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INTERVAL FIXED POINT THEORY

Introduction.

Interval methods (interval Newton methods
and the Krawczyk method) can be used to prove
existence and uniqueness of solutions to linear
and nonlinear finite-dimensional and infinite-
dimensional systems, given floating-point ap-
proximations to such solutions. (See Interval
analysis: The Krawczyk method, Interval
analysis: Interval Newton methods, Inter-
val analysis: The slope interval Newton
method, and [6, 8].) In turn, these existence-
proving interval operators have a close relation-
ship with the classic theory of fixed-point itera-
tion. This relationship is sketched here.

Classical fixed point theory and interval
arithmetic.

Various fixed point theorems, applicable in fi-
nite or infinite dimensional spaces, state roughly
that, if a mapping maps a set into itself, then
that mapping has a fixed point within that set.
For example, the Brouwer fixed point theorem
states that, if D is homeomorphic to the closed
unit ball in R™ and P is a continuous mapping
such that P maps D into D, then P has a fixed
point in D, that is, there is an x € D with
x = P(x).

Interval arithmetic can be naturally used to
test the hypotheses of the Brouwer fixed point
theorem. An interval extension P of P has the
property that, if & is an interval vector with
x C D, then P(x) contains the range {P(z) |
T € :13}, and an interval extension P can be
obtained simply by evaluating P with interval
arithmetic. Furthermore, with outward round-
ings, this evaluation can be carried out so that
the floating point intervals (whose end points
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are machine numbers) rigorously contain the ac-
tual range of P. (See Interval analysis: In-
troduction, interval numbers, and basic
properties of interval arithmetic.) Thus, if
P(x) C x, one can conclude that P has a fixed
point within x.

Another fixed point theorem, Miranda’s theo-
rem, follows from the Brouwer fixed point theo-
rem, and is directly useful in theoretical studies
of several interval methods. Miranda’s theorem
is most easily stated with the notation of inter-
val computations: Suppose & C R” is an inter-
val vector, and for each i, look at the lower i-th
face x; of x, defined to be the interval vector all
of whose components except the i-th component
are those of &, and whose i-th component is the
lower bound gz, of the i-th component x; of x.
Define the upper i-th face x; of = similarly. Let
P: x— R" P(z) = (Pi(x), P2(2),...,Py(x))
be continuous, and let P = (Pq, Pa,..., P,) be
any interval extension of P. Miranda’s theorem
states that, if

then P has a fixed point within x.
The Krawczyk method and fixed point
theory.

Moore provided one of the earlier careful anal-
yses of interval Newton methods in [5]. There,
the Krawczyk method was analyzed as follows:
The chord method is defined as

P(r) =z —Yf(x) (2)

where the iteration matrix is normally taken
to be Y = (f’(i‘))_l for some Jacobi matrix
f/(z) with & € x, where solutions of f(z) = 0,
f: D CR"” — R" are sought. A mean value

extension (see Interval analysis : Interval
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functions and their enclosures) is then used:

P(z) € P@)+ P(x)(xz—12), whence
K(x,z) = P(x) (3)
= PE) + P(x) (x-—1)

= z-Yf@)+{I-Y[f(x)(x—1)

is an interval extension of P. Thus, the fact that
the range of P obeys

{P(z)|z€x} C P(x)=K(z,i)

coupled with the Brouwer fixed point theorem
implies that, if

K(2,7) C =,

then there exists a fixed point of P, and hence
solution z* € K (x, ), f(z*) =0.

By analyzing the norm || — Y f'(x)||, Moore
further concludes, basically, that if

|11 -Yf'(x)] <1,

then any solution z* € & must be unique; for an
exact statement and details, see [5].
Interval Newton methods and fixed point
theory.

Traditional interval Newton methods are of
the form

N(f,z,&) =%+ v, (4)

where v is an interval vector that contains all
solutions v to point systems Av = —f(z), for
A € f'(x), where f'(x) is either an interval
extension to the Jacobi matrix of f over x or
an interval slope matrix; see Interval analy-
sis: Interval Newton methods and Inter-
val analysis: The slope interval Newton
method. Theorem 5.1.7 in [7] asserts that, if
N(f,x,%) C int(x), then there is a solution of
f(x) = 0 within N(f,x, &), and this solution is
unique within @x. Classical fixed point theory is
used in the succinct proof of this general theo-
rem.

When the interval Gauss—Seidel method is
used to find the solution set bounds v, a very
clear correspondence to Miranda’s theorem can
be set up. This is done in [3].

Interval analysis :
Interval analysis: Interval Newton methods
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On uniqueness.

In classical fixed point theory, the contrac-
tive mapping theorem (a non-generic property)
is often used to prove uniqueness. For example,
suppose P is Lipschitz with Lipschitz constant
L < 1, that is,

|P(x) — P(y)|l < L||lx—yl|, forsomelL < 1.

()

Then z = P(x) and y = P(y) implies ||z — y|| =
|P(z) — P(y)|| < L|lz—y|l, which can only
happen if z = y. (This argument appears in
many elementary numerical analysis texts, such
as [4].)

An alternate proof of uniqueness involves non-
singularity (i.e., regularity) of the map f for
which we seek = with f(z) = 0. In particular
if f(x) = Az is linear, corresponding to a non-
singular matrix A, then f(z) =0 and f(y) =0
implies

0=f(z) = fly) = Az — Ay = Az —y), (6)
whence non-singularity of A implies z—y=0, i.e.
T =1y.

Without interval arithmetic, the argument in
equation (6) cannot be generalized easily to non-
linear systems. Basically, invertibility implies
uniqueness, and one must somehow prove in-
vertibility. However, with interval arithmetic,
uniqueness follows directly from an equation
similar to (6), and regularity can be proven di-
rectly with an interval Newton method. In par-
ticular, if the image under the interval Newton
method (4) is bounded, then every point matrix
A € f'(x) must be non-singular. (This is be-
cause the bounds on the solution set to the lin-
ear system f'(xz)v = — f(&) must contain the set
solutions to all systems of the form Av = — f(Z),
A € f'(x).) Then, the mean value theorem im-
plies that, for every = € x, y € x,

f(x) = f(y) = A(x —y) for some A € f'(x).
(7)

This is in spite of the fact that, in equation (7),
A is in general not equal to any f’(z) for some
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x € x. In fact, (7) follows from considering f
componentwise:

fiy) = filx) + (Vi) (y — ),

for some ¢;, different for each i, on the line con-
necting x and y; the matrix A € f'(x) can be
taken to have its i-th row equal to (Vfi(ci))T.
Thus, because of the non-singularity of A in (7),
f(x) =0, f(y) = 0 implies 0 = A(zx — y) and
T =y.

Summarizing the actual results,

N(f,x,z) C int(x), (8)

where N(f, x, ) is as in equation (4) and int(x)
represents the interior of x, then classical fixed-
point theory combined with properties of inter-
val arithmetic implies that there is a unique so-
lution to f(z) = 0 in N(f,«, %), and hence in
x.

If slope matrices are used in place of an in-
terval Jacobi matrix f’(x), then equation (7) no
longer holds, and condition (8) no longer implies
uniqueness. However, a two-stage process, in-
volving evaluation of an interval derivative over
a small box containing the solution and evalua-
tion of a slope matrix over a large box containing
the small box, leads to an even more powerful
existence and uniqueness test than using inter-
val Jacobi matrices alone. This technique per-
haps originally appeared in [9]. An statement
and proof of the main theorem can also be found
in [3, Theorem 1.23, p. 64].

On infinite-dimensional problems.

Many problems in infinite-dimensional spaces
(e.g. certain variational optimization problems)
can be written in the form of a compact oper-
ator fixed point equation, z = P(z), where P :
S — S is some compact operator operating on
some normed linear space S. In many such cases,
P is approximated numerically from a finite-
dimensional space of basis functions {¢;};
(e.g. splines or finite element basis functions ¢;),
and the approximation error can be computed.
That is, P(x) = P,(y) + R, (y), where y € R™ is
an approximation to x € S, and R,,(y) is the er-
ror that is computable as a function of y. Thus,

Schauder fized point theorem
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a fixed point iteration can be set up of the form

yHPn(y) EPn(y)+Rn(y)’ (9)

where y € R". (The dimension n can be in-
creased as iteration proceeds.)

For equation (9), the Schauder fized point the-
orem is an analogue of the Brouwer fixed point
theorem; see [1, p. 154]. Furthermore, interval
extensions can be provided to both P, and R,,
so that an analogue to finite-dimensional com-
putational fixed point theory exists. In particu-
lar, if

Pa(y) C int(y), (10)

then there exists a fixed point of P within the
ball in S centered at the midpoint of y and with
radius equal to the radius of y. (For these pur-
poses,

n
y=>y aid
i=1

can be identified with the
(ai,...,a,)T corresponding to the coefficients
in the expansion.) For details, see [6, Chapter

interval vector

15]. Also see [2] for a theoretical development
and various examples worked out in detail.
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