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INTERVAL NEWTON METHODS

Introduction.
Interval Newton methods combine the classi-

cal Newton method, the mean value theorem,
and interval analysis. The result is an itera-
tive method that can be used both to refine
enclosures to solutions of nonlinear systems of
equations, to prove existence and uniqueness of
such solutions, and to provide rigorous bounds
on such solutions, including tight and rigorous
bounds on critical points of constrained opti-
mization problems. Interval Newton methods
can also prove non-existence of solutions within
regions. Such capabilities can be used in iso-
lation, for example, to provide rigorous error
bounds for an approximate solution obtained
with floating point computations, or as an inte-
gral part of global branch and bound algorithms.
Univariate interval Newton methods.

For the fundamental concepts used through-
out this explanation, see Interval analysis :
Introduction, interval numbers and basic
properties of interval arithmetic.

Suppose f : x = [x, x] → R has a continuous
first derivative on x, suppose that there exists
x∗ ∈ x such that f(x∗) = 0, and suppose that
x̌ ∈ x. Then, since the mean value theorem im-
plies

0 = f(x∗) = f(x̌) + f ′(ξ)(x∗ − x̌),

we have x∗ = x̌− f(x̌)/f ′(ξ)

for some ξ ∈ x. If f ′(x) is any interval extension
of the derivative of f over x, then

x∗ ∈ x̌− f(x̌)/f ′(x) for any x̌ ∈ x. (1)

(Note that, in certain contexts, a slope set for f
centered at x̌ may be substituted for f ′(x); see

Interval analysis: The slope interval New-
ton method or [1] for further references.) Equa-
tion (1) forms the basis of the univariate interval
Newton operator :

N(f , x, x̌) = x̌− f(x̌)/f ′(x). (2)

Because of (1), any solutions of f(x) = 0 that
are in x must also be in N(f , x, x̌). Further-
more, local convergence of iteration of the inter-
val Newton method (2) is quadratic in the sense
that the width of N(f , x, x̌) is roughly propor-
tional to the square of the width of x. Further-
more, if an interval derivative extension (in con-
trast to an interval slope) is used for f ′(x), then

N(f , x, x̌) ⊂ int(x),

where int(x) represents the interior of x, implies
that there is a unique solution of f(x) = 0 within
N(f , x, x̌), and hence within x.
Multivariate interval Newton methods.

Multivariate interval Newton methods are
analogous to univariate ones in the sense that
they obey an iteration equation similar to equa-
tion (2), and in the sense that they have qua-
dratic convergence properties and can be used to
prove existence and uniqueness. However, mul-
tivariate interval Newton methods are compli-
cated by the necessity to bound the solution set
of a linear system of equations with interval co-
efficients.

Suppose now that f : Rn → Rn, suppose
x is an interval vector (i.e. a box ), and suppose
that x̌ ∈ Rn. (If interval derivatives, rather than
slope sets, are to be used, then further suppose
that x̌ ∈ x.) Then a general form for multivari-
ate interval Newton methods is

N(f, x, x̌) = x̌ + v, (3)
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where v is an interval vector that contains all
solutions v to point systems Av = −f(x̌), for
A ∈ f ′(x), where f 0(x) is an interval extension
to the Jacobi matrix of f over x. (Under certain
conditions, f ′ may be replaced by an interval
slope matrix.) As with the univariate interval
Newton method, under certain natural smooth-
ness conditions,

• N(f, x, x̌) must contain all solutions x∗ ∈
x with f(x∗) = 0. (Consequently, if
N(f, x, x̌) ∩ x = ∅, then there are no solu-
tions of f(x) = 0 in x.)

• For x containing a solution of f(x) = 0
and the widths of the components of x suf-
ficiently small, the width of N(f, x, x̌) is
roughly proportional to the square of the
widths of the components of x.

• If N(f, x, x̌) ⊂ int(x), where int(x) rep-
resents the interior of x, then there is
a unique solution of f(x) = 0 within
N(f , x, x̌), and hence within x.

For details and further references, see [1, §1.5].
Finding the interval vector v in the iteration

formula (3), that is, bounding the solution set
to the interval linear system

f ′(x)v = −f(x̌),

is a major aspect of the multivariate interval
Newton method. Finding the narrowest possi-
ble intervals for the components of v is, in gen-
eral, an NP-hard problem. (See Interval anal-
ysis: Linear equalities and inequalities and
Interval analysis: Complexity analysis in
interval problems.) However, procedures that
are asymptotically good in the sense that the
overestimation in v decreases as the square of
the widths of the elements of f ′ can be based on
first preconditioning the interval matrix f ′(x)
by the inverse of its matrix of midpoints or by
other special preconditioners (see [1, Ch. 3]),
then applying the interval Gauss–Seidel method
or interval Gaussian elimination.
On existence-proving properties.

The existence-proving properties of interval
Newton methods can be analyzed in the frame-
work of classical fixed-point theory. See Inter-
val analysis: Fixed point theorem, or [1,
§1.5.2]. Of particular interest in this context is a
variant interval Newton method, not fitting di-
rectly into the framework of formula (3), that
is derived directly by considering the classical
chord method (Newton method with fixed itera-
tion matrix) as a fixed point iteration. Called the
Krawczyk method , this method has various nice
theoretical properties, but its image is usually
not as narrow as other interval Newton meth-
ods. See Interval analysis: The Krawczyk
method and [1, p. 56].

Uniqueness-proving properties of interval
Newton methods are based on proving that each
point matrix formed elementwise from the inter-
val matrix f ′(x) is non-singular.
An example.

For an exampe of a multivariate interval New-
ton method, take

f1(x) = x2
1 − x2

2 − 1

f2(x) = 2x1x2,

with

x =
(

[0.9, 1.2]
[−0.1, 0.1]

)

, x̌ =
(

1.05
0

)

.

An interval extension of the Jacobi matrix for f
is

f ′(x) =
(

2x1 −2x2

2x2 2x1

)

,

and its value at x is
(

[1.8, 2.4] [−0.2, 0.2]
[−0.2, 0.2] [1.8, 2.4]

)

.

The usual procedure (although not required in
this special case) is to precondition the system

f ′(x)v = −f(x̌),

say, by the inverse of the midpoint matrix

Y =
(

1.05 0
0 1.05

)−1

=
(

0.95 0
0 0.95

)
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to obtain

Y f ′(x)v = −Y f(x̌),

i.e.
(

[1.71, 2.28] [−.19, .19]
[−.19, .19] [1.71, 2.28]

)

v =
(

−.095
0

)

.

The interval Gauss–Seidel method can then be
used to compute sharper bounds on v = x− x̌,

beginning with v =
(

[−0.15, 0.15]
[−0.1, 0.1]

)

. That is,

ṽ1 =
(

− 0.095− [−0.19, 0.19]v2
)/

[1.71, 2.28]

⊂ [−0.06667,−0.03333].

Thus, the first component of N(f, x, x̌) is

x̌ + v ⊂ [0.9833, 1.0167].

In the second step of the interval Gauss–Seidel
method,

ṽ2 =
(

0− [−0.19, 0.19]ṽ1
)/

[1.71, 2.28]

⊂ [−0.007408, 0.007408],

so, rounded out to four digits, N(f, x, x̌) is com-
puted to be
(

[0.9833, 1.0167]
[−0.007408, 0.007408]

)

⊂
(

[0.9, 1.2]
[−0.1, 0.1]

)

.

This last inclusion proves that there exists a
unique solution to f(x) = 0 within x, and hence,
within N(f, x, x̌). Furthermore, iteration of the
procedure will result in bounds on the exact so-
lution that become narrow quadratically.
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