process. (Actually, some
implementations use the output of an approxi-
mate or local optimizer as x, to get an upper
bound on the global optimum that is as low as
possible.)

The simplest possible branch and bound al-
gorithms need to contain both a box rejec-
tion mechanism and a subdivision mechanism.
A common subdivision mechanism is to form
two sub-boxes by bisecting the widest coordi-
nate interval of x (with possible scaling factors).
Heuristics and scaling factors, as well as several
references to the literature, appear in [3, §4.3.2,
p 157 ff.]. Alternatives to bisection, such as tri-
section, forming two boxes by cutting other than
at a midpoint, etc. have also been discussed at
conferences and studied empirically [1].

Acceleration tools.

Early and simple algorithms contain only the
midpoint test mechanism and bisection mecha-
nism described above. Such algorithms produce
as output a large list U of small boxes (with di-
ameters smaller than a stopping tolerance) and
no list C of boxes that contain verified critical
points. The list U in such algorithms contains
clusters of boxes around actual global optimiz-
ers. Some Lipschitz constant-based algorithms
are of this form. Note, however, that such al-
gorithms are of limited use in high dimensions,
since the number of boxes produced increases
exponentially in the dimension n.

Interval computations provide more power-
ful tools for accelerating the algorithm. For a
start, if an interval extension of the gradient
∇φ(x) is computable then 0 6∈ ∇φ(x) implies
that x cannot contain a critical point, and x
can be rejected. This tool for rejecting a box x
is sometimes called the monotonicity test , since
0 6∈

(

∇φ(x)
)

i implies φ is monotonic over x in
the i-th component xi, where

(

∇φ(x)
)

i repre-
sents the i-th component of the interval evalua-
tion of the gradient ∇φ.

However, heuristically obtained approximate Lipschitz constants, as employed in the calculations in [4], have been
highly successful at solving practical problems, albeit not rigorously.
midpoint test
monotonicity test
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Perhaps the most powerful interval accelera-
tion tool is interval Newton methods, applied to
the system ∇φ = 0. Interval Newton methods
can result in quadratic convergence to a crit-
ical point in the sense that the widths of the
coordinates of the image of x are proportional
to the square of the widths of the coordinates
of x. Interval Newton methods also can prove
existence and uniqueness of a critical point or
non-existence of a critical point in x. Thus, the
need to subdivide a relatively large x is often
eliminated, making a previously impractical al-
gorithm practical. See Interval Analysis: In-
terval Newton methods and Interval anal-
ysis: Interval Fixed Point Theory.

For a more detailed algorithm, and for a
discussion of parallelization of the branch and
bound process, see Interval analysis : Paral-
lel methods for global optimization.

Differences between unconstrained and
constrained optimization.

If m1 > 0 or m2 > 0 in problem 1, then the
problem is one of constrained optimization. The
midpoint test cannot be applied directly to con-
strained problems, since φ(x) is guaranteed to
be an upper bound on the global optimum only
if the constraints c(x) = 0 and g(x) ≤ 0 are also
satisfied at x. If there are only inequality con-
straints and none of the inequality constraints
are active at x, then an interval evaluation of
g(x) will rigorously verify g(x) < 0, and x can
be used in the midpoint test. However, if there
are equality constraints (or if one or more of the
inequality constraints is active), then an inter-
val evaluation will yield 0 ∈ c(x) (or 0 ∈ gi(x)
for some i), and it cannot be concluded that x
is feasible. In such cases, a small box x̌ can be
constructed about x, and it can be verified with

interval Newton methods that x̌ contains a feasi-
ble point. The upper bound of the interval eval-
uation φ(x̌) then serves as an upper bound on
the global optimum, for use in the midpoint test.
For details and references, see Interval analy-
sis: Verifying feasibility.

On the other hand, constraints can be benefi-
cial in eliminating infeasible boxes x. In partic-
ular, 0 6∈ c(x) or g(x) > 0 implies that x can be
rejected.

It is sometimes useful to consider bound con-
straints of the form xi ≥ xi and xj ≤ xj sep-
arately from the general inequality constraints
g(x) ≤ 0. Such bound constraints can gener-
ally coincide with the limits on the search region
x0, but are distinguished from simple search
bounds. (It is possible for an unconstrained
problem to have no optima within a search re-
gion, but it is not possible if all of the search re-
gion limits represent bound constraints.) See In-
terval analysis : Bound constrained prob-
lems and [3, §5.2.3, p. 180 ff] for details.
An illustrative example.

Consider

minimize φ(x) = − (x1 + x2)
2

subject to c(x) = x2 + 2x1 = 0.
(2)

Example 2 represents a constrained optimiza-
tion problem with a single equality constraint
and no bound constraints or inequality con-
straints. To apply the midpoint test in a rig-
orously verified algorithm, a box must first be
found in which a feasible point is verified to
exist. Suppose that a point algorithm, such as
a generalized Newton method, has been used
to find an approximate feasible point, say x̌ =
(

−1
4 , 1

2

)T . Now observe that ∇c ≡ (−2, 1)T .
Therefore, as suggested in Interval analysis:
Verifying feasibility, x2 can be held fixed

interval Newton methods
Interval Analysis: Interval Newton methods
Interval analysis: Interval Fixed Point Theory
Interval analysis : Parallel methods for global optimization
constrained optimization
Interval analysis: Verifying feasibility
bound constraints
Interval analysis : Bound constrained problems
Interval analysis: Verifying feasibility
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at x2 = 1
2 . Thus, to prove existence of a fea-

sible point in a neighborhood of x̌, an inter-
val Newton method can be applied to f(x1) =
c(x1, 0.5) = 0.5− 2x1. We may choose initial in-
terval x1 = [−0.25 − ε,−0.25 + ε] with ε = 0.1,
to obtain

x1 = [−.35,−.15],

x̃1 = −0.25− 0
−2

= [−0.25,−0.25] ⊂ x1,

This computation proves that, for x2 = 0.5,
there is a feasible point for x1 ∈ [−0.25,−0.25].
(See Interval Analysis: Interval Newton
methods and Interval analysis: Interval
Fixed Point Theory.) We may now evaluate
φ over the box ([−0.25,−0.25], [0.5, 0.5])T ) (that
is degenerate in the second coordinate, and also
happens to be degenerate in the first coordinate
for this example). We thus obtain

φ
(

[−0.25,−0.25], [0.5, 0.5]
)

=
[

− 1
16

,− 1
16

]

,

and −1/16 has been proven to be an upper
bound on the global optimum for example prob-
lem 2.
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