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INTERVAL ANALYSIS: VERIFYING
FEASIBILITY

Introduction.
Constrained optimization problems are of the

form

minimize φ(x)
subject to ci(x) = 0, i = 1, . . . , m,

gj(x) ≤ 0, j = 1, . . . q1

xik ≤ xik , k = 1, . . . q2 − µ,
xik ≤ xik , k = µ + 1, . . . q2,

where φ : Rn → R, ci : Rn → R, and
gj : Rn → R.

(1)

In interval branch and bound algorithms for
finding global optima for Problem (1), a search
box of the form

x =
{

(x1, x2, . . . , xn)T ∈ Rn ∣

∣ (2)

xi ≤ xi ≤ xi, 1 ≤ i ≤ n
}

,

is generally given, where some of the sides in
(2) correspond to bound constraints of prob-
lem (1), and the other sides merely define the
extent of the search region. If there are no con-
straints ci and gj , then the box x is systemati-
cally tessellated into sub-boxes. The branch and
bound algorithm, in its most basic form, pro-
ceeds as follows: Over each sub-box x̃, φ(x̌) is
computed for some x̌ ∈ x̃, and the range of φ
over x̃ is bounded (e.g. with a straightforward
interval evaluation). (See Interval analysis :
Introduction, interval numbers and basic
properties of interval arithmetic.) If there
are no constraints ci and gj , then the value φ(x̌)
represents an upper bound on the minimum of
φ. The minimum such value φ is kept as the tes-
sellation and search proceed; if any box x̃ has a
lower range bound greater than φ, it is rejected
as not containing a global optimum. See [1], [2],
or [3] for details of such algorithms.

The situation is more complicated in the con-
strained case. In particular, the values φ(x̌) can-
not be taken as upper bounds on the global
optimum unless it is known that x̌ is feasible.
More generally, an upper bound on the range of
φ over a small box x̌ can be taken as an up-
per bound for the global optimum provided it is
proven that there exists a feasible point of Prob-
lem (1) within x̌. This article outlines how this
can be done.

For the fundamental concepts used through-
out this article, see Interval analysis : Intro-
duction, interval numbers and basic prop-
erties of interval arithmetic.
General feasibility: the Fritz-John condi-
tions.

An interval Newton method (see Interval
analysis: Interval Newton methods) can
sometimes be used to prove existence of a feasi-
ble point of Problem (1) that is a critical point
of φ. In particular, the interval Newton method
can sometimes prove existence of a solution to
the Lagrange multiplier or Fritz–John system
within x̌. For the Fritz–John system, it is con-
venient to consider the q2 bound constraints in
the same form as the q1 general inequality con-
straints, so that there are q = q1 + q2 general in-
equality constraints of the from gj(x) ≤ 0. With
that, the Fritz–John system can be written as

F (W ) =
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= 0,
(3)

where uj ≥ 0, j = 1, . . . , q, the vi are uncon-
strained, and the last equation is one of several
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possible normalization conditions. For details,
see [1, §10.5] or [2, §5.2.5].

However, computational problems occur in
practice with the system (3). It is more difficult
to find a good approximate critical point (for an
appropriate small box x̌) of the entire system (3)
than it is to find a point where the inequality
and equality constraints are satisfied. Further-
more, if an interval Newton method is applied
to (3) over a large box, the corresponding in-
terval Jacobi matrix or slope matrix typically
contains singular matrices and hence is useless
for existence verification. This is especially true
if it is difficult to get good estimates for the La-
grange multipliers uj and vi. For this reason, the
techniques outlined below are useful.
Feasibility of inequality constraints.

Proving feasibility of the inequality con-
straints is sometimes possible by evaluating the
gj with interval arithmetic: If gj(x̌) ≤ 0, then
every point in x̌ is feasible with respect to the
constraint gj(x) ≤ 0; see Interval analysis:
Introduction, interval numbers, and ba-
sic properties of interval arithmetic or [3].
However, if x̌ corresponds to a point at which
gj is active, then 0 ∈ gj(x̌), and no conclusion
can be reached from an interval evaluation. In
such cases, feasibility can sometimes be proven
by treating gj(x) = 0 as one of the equality con-
straints, then using the techniques below.
Infeasibility.

An inequality constraint gj is proven infeasi-
ble over x̌ if gj(x̌) > 0, and an equality con-
straint ci is infeasible over x̌ if either ci(x̌) > 0
or ci(x̌) < 0. See Interval analysis: Introduc-
tion, interval numbers, and basic proper-
ties of interval arithmetic or [3].
Feasibility of equality constraints.

The equality constraints

c(x) =
(

c1(x), . . . , cm(x)
)T = 0,

c : Rn → Rm, n ≥ m can be considered an
underdetermined system of equations, whereas
interval Newton methods generally prove exis-
tence / uniqueness for square systems. However,

fixing n−m coordinates x̌i ∈ x̌i allows interval
Newton methods to work with c̃ : Rm → Rm, to
prove existence of a feasible point within x̌. In
principle, indices of the coordinates to be held
fixed are chosen to correspond to coordinates
in which c is varying least rapidly. For a set of
test problems, the most successful way appears
to be choosing those coordinates corresponding
to the right-most columns after Gaussian elimi-
nation with complete pivoting has been applied
to the rectangular matrix c′(x̌) for some x̌ ∈ x̌.
The figure below illustrates the process in two
dimensions.

c(x) = 0
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to exist.

Proving that there exists a feasible point
of an underdetermined constraint system

Certain complications arise. For example, if
bound constraints or inequality constraints are
active, then either the point x̌ must be per-
turbed or else the bound or inequality con-
straints must be treated as equality constraints.
Handling this case by perturbation is discussed
in [2, p. 191 ff].

For the original explanation of the Gaussian
elimination-based process, see [1, §12.4]. In [2,
§5.2.4], additional background, discussion, and
references appear.
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