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INTERVAL FIXED POINT THEORY

Introduction.

Interval methods (interval Newton methods
and the Krawczyk method) can be used to prove
existence and uniqueness of solutions to linear
and nonlinear finite-dimensional and infinite-
dimensional systems, given floating-point ap-
proximations to such solutions. (See Interval
analysis: The Krawczyk method, Interval
analysis: Interval Newton methods, Inter-
val analysis: The slope interval Newton
method, and [6, 8].) In turn, these existence-
proving interval operators have a close relation-
ship with the classic theory of fixed-point itera-
tion. This relationship is sketched here.

Classical fixed point theory and interval
arithmetic.

Various fixed point theorems, applicable in fi-
nite or infinite dimensional spaces, state roughly
that, if a mapping maps a set into itself, then
that mapping has a fixed point within that set.
For example, the Brouwer fixed point theorem
states that, if D is homeomorphic to the closed
unit ball in Rn and P is a continuous mapping
such that P maps D into D, then P has a fixed
point in D, that is, there is an x ∈ D with
x = P (x).

Interval arithmetic can be naturally used to
test the hypotheses of the Brouwer fixed point
theorem. An interval extension P of P has the
property that, if x is an interval vector with
x ⊆ D, then P (x) contains the range

{

P (x) |
x ∈ x

}

, and an interval extension P can be
obtained simply by evaluating P with interval
arithmetic. Furthermore, with outward round-
ings, this evaluation can be carried out so that
the floating point intervals (whose end points

are machine numbers) rigorously contain the ac-
tual range of P . (See Interval analysis: In-
troduction, interval numbers, and basic
properties of interval arithmetic.) Thus, if
P (x) ⊂ x, one can conclude that P has a fixed
point within x.

Another fixed point theorem, Miranda’s theo-
rem, follows from the Brouwer fixed point theo-
rem, and is directly useful in theoretical studies
of several interval methods. Miranda’s theorem
is most easily stated with the notation of inter-
val computations: Suppose x ⊂ Rn is an inter-
val vector, and for each i, look at the lower i-th
face xi of x, defined to be the interval vector all
of whose components except the i-th component
are those of x, and whose i-th component is the
lower bound xi of the i-th component xi of x.
Define the upper i-th face xi of x similarly. Let
P : x → Rn, P (x) = (P1(x), P2(x), . . . , Pn(x))
be continuous, and let P = (P 1, P 2, . . . ,P n) be
any interval extension of P . Miranda’s theorem
states that, if

P i(xi)P i(xi) ≤ 0, (1)

then P has a fixed point within x.
The Krawczyk method and fixed point
theory.

Moore provided one of the earlier careful anal-
yses of interval Newton methods in [5]. There,
the Krawczyk method was analyzed as follows:
The chord method is defined as

P (x) = x− Y f(x) (2)

where the iteration matrix is normally taken
to be Y =

(

f ′(x̃)
)−1 for some Jacobi matrix

f ′(x̃) with x̃ ∈ x, where solutions of f(x) = 0,
f : D ⊆ Rn → Rn are sought. A mean value
extension (see Interval analysis : Interval
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functions and their enclosures) is then used:

P (x) ∈ P (x̌) + P ′(x)(x− x̌), whence

K(x, x̌) = P (x) (3)

= P (x̌) + P ′(x) (x− x̌)

= x̌− Y f(x̌) +
(

I − Y f ′(x)
)

(x− x̌)

is an interval extension of P . Thus, the fact that
the range of P obeys

{

P (x) | x ∈ x
}

⊆ P (x) = K(x, x̌)

coupled with the Brouwer fixed point theorem
implies that, if

K(x, x̌) ⊆ x,

then there exists a fixed point of P , and hence
solution x∗ ∈ K(x, x̌), f(x∗) = 0.

By analyzing the norm ‖I − Y f ′(x)‖, Moore
further concludes, basically, that if

∥

∥I − Y f ′(x)
∥

∥ < 1,

then any solution x∗ ∈ x must be unique; for an
exact statement and details, see [5].
Interval Newton methods and fixed point
theory.

Traditional interval Newton methods are of
the form

N(f, x, x̌) = x̌ + v, (4)

where v is an interval vector that contains all
solutions v to point systems Av = −f(x̌), for
A ∈ f ′(x), where f 0(x) is either an interval
extension to the Jacobi matrix of f over x or
an interval slope matrix; see Interval analy-
sis: Interval Newton methods and Inter-
val analysis: The slope interval Newton
method. Theorem 5.1.7 in [7] asserts that, if
N(f, x, x̌) ⊂ int(x), then there is a solution of
f(x) = 0 within N(f, x, x̌), and this solution is
unique within x. Classical fixed point theory is
used in the succinct proof of this general theo-
rem.

When the interval Gauss–Seidel method is
used to find the solution set bounds v, a very
clear correspondence to Miranda’s theorem can
be set up. This is done in [3].

On uniqueness.
In classical fixed point theory, the contrac-

tive mapping theorem (a non-generic property)
is often used to prove uniqueness. For example,
suppose P is Lipschitz with Lipschitz constant
L < 1, that is,

‖P (x)− P (y)‖ ≤ L ‖x− y‖ , for some L < 1.
(5)

Then x = P (x) and y = P (y) implies ‖x− y‖ =
‖P (x)− P (y)‖ ≤ L ‖x− y‖ , which can only
happen if x = y. (This argument appears in
many elementary numerical analysis texts, such
as [4].)

An alternate proof of uniqueness involves non-
singularity (i.e., regularity) of the map f for
which we seek x with f(x) = 0. In particular
if f(x) = Ax is linear, corresponding to a non-
singular matrix A, then f(x) = 0 and f(y) = 0
implies

0 = f(x)− f(y) = Ax−Ay = A(x− y), (6)

whence non-singularity of A implies x−y=0, i.e.
x = y.

Without interval arithmetic, the argument in
equation (6) cannot be generalized easily to non-
linear systems. Basically, invertibility implies
uniqueness, and one must somehow prove in-
vertibility. However, with interval arithmetic,
uniqueness follows directly from an equation
similar to (6), and regularity can be proven di-
rectly with an interval Newton method. In par-
ticular, if the image under the interval Newton
method (4) is bounded, then every point matrix
A ∈ f ′(x) must be non-singular. (This is be-
cause the bounds on the solution set to the lin-
ear system f ′(x)v = −f(x̌) must contain the set
solutions to all systems of the form Av = −f(x̌),
A ∈ f ′(x).) Then, the mean value theorem im-
plies that, for every x ∈ x, y ∈ x,

f(x)− f(y) = A(x− y) for some A ∈ f ′(x).
(7)

This is in spite of the fact that, in equation (7),
A is in general not equal to any f ′(x) for some
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x ∈ x. In fact, (7) follows from considering f
componentwise:

fi(y) = fi(x) +
(

∇fi(ci)
)T (y − x),

for some ci, different for each i, on the line con-
necting x and y; the matrix A ∈ f ′(x) can be
taken to have its i-th row equal to

(

∇fi(ci)
)T .

Thus, because of the non-singularity of A in (7),
f(x) = 0, f(y) = 0 implies 0 = A(x − y) and
x = y.

Summarizing the actual results,

N(f, x, x̌) ⊂ int(x), (8)

where N(f, x, x̌) is as in equation (4) and int(x)
represents the interior of x, then classical fixed-
point theory combined with properties of inter-
val arithmetic implies that there is a unique so-
lution to f(x) = 0 in N(f, x, x̌), and hence in
x.

If slope matrices are used in place of an in-
terval Jacobi matrix f ′(x), then equation (7) no
longer holds, and condition (8) no longer implies
uniqueness. However, a two-stage process, in-
volving evaluation of an interval derivative over
a small box containing the solution and evalua-
tion of a slope matrix over a large box containing
the small box, leads to an even more powerful
existence and uniqueness test than using inter-
val Jacobi matrices alone. This technique per-
haps originally appeared in [9]. An statement
and proof of the main theorem can also be found
in [3, Theorem 1.23, p. 64].
On infinite-dimensional problems.

Many problems in infinite-dimensional spaces
(e.g. certain variational optimization problems)
can be written in the form of a compact oper-
ator fixed point equation, x = P (x), where P :
S → S is some compact operator operating on
some normed linear space S. In many such cases,
P is approximated numerically from a finite-
dimensional space of basis functions {φi}n

i=1
(e.g. splines or finite element basis functions φi),
and the approximation error can be computed.
That is, P (x) = Pn(y)+Rn(y), where y ∈ Rn is
an approximation to x ∈ S, and Rn(y) is the er-
ror that is computable as a function of y. Thus,

a fixed point iteration can be set up of the form

y ← P̃n(y) ≡ Pn(y) + Rn(y), (9)

where y ∈ Rn. (The dimension n can be in-
creased as iteration proceeds.)

For equation (9), the Schauder fixed point the-
orem is an analogue of the Brouwer fixed point
theorem; see [1, p. 154]. Furthermore, interval
extensions can be provided to both Pn and Rn,
so that an analogue to finite-dimensional com-
putational fixed point theory exists. In particu-
lar, if

P̃n(y) ⊂ int(y), (10)

then there exists a fixed point of P within the
ball in S centered at the midpoint of y and with
radius equal to the radius of y. (For these pur-
poses,

y =
n

∑

i=1

aiφi

can be identified with the interval vector
(a1, . . . , an)T corresponding to the coefficients
in the expansion.) For details, see [6, Chapter
15]. Also see [2] for a theoretical development
and various examples worked out in detail.
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[1] Istrăţescu, V. I.: Fixed Point Theory: An Intro-

duction, Reidel, Hingham, MA, 1981.
[2] Kaucher, E. W., and Miranker, W. L.: Self-

Validating Numerics for Function Space Problems,
Academic Press, Orlando, 1984.

[3] Kearfott, R. B.: Rigorous Global Search: Con-
tinuous Problems, Kluwer, Dordrecht, Netherlands,
1996.

[4] Kincaid, D., and Cheney, W.: Numerical Analy-
sis, Brooks/Cole, Monterey, California, 1991.

[5] Moore, R. E.: ‘A Test for Existence of Solutions
to Nonlinear Systems’, SIAM J. Numer. Anal. 14,
no. 4 (September 1977), 611–615.

[6] Moore, R. E.: Computational Functional Analysis,
Horwood, Chichester, England, 1985.

[7] Neumaier, A.: Interval Methods for Systems of
Equations, Cambridge University Press, Cambridge,
England, 1990.

[8] Plum, M.: ‘Inclusion Methods for Elliptic Boundary
Value Problems’, in J. Herzberger (ed.): Topics in
Validated Computations, Studies in Computational
Mathematics, North-Holland, 1994, pp. 323–380.

[9] Rump, S. M.: ‘Verification Methods for Dense and
Sparse Systems of Equations’, in J. Herzberger

Schauder fixed point theorem



file: kearfo02 date: January 6, 1998 4

(ed.): Topics in Validated Computations, Elsevier
Science Publishers, 1994, pp. 63–135.

R. Baker Kearfott
Department of Mathematics

University of Southwestern Louisiana
U.S.L. Box 4-1010, Lafayette, LA 70504-1010 USA

E-mail address: rbk@usl.edu

AMS1991SubjectClassification: 65G10, 65H20.
Key words and phrases: fixed point iteration,
automatic result verification, interval computa-
tions, global optimization.


