
EXISTENCE VERIFICATION FOR HIGHER DEGREE SINGULAR
ZEROS OF NONLINEAR SYSTEMS∗

R. BAKER KEARFOTT† AND JIANWEI DIAN‡

SIAM J. NUMER. ANAL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 41, No. 6, pp. 2350–2373

Abstract. Finding approximate solutions to systems of n nonlinear equations in n real variables
is a much studied problem in numerical analysis. Somewhat more recently, researchers have developed
numerical methods to provide mathematically rigorous error bounds on such solutions. (We say that
we “verify” existence of the solution within those bounds on the variables.) However, when the
Jacobi matrix is singular at the solution, no computational techniques to verify existence can handle
the general case. Nonetheless, computational verification that one or more solutions exists within a
region in complex space containing the real bounds is possible by computing the topological degree.
In a previous paper, we presented theory and algorithms for the simplest case, when the rank-defect
of the Jacobian matrix at the solution is 1 and the topological index is 2. Here, we generalize that
result to arbitrary topological index d ≥ 2: We present theory, algorithms, and experimental results.
We also present a heuristic for determining the degree, obtaining a value that we can subsequently
verify with our algorithms. Although execution times are slow compared to corresponding bound
verification processes for nonsingular systems, the order with respect to system size is still cubic.

Key words. complex nonlinear systems, interval computations, verified computations, singu-
larities, topological degree

AMS subject classifications. 65G10, 65H10

DOI. 10.1137/S0036142901386057

1. Introduction. Solution of linear and nonlinear systems of equations is a
fundamental problem in numerical analysis, underlying much, if not most, of modern
scientific computation. A system of n equations in n unknowns, where the expressions
defining the system are defined in some closed, bounded subset D of n-dimensional
space, may be expressed mathematically by

F (x) = 0, F : D ⊂ R
n → R

n.(1.1)

Throughout scientific computing, floating point arithmetic is used to solve equa-
tions (1.1) approximately. If F is linear, for example, then various direct (Gaussian
elimination–based) methods, or iterative methods such as the preconditioned conju-
gate gradient method, are used. If F is nonlinear, then numerical solution of (1.1)
involves various iterative methods, and the corresponding computer code can be so-
phisticated or involve numerous heuristics. In both the linear and nonlinear cases,
the result of the computation is an approximate solution vector x̌ ∈ R

n, F (x̌) ≈ 0.
Hopefully, x̌ is near an exact or “true” solution x∗, F (x∗) = 0, such that ‖x̌− x∗‖ is
small.1 However, with a few exceptions, the computation that produces the approx-
imate solution x̌ does not give a bound on ‖x̌− x∗‖. Indeed, it is not hard to find

∗Received by the editors March 2, 2001; accepted for publication (in revised form) June 16, 2003;
published electronically December 17, 2003. This work was partially supported by National Science
Foundation grant DMS-9701540.

http://www.siam.org/journals/sinum/41-6/38605.html
†Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504 (rbk@

louisiana.edu).
‡Hewlett–Packard Company, 3000 Waterview Parkway, Richardson, TX 75080 (jianwei dian@hp.

com).
1Except when explicitly noted, we assume only that the norm is some fixed norm (independent

of x), since the norm is discussed in terms of the order O (‖ · ‖) and since we are working in finite-
dimensional spaces.

2350

HIGHER DEGREE EXISTENCE VERIFICATION 2351

instances of practical problems for which the output vector x̌ of an algorithm to solve
a nonlinear system of the form (1.1) is not near a true solution at all, and for which
the modeler does not recognize this fact; see, for example, [5].

On the other hand, efficient methods have been available for some time to con-
struct bounds about such approximate solutions x̌ at which a true solution is known
to exist. Specifically, an interval vector

x = ([x1, x1], [x2, x2], . . . , [xn, xn])
T(1.2)

is found such that each width w([xi, xi]) = xi − xi is small (a small multiple of
the machine precision, depending on the problem), and such that the computational
process has proven mathematically (with no uncertainty due to roundoff error) that
there is an exact solution x∗ ∈ x. Although it is not universally recognized within
the general numerical analysis community, such methods can be developed to be
practical more often than not and can give rigorous bounds that both are tighter than
heuristic error estimates and are obtained with less effort; see, for example, [15]. An
explanation of these methods appears in [6, 11, 17] and in numerous other works. The
mathematical assumptions under which such verification methods can be expected to
be successful are basically that the Jacobi matrix for the system is continuous and
nonsingular at the solution; see the aforementioned references for a precise statement
of the assumptions. For a practical implementation of such methods (with interval
arithmetic), the function residuals and Jacobi matrix need to be representable as a
computer program.

Although these verification methods involve interval arithmetic, notorious for
impracticality due to overestimation when naively used, the intervals (the coordinates
of x) in a posteriori verification computations are small. It is known, from both
theory and practice, that the overestimation in such small intervals is asymptotically
insignificant, making such methods more generally applicable.

In this work, we consider not finding an approximate solution x̌ but constructing
and verifying bounds x about such a point x̌ (however found) such that an exact
solution x∗ lies within x. Specifically, we address the following problem.

Given F : D → R
n, where D is some closed, bounded subset of

R
n with nonempty interior, and given an approximate solution

x̌ ∈ D, construct bounds x ∈ IR
n, x̌ ∈ x, with x as in (1.2), for

which we rigorously verify
• there exists an x∗ ∈ x such that F (x∗) = 0.

(1.3)

Throughout this paper, by “rigorous” we mean “with the same standard as for a
traditional mathematical proof.” Our algorithms for such verification will employ
techniques derived from traditional floating point computations but will use directed
roundings to take the finite nature of floating point arithmetic into account.

As is seen in [6, 11, 17] and elsewhere, when the Jacobian matrix F ′(x∗) is well-
conditioned and not too quickly varying, interval computations have no trouble prov-
ing that there is a unique solution within small boxes with x∗ reasonably near the
center. (Various techniques, such as those in [16], can be used to initially construct
the bounds over which the verification algorithm proceeds.) However, when F ′(x∗)
is ill-conditioned or singular, in general, no computational techniques can verify the
existence of a solution within a given region x of Rn. Indeed, common thinking among
researchers in such verification methods has been that verification is not possible in

2352 R. BAKER KEARFOTT AND JIANWEI DIAN

the singular case. Nonetheless, in [14] we introduced an algorithm for computational
but rigorous verification, in the singular case, that a given number of true solutions
exists within a region in complex space containing x. There we studied the simplest
case, when the rank-defect of the Jacobian matrix at the solution is one, and we
developed and experimentally validated algorithms for the case when the topologi-
cal index is 2. There, we also proved the special case of Theorem 3.1 (see section 3
below) when d = 2. Under the same assumptions as those in section 2 below, we
developed specialized versions of the algorithms in section 4 below, and we presented
varying-dimensional experimental results in [14].

We were surprised and pleased that the results in [14] could be generalized so
easily. In particular, we developed an alternate simple, general proof for Theorem 3.1
below. Furthermore, the algorithms in section 4 below, although not taking advantage
of special efficiencies in the degree-2 case as in [14], are similar in structure and have
the same computational complexity as the algorithms in [14].

The developments below proceed by thinking of the function F in terms of a
model of the form

F (x) =M(x) +R(x),(1.4)

whereM(x) is a Taylor approximation to F about x∗ and R(x) is the error term. The
number of solutions to F (x) = 0 is determined according to the topological degree
(reviewed in section 1.2 below) of F . In Theorem 3.1 (see section 3 below) we show
that, if F (x) =M(x), whereM(x) has some verifiable properties, then the topological
degree of F must equal d. (This proves existence, since the topological degree over
a region in complex space is equal to the number of solutions in the region, counting
multiplicities.) Basing the computations on the structure of M , we use a heuristic
test to guess the integer d. Speaking roughly, we then take account of both roundoff
error and the error term R(x) with interval computations. In particular, we use the
structure of M to efficiently arrange an exhaustive search that rigorously verifies that
the topological degree actually is d. Even though the search is exhaustive, completion
of the search requires only the same order of magnitude of computational work as a
step of Newton’s method on the system; this is due to the postulated structure of M
and the way we have arranged the search.

As explained in [14, section 1.4], if d is even, it is meaningless to discuss the
existence of a solution in R

n within the framework of errors in the data, model, and
floating point system, since the topological degree in real space in such cases may
be equal to 0. The even d case is a generalization of the situation with f(x) = x2

at x = 0: The function f itself has a unique solution at x = 0, yet perturbations
of f result in either no solutions or two solutions near x = 0. In contrast, f(z) =
(1+ε1)z

2+ε2z+ε3, |εi| small for i = 1, 2, 3, has two solutions, counting multiplicities,
in all sufficiently large (but with diameters that can be chosen to be O (ε) as ε→ 0)
open sets in C containing z = 0. This illustrates a general phenomenon: Whereas
small perturbations of the data change the existence of (one or more) solutions near a
particular point in R

n, the solutions vary continuously with perturbations of complex
extensions. We have presented one precise statement of this in Theorem 3.1 of [4]:
Under the assumptions in that theorem (essentially, that the Jacobi matrix have rank
defect 1 at the solution, and that certain derivative tensors up to order d vanish),
d(F,x, 0) = 0 for a box x ∈ R

n whenever d is even (and d(F,x, 0) = ±1 over
such a box when d is odd). Thus, in that case when d is even (and, we believe, in
many fairly general cases) verifying the value of the topological degree within the real

HIGHER DEGREE EXISTENCE VERIFICATION 2353

context cannot verify existence of the solution. In contrast, d(F,z, 0) must always be
nonzero if there is a z ∈ z with F (z) = 0 and 0 �∈ ∂z, for z ⊂ C

n. Also, the number
of solutions counting multiplicities can change under perturbations in R

n, even for
odd-order functions such as x3, for which we can use techniques such as those in [4]
to prove existence; in contrast, d(F,z, 0) gives the exact number of solutions within
z, counting multiplicities, for complex-valued functions F of complex variables z.

In this paper, we consider the case of general d, to verify the existence of solutions
in small neighborhoods of C

n, as illustrated in problem (1.5) below. Our hope is that
such verification will be useful in analysis of systems having even-order roots, even
though the validation is in a different space; in any case, rigorous validation of such
systems in the original space may not be possible and may not be meaningful if
the system was derived from measurements with errors. (We present special theory,
analysis, and algorithms for the real case and odd-order roots in [4].)

Given F , D, and x̌ as in problem (1.3), consider an analytic
extension F̃ of F to a domain D̃ ⊆ C

n,D ⊂ D̃. Construct bounds
x as in problem (1.3) and y = ([y

1
, y1], . . . , [yn, yn]), 0 ∈ y, for

which we rigorously verify the following:
• there exists a z∗ ∈ z such that F̃ (z∗) = 0, where
• z =

{
(x1 + iy1, x2 + iy2, . . . , xn + iyn)

T ∈ C
n

∣∣
xj ∈ xj , yj ∈ yj , 1 ≤ j ≤ n

}
.

(1.5)

Hiding detail and revealing overall ideas, we have simplified the notation in this work,
compared to that in [14].

After introducing our notation in section 1.1, we briefly review the relevant por-
tions of topological degree theory in sections 1.2 and 1.3. We introduce our use of
the structure of the model M(x) in section 2. We present our scheme for setting the
coordinate bounds x within which we prove the existence of solutions in section 2.2;
though related, this scheme is improved and works more generally than that in [14]. In
section 3, we show that the degree must be equal to d if F (x) =M(x) (i.e., R(x) = 0),
within the context introduced in section 2. In section 4, we present the algorithm that
verifies that the degree is d for nonzero R(x), within the framework introduced in sec-
tion 2. In section 5, we present an easily implemented heuristic computation for
guessing the value of d, necessary for the verification algorithm in section 4. Finally,
in section 6.3 we present results of trying the computations on several examples; these
results illustrate that the algorithm can be practical for a variety of problems, and
that the computation does not necessarily increase rapidly with the dimension of the
problem.

1.1. Notation. We assume familiarity with the fundamentals of interval arith-
metic; see [1, 6, 11, 17, 19] for introductory material.

Throughout, scalars and vectors will be denoted by lower case, while matrices
will be denoted by upper case. Intervals, interval vectors (also called “boxes”), and
interval matrices will be denoted by boldface. For instance, x = (x1, . . . ,xn) denotes
an interval vector, A = (ai,j) denotes a point matrix, and A = (ai,j) denotes an
interval matrix. The midpoint of an interval or interval vector x will be denoted by
m(x). As in section 1, w(x) denotes the width of an interval x = [x, x], that is,
w(x) = x − x; if x represents an interval vector, then the midpoint m(x) and width
w(x) will be real vectors, understood componentwise. Real n-space will be denoted by
R

n, while complex n-space will be denoted by C
n. The set of real interval vectors will

be denoted by IR
n, while the set of complex interval vectors will be denoted by IC

n.

2354 R. BAKER KEARFOTT AND JIANWEI DIAN

Suppose x = (x1, . . . ,xn) is an n-dimensional real box, where xk = [xk, xk]. The
nonoriented boundary of x, denoted by ∂x, consists of 2n (n − 1)-dimensional real
boxes

xk ≡ (x1, . . . ,xk−1, xk,xk+1, . . . ,xn) and xk ≡ (x1, . . . ,xk−1, xk,xk+1, . . . ,xn),

where k = 1, . . . , n.
The orientation of a region D ⊂ R

n and of its boundary ∂D is a generalization
of the concept of orientation of a region and its boundary (counterclockwise being
positive orientation) in complex analysis, or of the concepts of orientation of a region
and its boundary when applying Green’s theorem or Stokes’ theorem; see [3, pp.
4–10] or [2], for example, for a detailed formal definition. In particular, a simplex
〈a(0), a(1), . . . , a(n)〉, a(k) ∈ R

n, 0 ≤ k ≤ n, is positively oriented, provided that a
certain determinant formed from the coordinates of the points a(k) is positive, and
is negatively oriented if that determinant is negative; polygonal regions formed by
juxtaposing such oriented simplexes have a positive orientation, provided that each
component simplex is positively oriented.

To explain the algorithms in this paper, we need concern ourselves only with
the derived orientation of the boundary of an interval vector (i.e., of a box) x. The
following “definition” can be derived as a theorem from the general definition of
a positively oriented polygonal region. (For a more detailed presentation, see our
technical report [13, pp. 7–8].)

Definition 1.1. Suppose that a box x as in (1.2) is positively oriented. Then
the positively oriented boundary b(x) is given by the formal sum

n∑
k=1

{
(−1)kxk + (−1)k+1xk

}

of the 2n (n− 1)-dimensional boxes xk and xk.
Our model M(x) of F (x) as in (1.4) is a multivariate Taylor polynomial. In

particular we will write a component fi of F as

fi(x) = fi(x̌) +

d∑
j=1

1

j!
Djfi(x̌)[x− x̌, . . . , x− x̌] +O (‖x− x̌‖)d+1

,(1.6)

where

Djfi(x̌)[x− x̌, . . . , x− x̌]

=

n∑
k1=1

· · ·
n∑

kj=1

∂jfi
∂xk1

· · · ∂xkj

(x̌)(xk1 − x̌k1) · · · (xkj − x̌kj)
(1.7)

is the jth derivative tensor.
In our verification algorithms, the domains will be interval vectors, i.e., rectangu-

lar boxes x. However, we state some of the known topological degree theory results
more generally, in terms of the closed, bounded set D with nonempty interior that we
introduced above.

1.2. Formulas from degree theory. In [14], we reviewed the topological de-
gree in the context of this paper. Also see [2, 3, 8, 9, 18, 20]. Here, we repeat several
properties used in the proofs in subsequent sections.

HIGHER DEGREE EXISTENCE VERIFICATION 2355

Although a formal definition of the topological degree is somewhat cumbersome,
one obtains an intuitive understanding of the topological degree from its properties.
In particular, for n = 1, the topological degree of F at 0 over an interval x, denoted
d(F,x, 0), is the number of times the graph of F crosses the x-axis in the positive
direction, minus the number of times the graph of F crosses the x-axis in the negative
direction. If F : C→ C and D is a simply connected region (a region without holes,
such as a disk) containing the origin in C, then the topological degree d(F,D, 0) is
equal to the winding number of F with respect to the curve bounding D. Because
of this fact, d(pd,D, 0) = d, where pd is any polynomial of degree d and D is any
sufficiently large simply connected domain in C with 0 ∈ D (where the size depends
on the particular pd). Thus, in C, the topological degree roughly corresponds to the
notion of algebraic degree, which is the same as the number of solutions, counting
multiplicity. If we think of D as being the closure of a very small region containing
a solution z∗, F (z∗) = 0, then d(F,D, 0) is termed the topological index of z∗; the
topological index corresponds to the multiplicity of z∗. For example, the topological
index of zd at z∗ = 0 is equal to d. In this paper, we prove the existence of solutions
within small domainsD by verifying, essentially, that the topological index is nonzero.

Formal definitions of the topological degree can be given analytically (in terms
of an integral) as in [18, Chapter 6], or in terms of fundamental concepts of algebraic
topology, as in [2]. In either case, either definition can be obtained as a theorem,
starting with the other one as the definition. We can actually think of the degree in
terms of the following.

Theorem 1.2 (see [18, p. 150]). Suppose that F is continuous, and suppose
that the Jacobian matrix F ′(x) is defined and nonsingular at each zero of F within a
domain D, which is the closure of an open region in R

n, and suppose that F (x) �= 0
when x ∈ ∂D. Then, the degree d(F,D, 0) is equal to the number of zeros of F at
which the determinant of the Jacobian matrix F ′(x) is positive, minus the number of
zeros of F at which the determinant of the Jacobian matrix F ′(x) is negative.

Basically, Theorem 1.2 states that the degree is an algebraic number of zeros of F
in D when the Jacobian matrix is nonsingular at each zero. However, the degree does
not change as F is perturbed, and we can imagine the degree remaining defined as two
or more zeros of F coalesce into a single zero at which the Jacobian matrix is singular
(important in our context here). Similarly, F need only be continuous (not necessarily
differentiable) for d(F,D, 0) to be defined. To define the degree for arbitrary contin-
uous functions that do not vanish on the boundary ∂D, the analytic definition as in
[18, Chapter 6] uses an integral and mollifying functions, whereas the topological def-
inition approximates the image of the boundary ∂D with a piecewise-linear simplicial
complex (similar to how engineers approximate an object with triangles for the finite
element method, except that the topologist’s simplicial complex is oriented).

Starting either from the analytical definition of [18] or from the algebraic-topologi-
cal definition of [2], we obtain the following properties of the degree. These properties
are what will concern us in our verification procedures.

Theorem 1.3 (see [18, p. 150]). Let F , G : D ⊂ R
n → R

n be two continuous
functions that do not vanish on ∂D. If F (x) = G(x) for x ∈ ∂D, then d(F,D, 0) =
d(G,D, 0).

Theorem 1.3 states one of the most important properties of degree: The degree
depends only on the function values on the boundary.

Theorem 1.4 (see [18, p. 157]). Let F , G : D ⊂ R
n → R

n be two continuous
functions. If

0 �∈ {tF (x) + (1− t)G(x)|x ∈ ∂D and t ∈ [0, 1]},

2356 R. BAKER KEARFOTT AND JIANWEI DIAN

then

d(F,D, 0) = d(G,D, 0).

Theorem 1.4 is the famous Poincaré–Bohl theorem. It is a particular case of
the homotopy invariant property of the topological degree. Since D is compact,
this homotopy invariance implies, without too much argument, that the degree is a
continuous function of F .

Corollary 1.5. Suppose F : D ⊂ R
n → R

n is continuous and d(F,D, 0) = d.
Then there is an ε > 0 such that, for all continuous G : D→ R

n with |F (x)−G(x)| < ε
for x ∈ D, d(F,D, 0) = d(G,D, 0).

Suppose F : D ⊂ C
n → C

n is analytic, and view the real and imaginary com-
ponents of F and its argument z ∈ C

n as real components in R
2n. Let z = x + iy

and F (z) = u(x, y) + iv(x, y), where x = (x1, . . . , xn), y = (y1, . . . , yn), u(x, y) =
(u1(x, y), . . . , un(x, y)), and v(x, y) = (v1(x, y), . . . , vn(x, y)). We define D̃ by

D̃ ≡ {(x1, y1, . . . , xn, yn)|(x1 + iy1, . . . , xn + iyn) ∈ D}
and F̃ : D̃ ⊂ R

2n → R
2n by F̃ = (u1, v1, . . . , un, vn). We then have the following

properties.
Theorem 1.6 (see [14]). Suppose that F : D ⊂ C

n → C
n is analytic, with

F (z) �= 0 for any z ∈ ∂D, and suppose that D̃ and F̃ : D̃ → R
2n are defined

as above. Then d(F̃ , D̃, 0) is nonnegative and is equal to the number of solutions
z∗ ∈ D, F (z∗) = 0, counting multiplicities.

1.3. A basic degree computation formula. Theorem 1.7 below relates the
basic theory of the topological degree to the computational verification procedures
in section 4 below. Theorem 1.7 is similar to Theorem 2.5 of [14]. We can obtain
Theorem 1.7 from formulas (4.12) and (4.14) in [20], by taking into account the
orientations of the faces of x.

Theorem 1.7 characterizes d(F,x, 0) in terms of certain components of F on ∂x.
In particular, set

F¬k(x) ≡
(
f1(x), . . . , fk−1(x), fk+1(x), . . . , fn(x)

)
.

Then we have the following result.
Theorem 1.7. Let s ∈ {−1, 1} be fixed arbitrarily, suppose F �= 0 on ∂x, and

suppose that there is a p, 1 ≤ p ≤ n, such that
1. F¬p ≡ (f1, . . . , fp−1, fp+1, . . . , fn) �= 0 on ∂xk or ∂xk, k = 1, . . . , n; and
2. the Jacobi matrices of F¬p are nonsingular at all solutions of F¬p = 0 on ∂x

and are continuous in a neighborhood of such solutions.
Then

d(F,x, 0) = (−1)p−1s




n∑
k=1

(−1)k
∑
x∈xk

F¬p(x)=0

sgn(fp(x))=s

sgn

∣∣∣∣ ∂F¬p

∂x1x2 · · ·xk−1xk+1 · · ·xn
(x)

∣∣∣∣

+
n∑

k=1

(−1)k+1
∑
x∈x

k
F¬p(x)=0

sgn(fp(x))=s

sgn

∣∣∣∣ ∂F¬p

∂x1x2 · · ·xk−1xk+1 · · ·xn
(x)

∣∣∣∣




.

HIGHER DEGREE EXISTENCE VERIFICATION 2357

2. Assumptions and choice of box. In this section, we present the basic
assumptions. We also introduce how we choose the coordinate bounds xi = [xi, xi]
to satisfy the assumptions and enable more efficient algorithms. When the rank of
F ′(x∗) is n− p for some p > 0, an appropriate preconditioner can be used to reduce
F ′(x) to approximately the pattern shown in Figure 2.1. (See [11] and [14] for details
on preconditioning.)

Y F ′(x) ≈




1 0 · · · 0

p︷ ︸︸ ︷∗ · · · ∗
0 1 0 · · · 0 ∗ · · · ∗
...

...
. . .

...
...

0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0




.

Fig. 2.1. An approximate form for a preconditioned singular interval system of approximate
rank n− p, where “∗” represents a nonzero element.

In the analysis to follow, we assume that the system has already been precondi-
tioned, so that it is, to within second-order terms with respect to w(x), of the form
in Figure 2.1. That is, we assume that the preconditioned system is of the form seen
in Figure 2.1 if we interpret “∗” to represent any interval, “1” to represent intervals
of the form [1 − O (‖x− x∗‖) , 1 + O (‖x− x∗‖)], and “0” to represent intervals of
the form [−O (‖x− x∗‖) ,O (‖x− x∗‖)]. Here as in [14], we concentrate on the case
p = 1.

2.1. The basic assumptions. As in the special case d = 2 of [14], we assume
1. F : D ⊂ R

n → R
n can be extended to an analytic function in C

n.
2. x = (x1, . . . ,xn) = ([x1, x1], . . . , [xn, xn]) is a small box constructed to be
centered at an approximate solution x̌, i.e., m(x) = (x̌1, . . . , x̌n).

3. x̌ is near a point x∗ with F (x∗) = 0 such that ‖x̌− x∗‖ is much smaller than
the norm of the width of the box x, and the width of the box x is small
enough that mean value interval extensions lead, after preconditioning, to a
system like Figure 2.1, with small intervals replacing the zeros.

4. F has been preconditioned as in Figure 2.1, and F ′(x∗) has null space of
dimension 1.

Define

αk ≡ ∂fk
∂xn

(x̌), 1 ≤ k ≤ n− 1,
αn ≡ −1,
∆1 ≡

∣∣∣∣ ∂F

∂x1 · · · ∂xn
(x̌)

∣∣∣∣
∆l ≡

n∑
k1=1

· · ·
n∑

kl=1

∂lfn
∂xk1

· · · ∂xkl

(x̌)αk1 · · ·αkl
, 2 ≤ l.

2358 R. BAKER KEARFOTT AND JIANWEI DIAN

The following representation of F (x) near x̌ is appropriate under these assumptions:

fk(x) = (xk − x̌k) + αk(xn − x̌n) +O (‖x− x̌‖)2(2.1)

for 1 ≤ k ≤ n− 1,

fn(x) =

d∑

=2

1

 !
D
fn(x̌)[x− x̌, . . . , x− x̌] +O (‖x− x̌‖)d+1

.(2.2)

Here and below, “d” is a fixed constant that represents the postulated topological
index (obtained, say, with the heuristic in section 5 below); the index d will be verified
with our proposed algorithms (in section 4 below).

We now introduce additional notation to describe the complex extensions. For F :
R

n → R
n, extend F to complex space: x+iy, with y in a small box y =

(
y1, . . . ,yn

)
=(

[y
1
, y1], . . . , [yn, yn]

)
, where y is centered at (0, . . . , 0). As in Theorem 1.6 above,

define x̃ ≡ (x,y) ≡ (x1,y1, . . . ,xn,yn) = ([x1, x1], [y1
, y1], . . . , [xn, xn], [yn, yn]),

uk(x, y) ≡ �(fk(x+ iy)) and vk(x, y) ≡ �(fk(x+ iy)). With this, define

F̃ (x, y) ≡ (u1(x, y), v1(x, y), . . . , un(x, y), vn(x, y)) : R
2n → R

2n.

Also define

F̃¬un
(x, y) ≡ (

u1(x, y), v1(x, y), . . . , un−1(x, y), vn−1(x, y), vn(x, y)
)
.

Then, based on (2.1) and (2.2), for 1 ≤ k ≤ (n− 1),

uk(x, y) = (xk − x̌k) + αk(xn − x̌n)

+ O (‖(x− x̌, y)‖)2 ,

vk(x, y) = yk + αkyn +O (‖(x− x̌, y)‖)2 ,


(2.3)

or

uk(x, y) ≈ (xk − x̌k) + αk(xn − x̌n),
vk(x, y) ≈ yk + αkyn.

}
(2.4)

2.2. Choosing the coordinate bounds. In our verification algorithms below,
we drastically reduce the amount of computation required by astutely choosing the
ratios of coordinate widths of the boxes x and y. We will use a scheme similar to
that of section 5 of [14]. In particular, having defined xk and xk in section 1.1, we
define yk and yk similarly:

yk ≡ (x1,y1, . . . ,xk−1,yk−1,xk, yk,xk+1,yk+1, . . . ,xn,yn) and

yk ≡ (x1,y1, . . . ,xk−1,yk−1,xk, yk,xk+1,yk+1, . . . ,xn,yn).

To compute the degree d(F̃ , x̃, 0), we will consider F̃¬un on the boundary of x̃. This
boundary consists of the 4n faces x1, x1, y1, y1, . . ., xn, xn, yn, yn. We will set xn

and yn so that the coordinate widths w(xk) obey

w(xn) ≤ 1
2

min
1≤k≤n−1

{
w(xk)

|αk|
}

and w(yn) ≤
1

2
min

1≤k≤n−1

{
w(yk)

|αk|
}

.(2.5)

HIGHER DEGREE EXISTENCE VERIFICATION 2359

In the above two relationships, when αk = 0 for some k, that particular k can be
ignored in obtaining the minima, and w(xk) and w(yk) can be set to any small
positive values as long as the assumptions in section 2.1 are met. If αk = 0 for
k = 1, . . . , n − 1, then w(xk) and w(yk), k = 1, . . . , n, can independently be set to
any small positive values, as long as the assumptions in section 2.1 are met.

Constructing the box widths this way will make it unlikely that uk(x, y) = 0 on
either xk or xk and unlikely that vk(x, y) = 0 on either yk or yk, for k = 1, . . . , n−1.
This, in turn, will allow us to replace searches on 4n − 4 of the 4n faces of ∂x̃ by
simple interval evaluations, reducing the total computational cost dramatically. See
[14] for details.

A difference between the scheme used here and that of [14] is the way the ratio
w(yn)/w(xn) is chosen. In [14], w(yn) was chosen large relative to xn, to arrange no
solutions of un = 0 on yn and yn. When the degree is odd, that is not possible, and
we have found the strategy represented by formula (4.1) below, implying w(yn) small
relative to w(xn), as in Figure 4.1 below, to be more convenient.

3. When the polynomial model is exact. In [14] we proved that, under

the assumptions in section 2, if the O (‖x− x̌‖)2 term is absent in (2.1) and the

O (‖x− x̌‖)d+1
term is absent in (2.2) with d = 2, and if ∆1 = 0 but ∆2 �= 0, then

d(F̃ , x̃, 0) = 2. Here, we generalize that result to ∆1 = · · · = ∆d−1 = 0, ∆d �=
0. Since the degree doesn’t change under small perturbations of the function F̃
(see Theorem 1.5 above), the conclusion in Theorem 3.1 below also holds for more

general continuous functions for which the O (‖x− x̌‖)2 and O (‖x− x̌‖)d+1
terms

are not absent but are sufficiently small. In our computational existence verification
algorithm in the next section, we use interval arithmetic to rigorously encompass the
O (‖x− x̌‖)2 and O (‖x− x̌‖)d+1

terms. In this way, Theorem 3.1 below provides
guidance for construction of our general algorithm.

Theorem 3.1. Suppose that
1. x̃ is a nondegenerate box in R

2n as defined in section 2;
2. (x̌, y̌) = (x̌1, y̌1, . . . , x̌n, y̌n) is the midpoint of x̃;
3. F and F̃ are as in section 2;
4. F is such that the O (‖x− x̌‖)2 and O (‖x− x̌‖)d+1

terms in (2.1) and (2.2)
are absent; and

5. ∆1 = · · · = ∆d−1 = 0, ∆d �= 0, where 2 ≤ d.
Then d(F̃ , x̃, 0) = d.

In contrast to the proof in [14], we use a homotopy argument to prove Theo-
rem 3.1.

Proof. Let z = (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn). Then

F (z) = (f1(z), . . . , fn−1(z), fn(z)),

where

fk(z) = (zk − žk) +
∂fk
∂xn

(x̌)(zn − žn)

= (zk − žk) + αk(zn − žn)

for 1 ≤ k ≤ n− 1,

fn(z) =

d∑

=2

1

 !
D
fn(x̌)[z − ž, . . . , z − ž].(3.1)

2360 R. BAKER KEARFOTT AND JIANWEI DIAN

We construct A : Cn → C
n by

A(z) = (a1(z), . . . , an−1(z), an(z)),

where

ak(z) = (zk − žk) + αk(zn − žn) for 1 ≤ k ≤ n− 1,

an(z) =
(−1)d∆d

d!
(zn − žn)

d.(3.2)

Let rk(x, y) ≡ �(ak(x + iy)) and sk(x, y) ≡ �(ak(x + iy)). With this, define Ã :
R

2n → R
2n by

Ã(x, y) ≡ (r1(x, y), s1(x, y), . . . , rn(x, y), sn(x, y)).

We construct G : Cn → C
n by

G(z) = (g1(z), . . . , gn−1(z), gn(z)),

where

gk(z) = (zk − žk) for 1 ≤ k ≤ n− 1,

gn(z) =
(−1)d∆d

d!
(zn − žn)

d.(3.3)

Let pk(x, y) ≡ �(gk(x + iy)) and qk(x, y) ≡ �(gk(x + iy)). With this, define G̃ :
R

2n → R
2n by

G̃(x, y) ≡ (p1(x, y), q1(x, y), . . . , pn(x, y), qn(x, y)).

We will prove d(F̃ , x̃, 0) = d(Ã, x̃, 0) = d(G̃, x̃, 0). First, we prove d(F̃ , x̃, 0) =
d(Ã, x̃, 0).

Define

H̃1((x, y), t) ≡ tF̃ (x, y) + (1− t)Ã(x, y)

and H1(z, t) ≡ tF (z) + (1− t)A(z).

We will prove that H̃1((x, y), t) �= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1]. It is clear that
H̃1((x, y), t) = 0 is equivalent to H1(z, t) = 0, so we consider H1(z, t). The definition
of H1 and some rearrangement of terms give

H1(z, t) =
(
(z1 − ž1) + α1(zn − žn), . . . , (zn−1 − žn−1) + αn−1(zn − žn),

tfn(z) + (1− t)
(−1)d∆d

d!
(zn − žn)

d
)
.

Thus, H1(z, t) = 0 implies zk = žk − αk(zn − žn) for k = 1, . . . , n− 1. By definition,
αn = −1, and thus zn = žn−αn(zn−žn). Substituting zk−žk = −αk(zn−žn) for each
such k (k = 1, 2, . . . , n) in the derivative tensor evaluation D
fn(x̌)[z − ž, . . . , z − ž]
in (3.1), we obtain

D
fn(x̌)[z − ž, . . . , z − ž] = (−1)
∆
(zn − žn)

, 2 ≤ ≤ d.(3.4)

HIGHER DEGREE EXISTENCE VERIFICATION 2361

Since we are assuming that ∆
, < d, vanish, (3.4) and (3.1) give

fn(z) =
(−1)d∆d

d!
(zn − žn)

d.(3.5)

Thus, the last component of H1(z, t) is

tfn(z) + (1− t)
(−1)d∆d

d!
(zn − žn)

d

= t
(−1)d∆d

d!
(zn − žn)

d + (1− t)
(−1)d∆d

d!
(zn − žn)

d

=
(−1)d∆d

d!
(zn − žn)

d.

Then, H1(z, t) = 0 implies (zn − žn)
d = 0, and consequently, zn − žn = 0 or zn = žn.

This implies zk = žk − αk(zn − žn) = žk for k = 1, . . . , n− 1.
Now we know that H1(z, t) has a unique zero at (ž1, . . . , žn−1, žn). This is saying

that H̃1((x, y), t) has a unique zero at (x̌, y̌), which is the midpoint of nondegenerate
box x̃. Thus, H̃1((x, y), t) �= 0 for (x, y) ∈ ∂x̃ and t ∈ [0, 1]. Then, by Theorem 1.4,

d(F̃ , x̃, 0) = d(Ã, x̃, 0).

Next, we prove d(Ã, x̃, 0) = d(G̃, x̃, 0). Define

H̃2((x, y), t) ≡ tÃ(x, y) + (1− t)G̃(x, y)

and H2(z, t) ≡ tA(z) + (1− t)G(z).

We will prove that H̃2((x, y), t) �= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1]. It is clear that
H̃2((x, y), t) = 0 is equivalent to H2(z, t) = 0, so we consider H2(z, t). The definition
of H2 and some rearrangement of terms give

H2(z, t) =
(
(z1 − ž1) + tα1(zn − žn), . . . , (zn−1 − žn−1) + tαn−1(zn − žn),

(−1)d∆d

d!
(zn − žn)

d
)
.

Because of the last component of H2(z, t), H2(z, t) = 0 implies zn = žn. Then,
from the first n− 1 components of H2(z, t), H2(z, t) = 0 implies zk = žk − tαk(zn −
žn) = žk for k = 1, . . . , n − 1. Thus, H2(z, t) has a unique zero at (ž1, . . . , žn−1, žn).
This is saying that H̃2((x, y), t) has a unique zero at (x̌, y̌), which is the midpoint of
the nondegenerate box x̃. Thus, H̃2((x, y), t) �= 0 for (x, y) ∈ ∂x̃ and t ∈ [0, 1]. Then,
by Theorem 1.4,

d(Ã, x̃, 0) = d(G̃, x̃, 0).

Next, we prove d(G̃, x̃, 0) = d. Perturb G(z) by an arbitrary small ε to define

Gε(z) = (g1ε(z), . . . , g(n−1)ε(z), gnε(z)),

where

gkε(z) = gk(z) = (zk − žk) for 1 ≤ k ≤ n− 1,

gnε(z) = gn(z) + ε =
(−1)d∆d

d!
(zn − žn)

d + ε.(3.6)

2362 R. BAKER KEARFOTT AND JIANWEI DIAN

Let pkε(x, y) ≡ �(gkε(x+ iy)) and qkε(x, y) ≡ �(gkε(x+ iy)). With this, define

G̃ε(x, y) ≡ (p1ε(x, y), q1ε(x, y), . . . , pnε(x, y), qnε(x, y)).

It is obvious that pkε(x, y) = xk − x̌k and qkε(x, y) = yk − y̌k for k = 1, . . . , n − 1.
Assume that ε is small enough. Then Gε(z), and thus G̃ε(x, y), have d zeros z̃ =
(z̃1, . . . , z̃n−1, z̃n), or x̃ = (x̃1, ỹ1, . . . , x̃n−1, ỹn−1, x̃n, x̃n) in x̃, with z̃k − žk = 0, or
x̃k − x̌k = 0 and ỹk − y̌k = 0 for k = 1, . . . , n − 1, and (z̃n − žn)

d = d!ε
(−1)d+1∆d

�= 0.
∂gnε

∂zn
(z̃) = (−1)d∆d

(d−1)! (z̃n − žn)
d−1 �= 0.

∣∣∣∣∣ ∂G̃ε

∂x1∂y1 . . . ∂xn∂yn
(x̃)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...
...
. . .

...
...

0 0 · · · 1 0 0

0 0 · · · 0 ∂pnε

∂xn

∂pnε

∂yn

0 0 · · · 0 ∂qnε

∂xn

∂qnε

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
∂pnε

∂xn

∂pnε

∂yn
∂qnε

∂xn

∂qnε

∂yn

∣∣∣∣∣ =
∣∣∣∣∣

∂pnε

∂xn

∂pnε

∂yn

−∂pnε

∂yn

∂pnε

∂xn

∣∣∣∣∣(3.7)

=

(
∂pnε
∂xn

)2

+

(
∂pnε
∂yn

)2

=

∣∣∣∣∂gnε∂zn
(z̃)

∣∣∣∣
2

> 0.

Thus, by Theorem 1.2, d(G̃ε, x̃, 0) = d, and then d(G̃, x̃, 0) = d by Theorem 1.5.
Finally,

d(F̃ , x̃, 0) = d(G̃, x̃, 0) = d.

Unless the components of F are exactly linear and degree-d polynomials, the
O (‖x− x̌‖)2 and O (‖x− x̌‖)d+1

terms in (2.1) and (2.2) are not absent. However,
since d(F,z, 0) is a continuous function of F , d(F,z, 0) will still be equal to d if the
widths w(xk − x̌k) (and hence ‖xk − x̌k‖) are small, for 1 ≤ k ≤ n. Nonetheless,
the proof of Theorem 3.1 does not lead to a practical computational verification
technique that the degree is d for such more general F : If we try to verify H(z, t) �= 0
or H̃((x, y), t) �= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1], then it would require an inordinate
amount of work for a verification process that would normally require only a single
step of an interval Newton method in the nonsingular case. First, we would need
to compute ∆d, which involves all partial derivatives of order 1 and order d. This
is expensive when both n and d are large. Second, we would need to know where
the solutions of un(x) = 0 and vn(x) = 0 are on xn, xn, yn, and yn when zk =
žk − tαk(zn − žn), and the search process for such solutions is expensive.

We could try to verify H(z, t) �= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1] in another
way: verify that H(z, t) = 0 has a unique solution in the interior of x̃ when t ∈ [0, 1].
However, we will run into the singular situation again if we do that.

In fact, there is an alternative algorithm to verify that the degree is d. That will
be the subject of the next section.

HIGHER DEGREE EXISTENCE VERIFICATION 2363

4. Algorithm to verify a nonzero topological degree. The algorithm we
present here is similar to the algorithm in [14]. Based on Theorem 1.7 in section 1.2,
the following theorem underlies our algorithm.

Theorem 4.1. Suppose that
1. uk �= 0 on xk and xk, and vk �= 0 on yk and yk, k = 1, . . . , n− 1;
2. F̃¬un = 0 has solutions, if there are any, on xn and xn with yn in the interior

of yn, and F̃¬un = 0 has solutions, if there are any, on yn and yn with xn

in the interior of xn;
3. un �= 0 at the solutions of F̃¬un

= 0 in condition 2; and
4. the Jacobi matrices of F̃¬un

are nonsingular at the solutions of F̃¬un
= 0 in

condition 2.
Then, for a fixed s ∈ {−1, 1},

d(F̃ , x̃, 0) = −s
∑

xn=x
n

F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 · · ·xn−1yn−1yn
(x, y)

∣∣∣∣∣

+ s
∑

xn=xn
F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 · · ·xn−1yn−1yn
(x, y)

∣∣∣∣∣

+ s
∑

yn=y
n

F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 · · ·xn−1yn−1xn
(x, y)

∣∣∣∣∣

− s
∑

yn=yn
F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 · · ·xn−1yn−1xn
(x, y)

∣∣∣∣∣ .

Proof. Condition 1 implies F̃ �= 0 on xk, xk, yk, and yk, k = 1, . . . , n − 1, and
conditions 2 and 3 imply F̃ �= 0 on xn, xn, yn, and yn. Thus, F̃ �= 0 on ∂x̃. Now,

condition 1 implies F̃¬un �= 0 on ∂xk, ∂xk, ∂yk, and ∂yk, k = 1, . . . , n − 1. ∂xn

consists of 2(n− 1) (2n− 2)-dimensional boxes, each of which is either embedded in
some xk, xk, yk, or yk, 1 ≤ k ≤ n−1, or is embedded in ∂yn or ∂yn. Thus, by 1 and

2, F̃¬un �= 0 on ∂xn. Similarly, F̃¬un �= 0 on ∂xn, ∂yn, and ∂yn. Thus, condition 1
in Theorem 1.7 is satisfied. Finally, with condition 4, all the conditions of Theorem
1.7 are satisfied. The formula is thus obtained.

By constructing the box x̃ according to (2.5), we can verify uk �= 0 on xk and xk,
and vk �= 0 on yk and yk, k = 1, . . . , n−1, since uk(x, y) ≈ (xk−x̌k)+αk(xn−x̌n) �= 0
on xk and xk, and vk(x, y) ≈ yk + αkyn �= 0 on yk and yk. This needs only 4n − 4
interval evaluations. Then, we need to search only the four faces xn,xn,yn, and

yn for solutions of F̃¬un
(x, y) = 0, regardless of how large n is. The four faces xn,

xn, yn, and yn remaining to be searched are (2n − 1)-dimensional boxes. However,
exploitation of (2.3) will reduce the search for solutions of F̃¬un(x, y) = 0 on the
(2n− 1)-dimensional boxes to a one-dimensional search. We use xn as an example to
explain this.

On xn, xn = xn. We know from (2.3) that if xn is known precisely, formally

solving uk(x,y) = 0 for xk gives sharper bounds x̃k with w(x̃k) = O (‖(x− x̌,y)‖)2,

2364 R. BAKER KEARFOTT AND JIANWEI DIAN

1 ≤ k ≤ n − 1. Then, we can divide yn into smaller subintervals. For a small
subinterval y0

n of yn, we can formally solve vk(x,y) = 0 for yk to get sharper bounds

ỹk with w(ỹk) = O(max(‖(x− x̌,y)‖2, ‖y0
n‖)), 1 ≤ k ≤ n − 1. Thus, we have

reduced the search to searching the one-dimensional interval yn, much less costly
than searching a (2n− 1)-dimensional box when n is large. Furthermore, if we know
approximately where the solutions of F̃¬un

(x, y) = 0 are, we can reduce even the
cost of the one-dimensional search. To this end, we will next analyze the solutions of
F̃¬un

(x, y) = 0 on the four faces xn, xn, yn, and yn.
To expedite the search, we obtain approximate locations of the places on xn,

xn, yn, and yn where F̃¬un(x, y) = 0. To obtain these locations, we assume that

the O (‖x− x̌‖)2 terms in (2.1) and the O (‖x− x̌‖)d+1
terms in (2.2) are absent.

Proceeding as in the proof of Theorem 3.1, we plug zk − žk = −αk(zn − žn), k =
1, . . . , n− 1, into fn(z) to obtain

fn(z) =
(−1)d∆d

d!
(zn − žn)

d

as before. Thus, un(x, y) = �(fn(z)) =
{
(−1)d∆d/d!

}�((zn − žn)
d) and vn(x, y) =

�(fn(z)) =
{
(−1)d∆d/d!

}�((zn − žn)
d). Setting zn − žn = r(cos(θ) + i sin(θ)), we

obtain un(x, y) =
{
(−1)d∆d/d!

}
r cos(dθ) and vn(x, y) =

{
(−1)d∆d/d!

}
r sin(dθ), so

un(x, y) = 0 is equivalent to cos(dθ) = 0 and vn(x, y) = 0 is equivalent to sin(dθ) = 0.
If we choose xn and yn such that

w(yn)

w(xn)
= tan

(π

4d

)
, that is, w(yn) = tan

(π

4d

)
w(xn),(4.1)

then all solutions of vn(x, y) = 0, and consequently all solutions of F̃¬un(x, y) = 0,
are arranged in a known pattern on xn, xn, yn, and yn. In particular, on xn, x̃n =
xn. vn(x, y) = 0 has a unique solution ỹn = 0. Substituting these into the conditions

xk = x̌k − αk(xn − x̌n),
yk = −αkyn,

}
1 ≤ k ≤ n− 1,(4.2)

we get the unique solution of F̃¬un(x, y) = 0 with

(x̃, ỹ) = (x̌1 − α1(xn − x̌n), 0, . . . , x̌n−1 − αn−1(xn − x̌n), 0, xn, 0) .

Similarly, F̃¬un(x, y) = 0 has a unique solution on xn with

(x̃, ỹ) = (x̌1 − α1(xn − x̌n), 0, . . . , x̌n−1 − αn−1(xn − x̌n), 0, xn, 0).

On yn, ỹn = y
n
. vn(x, y) = 0 has d− 1 solutions with

x̃n = x̌n +
w(yn)

2 tan
(
mπ
d

) , m = d− 1, d− 2, . . . , 1.(4.3)

Substituting these into (4.2) gives the d− 1 solutions (x̃, ỹ) of F̃¬un
(x, y) = 0 with

(x̃, ỹ) =
(
x̌1 − α1 (x̃n − x̌n) , α1yn, . . . , x̌n−1 − αn−1 (x̃n − x̌n) ,

− αn−1yn, x̃n, yn

)
.

HIGHER DEGREE EXISTENCE VERIFICATION 2365

✲

✻

xn

yn

xnxn

yn

yn

vn = 0vn = 0

vn = 0 vn = 0

vn = 0
vn = 0

un = 0un = 0

un = 0 un = 0

un = 0

un = 0

✠

✒
�✿

Fig. 4.1. The zero structure when d is odd. Here, d = 3. vn = 0 on solid lines, and un = 0 on
dashed lines. The thick dots are the solutions of F̃¬un (x, y) = 0 on ∂x̃.

Similarly, F̃¬un(x, y) = 0 has d− 1 solutions on yn with

(x̃, ỹ) = (x̌1 − α1 (x̃n − x̌n) , . . . , x̌n−1 − αn−1 (x̃n − x̌n) ,

− αn−1yn, x̃n, yn) .

For example, Figure 4.1 gives the solutions of vn(x, y) = 0 on the four faces xn, xn,
yn, and yn when d = 3.

To use the above analysis to find approximations to the solutions of F̃¬un
= 0

on the faces we search, we need to know d; we present a heuristic for d in section 5
below.

Now, we present our algorithm. The algorithm consists of three phases:
1. the box-construction phase, where we set x̃,
2. the elimination phase, where we use interval evaluations to verify that uk �= 0
on xk and xk, and vk �= 0 on yk and yk, where 1 ≤ k ≤ n − 1, and thus
eliminate those 4n− 4 faces, and

3. the search phase, where we
(a) search xn, xn, yn, and yn to locate the solutions of F̃¬un(x, y) = 0,

(b) compute the signs of un and determinants of the Jacobi matrices of F̃¬un

at those solutions,
(c) compute the degree contributions of each of the four faces xn, xn, yn,

and yn according to Theorem 4.1, and
(d) finally sum up to get the degree.

Algorithm 1.
INPUT: An approximate solution x̌ ∈ D ⊆ R

n and a heuristically derived guess d for
the topological index of the solution to F̃ (z) = 0 near x̌. (See section 5 below.)
OUTPUT: Either “A solution is verified” or “Verification failed.” If a so-
lution is verified, then also output real bounds x ⊂ R

n, x̌ ∈ x, and imaginary bounds
y ∈ R

n, 0 ∈ y, such that a solution of F̃ (z) = 0 must lie in (x1+ iy1, . . . ,xn+ iyn) ∈
IC

n.

2366 R. BAKER KEARFOTT AND JIANWEI DIAN

Box-setting phase.
1. Compute the preconditioner of the original system, using Gaussian elimina-
tion with full pivoting.

2. Set the widths of xk and yk (see explanation below), for 1 ≤ k ≤ n− 1.
3. Set the width of xn as in (2.5).
4. Set the width of yn to be the minimum of that obtained from conditions (2.5)
and (4.1).

Elimination phase.
Do for 1 ≤ k ≤ n− 1
1. DO for xk and xk

(a) Compute the mean-value extension of uk over that face.
(b) IF 0 ∈ uk, THEN STOP and signal failure.
END DO

2. DO for yk and yk
(a) Compute the mean-value extension of vk over that face.
(b) IF 0 ∈ vk, THEN STOP and signal failure.
END DO

Search phase.
1. Set the value of s ∈ {+1,−1}.

(a) Initialize s to be +1. Initialize search lower and search upper to be false.
(See the second note below.)

(b) DO for xn and xn

i. Use mean-value extensions for uk(x,y) = 0 to solve for xk to get

sharper bounds x̃k with width O (‖(x− x̌,y)‖)2, 1 ≤ k ≤ n − 1,
and thus to get a subface x0

n (or x0
n) of xn (or xn.).

ii. IF x̃k ∩ xk = ∅, THEN CYCLE.
iii. Compute the mean-value extension un over x0

n (or x0
n).

iv. IF un contains 0, THEN
A. set search lower (or search upper) to be true
B. CYCLE.
END IF

v. IF un does not contain 0, THEN set s = −sgn(un).
END DO

(c) IF un does not contain 0 on both xn and xn,
THEN set s to be the opposite sign to the sign of un on xn, and
IF un has different signs on xn and xn,
THEN set search lower to be true.

2. For xn (or xn), IF search lower (or search upper) is true,
THEN apply Algorithm 2 with xn (or xn) and 0 as input, to compute the
degree contribution of xn (or xn).

3. For yn (or yn)

(a) Use (4.3) to compute the x̃m
n , m = d − 1, d − 2, . . . , 1, x̃d−1

n < x̃d−2
n <

· · · < x̃1
n, corresponding to the d− 1 approximate solutions of F̃¬un = 0

on yn.
(b) Divide xn into d− 1 parts xm

n , m = 1, . . . , d− 1, as follows:
x1
n = [xn, (x̃

d−1
n + x̃d−2

n)/2],

xm
n = [(x̃

d−(m−1)
n + x̃d−m

n)/2, (x̃d−m
n + x̃

d−(m+1)
n)/2]

for m = 2, . . . , d− 2, and xd−1
n = [(x̃2

n + x̃1
n)/2, xn].

(c) DO for m = 1, . . . , d− 1
i. Set a subface ym

n of yn (or ym
n of yn) by replacing xn by xm

n .

HIGHER DEGREE EXISTENCE VERIFICATION 2367

ii. Apply Algorithm 3 with ym
n and x̃m

n as inputs, to compute the degree
contribution of ym

n (or ym
n).

END DO
(d) Add the degree contributions in the last step to get the degree contri-

bution of yn (or yn).
4. Add the degree contributions of xn, xn, yn, and yn to get the overall degree.
Notes for Algorithm 1.
1. In step 3 of the box-setting phase, the width w(xn) of xn depends on the
accuracy of the approximate solution x̌ of the system F (x) = 0: w(xn) should
be much larger than |x̌k − x∗

k|, but also should be small enough to make a
quadratic model accurate over the box.

2. We may set s to minimize the amount of work required to evaluate the sum
in Theorem 4.1. In particular, if we know sgn(un) = σ on a large number of
faces, then setting s = −σ will eliminate the need to search those faces.

Algorithm 2.
INPUT: xn (or xn) and y from Algorithm 1.
OUTPUT: The contribution of xn (or xn) to the degree in Algorithm 1.

1. (a) Use mean-value extensions for uk(x,y) = 0 to solve for xk to get sharper

bounds x̃k with width O (‖(x− x̌,y)‖)2, 1 ≤ k ≤ n− 1.
(b) IF x̃k ∩ xk = ∅,

THEN RETURN the degree contribution of that face as 0.
(c) Update xk.

2. (a) Compute the mean-value extension un over that face.
(b) IF s× sgn(un) < 0,

THEN RETURN the degree contribution of that face as 0.
3. Construct a small subinterval y0

n of yn centered at y̌n.
4. (Steps 4 to 9 are identical to steps 1(d) to 1(i), respectively, of the search phase
in the algorithm in [14]. These steps are repeated here for completeness.)
(a) Use mean-value extensions for vk(x,y) = 0 to solve for yk to get sharper

bounds ỹk with width O(max(‖(x− x̌,y)‖2, ‖y0
n‖)), 1 ≤ k ≤ n−1, thus

getting a subface x0
n (or x0

n) of xn (or xn.)
(b) IF ỹk ∩ yk = ∅,

THEN STOP and signal failure.
5. (a) Set up an interval Newton method for F̃¬un

to verify existence and
uniqueness of a zero in the subface x0

n (or x0
n).

(b) IF the zero cannot be verified,
THEN STOP and signal failure.

6. Inflate y0
n as much as possible subject to verification of existence and unique-

ness of the zero of F̃¬un over the corresponding subface, and thus get a subin-
terval y1

n of yn.
7. In this step, we verify that F̃¬un = 0 has no solutions when yn ∈ yn \ y1

n.
yn \y1

n has two separate parts; we denote the lower part by yl
n and the upper

part by yu
n. We present the processing of only the lower part. The upper

part can be processed similarly.
(a) DO

i. Use mean-value extensions for vk(x,y) = 0 to solve for yk to get
sharper bounds for yk, 1 ≤ k ≤ n− 1, and thus to get a subface of
xn (or xn).

ii. Compute the mean-value extensions F̃¬un over the subface obtained
in the last step.

2368 R. BAKER KEARFOTT AND JIANWEI DIAN

iii. IF 0 ∈ F̃¬un
, THEN

A. bisect yl
n, update the lower part as a new yl

n;
B. CYCLE.
END IF
IF 0 �∈ F̃¬un , THEN EXIT the loop.

END DO
(b) DO

i. IF y1
n
≤ yln, THEN EXIT the loop.

ii. yl
n ←− [yln, yln +w

(
yl
n

)
].

iii. Use mean-value extensions for vk(x,y) = 0 to solve for yk to get
sharper bounds for yk, 1 ≤ k ≤ n− 1, and thus to get a subface of
xn (or xn).

iv. Compute the mean-value extensions F̃¬un over the subface obtained
in the last step.

v. IF 0 �∈ F̃¬un
, THEN CYCLE.

IF 0 ∈ F̃¬un
, THEN

A. yl
n ←− [yln,mid(yl

n)];
B. CYCLE.
END IF

END DO
8. (a) Compute the mean-value extension of un over x0

n (or x0
n).

(b) IF un < 0,
THEN RETURN the degree contribution of that face as 0.

9. (a) Compute | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)| (or | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)|).
(b) IF 0 ∈ | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)| (or 0 ∈ | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)|),
THEN STOP and signal failure.

10. Apply Theorem 4.1 to compute the degree contribution of xn or xn.

Algorithm 3.
INPUT: yn (or yn) and x.
OUTPUT: The contribution of yn (or yn) to the degree in Algorithm 1.

1. (a) Use mean-value extensions for vk(x,y) = 0 to solve for yk to get sharper

bounds ỹk with width O (‖(x− x̌,y)‖)2, 1 ≤ k ≤ n− 1.
(b) IF ỹk ∩ yk = ∅,

THEN RETURN the degree contribution of that face as 0.
(c) Update yk.

2. (a) Compute the mean-value extension un over that face.
(b) IF s× sgn(un) < 0,

THEN RETURN the degree contribution of that face as 0.
3. Construct a small subinterval x0

n of xn which is centered at x̌n.
4. (Steps 4 to 9 are identical to steps 2(d) to 2(i), respectively, of the search
phase in the algorithm in [14], but are included here for completeness.) Same
as step 4 of Algorithm 2, except change yk to xk, ỹk to x̃k, yk to xk, x

0
n to

y0
n, x0

n to y0
n, xn to yn, and xn to yn.

5. Same as step 5 of Algorithm 2, except change x0
n to y0

n and x0
n to y0

n.

6. Same as step 6 of Algorithm 2, except change y0
n to x0

n, y1
n to x1

n, and yn

to xn.
7. Same as step 7 of Algorithm 2, except change yn \ y1

n to xn \ x1
n.

HIGHER DEGREE EXISTENCE VERIFICATION 2369

8. Same as step 8 of Algorithm 2, except change x0
n to y0

n and x0
n to y0

n.

9. Same as step 9 of Algorithm 2, except change | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)| to
| ∂F̃¬un

∂x1y1...xn−1yn−1xn
(y0

n)| and | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)| to | ∂F̃¬un

∂x1y1...xn−1yn−1xn
(y0

n)|.
10. Same as step 10 of Algorithm 2.
Notes for Algorithms 2 and 3.
1. Algorithms 2 and 3 are identical to steps 1 and 2 of the search phase of the
algorithm in [14], except, in Algorithm 2, y̌n can be any interior point of
yn, while y̌n is assumed to equal zero in step 1 of the search phase in the
algorithm in [14]. Similarly, in Algorithm 3, x̌n can be any interior point of
xn, whereas x̌n is assumed to equal the center of xn in step 2 of the search
phase in the algorithm in [14].

2. In the overall algorithm, Algorithm 1, the actual inputs are ym
n and x̃m

n when
Algorithm 3 is applied. However, for notational simplicity, we use yn and x̌n

as inputs in the presentation of Algorithm 3.
In a certain sense, the computational complexity of Algorithms 1, 2, and 3 is

O(n3). (See [14] for detailed analysis.) Thus, the computational complexity of the
overall algorithm, Algorithm 1, is O(n3). This is the best possible order, since com-
puting preconditioners of the original system and the system F̃¬un

is necessary and
computing each preconditioner is of order O(n3).

5. A heuristic for the degree. The algorithms in section 4 require a value for
d to locate the approximate positions of solutions of F̃¬un

= 0 on the faces we search.
Here, we present a practical heuristic for the value of d.

Proceeding as in the proof of Theorem 3.1, we assume that the O (‖x− x̌‖)2
terms in (2.1) and the O (‖x− x̌‖)d+1

terms in (2.2) are absent, and we substitute
xk− x̌k = −αk(xn− x̌n), k = 1, . . . , n−1, into fn to enable us to define the univariate
function

g(xn − x̌n) =
(−1)d∆d

d!
(xn − x̌n)

d =
∆d

d!
(x̌n − xn)

d.(5.1)

Setting

K(r, xn − x̌n) ≡ g(xn − x̌n)

(xn − x̌n)r
=
∆d

d!
(x̌n − xn)

d−r,

it is clear that K(d, xn − x̌n) = ∆d/d! is independent of xn, while K(r, xn − x̌n)
depends on xn for any other r value. Letting δ be a heuristically chosen constant, we
have the following ratios:

K(d, δ(xn − x̌n))

K(d, xn − x̌n)
=

∆d

d!
∆d

d!

= 1, while

R(r) =
K(r, δ(xn − x̌n))

K(r, xn − x̌n)
=

∆d

d! (δ(x̌n − xn))
d−r

∆d

d! (x̌n − xn)d−r
= δd−r

for any other r value. The first ratio R(d) always equals 1, but R(r), r �= d, depends
on the δ value. We can choose δ to distinguish d from other r values. For example, if
we choose δ = 100, then R(r) is not smaller than 100 when r is smaller than d, and
is not larger than 0.01 when r is larger than d. Both values are sufficiently different
from 1. We can also vary the δ value to check our detection of d. Thus, R(r) is a
good heuristic to determine the value of d.

2370 R. BAKER KEARFOTT AND JIANWEI DIAN

The above discussion is based on the assumptions in section 2. However, unless the
first n−1 components of F are exactly linear and the last component is a homogeneous
degree-d polynomial of n variables, those assumptions are only approximately true. In
practice, if g(xn− x̌n) ≈ ∆d

d! (x̌n−xn)
d is an accurate approximation, then (x̌n−xn)

d

should dominate the value of g(xn − x̌n). Actually,

g(xn − x̌n) =

d−1∑
k=1

ck∆k(xn − x̌n)
k + cd∆d(xn − x̌n)

d +

∞∑
k=d+1

ck∆k(xn − x̌n)
k,

where, approximately, ∆1 = · · · = ∆d−1 = 0, ∆d �= 0. Thus, xn − x̌n and δ(xn − x̌n)

should not be too small, since
∑d−1

k=1 ck∆k(xn− x̌n)
k could dominate otherwise. They

should not be too big either, since
∑∞

k=d+1 ck∆k(xn− x̌n)
k could dominate otherwise.

If ∆k ≈ 0, k = 1, . . . , d−1, are quite accurate, then we can choose xn− x̌n very small,
so both

∑d−1
k=1 ck∆k(xn − x̌n)

k and
∑∞

k=d+1 ck∆k(xn − x̌n)
k can be ignored in the

detection of d.
The choice of xn − x̌n is independent of the settings of xk, k = 1, . . . , n, since we

only want to know what d is at that stage.
An alternative choice for detecting d is to compute the values of ∆k, k = 1, 2, . . . ,

by interval evaluations until we get some ∆k0
that is sufficiently different from 0.

Then, we can decide d = k0. The obvious disadvantage of this method is that it
is too expensive for just detecting the value of d, since computation of ∆k involves
computations of all kth-order derivatives. Furthermore, even if we actually evaluate
∆k, k = 1, 2, . . ., spending much time in the process, we still can not detect the value
of d if the magnitudes of ∆k, k = 1, . . . , d − 1, d, are not sufficiently different either
due to the problem itself or due to the range overestimation in interval computations.

6. Numerical results. In this section, we present numerical results for the
algorithm in section 4.

The testing described in this section is not meant to be exhaustive, but is meant to
illustrate that the algorithms are programmable and do succeed for a variety of prob-
lems, as well as to illustrate that the technique can be practical for higher-dimensional
problems. We emphasize that, unless there are programming blunders, the implemen-
tation can never give an incorrect result. (That is, the degree can never be incorrectly
verified to be d.) The only ways that the algorithms can fail are by either asserting
that they cannot verify that the degree is d or by running out of computer resources
(typically, CPU time limits).

6.1. Test problems. Our test problems are represented in Examples 1 through
5 below. This set includes both simple problems, such as Example 1, and slightly
more realistic problems, such as Example 4. There are both lower degree problems,
like Example 2, and slightly higher degree problems, like Example 5.

Consistent with the analysis and algorithms in this paper, the null-space of the
Jacobi matrix at the solution has dimension 1 in all of these examples. (We discuss
the higher-order rank defect case in [12].)

Examples 2, 3, and 4 are variable-dimension examples coming from finite differ-
ence discretization of a bifurcation problem. In choosing these three problems, we
looked for a simple way to vary both the actual topological index at the solution and
the dimension of the problem. Actual verification procedures for differential equation
models should differ somewhat from what is seen here, since the discretization error
should also be taken into account, to be able to assert properties about the solutions

HIGHER DEGREE EXISTENCE VERIFICATION 2371

to the differential equation itself, rather than just properties about solutions of the
discretization.

Although Examples 2, 3, and 4 have a special structure (tridiagonal systems), this
actual structure was not used in the present algorithms; that is, dense linear algebra
was used throughout. In this sense, the observed dependence of computational time on
dimension is representative, although the precise form of the nonlinearity conceivably
could make a difference.

Example 1.

f1(x1, x2) = x2
1 − x2,

f2(x1, x2) = x2
1 + x2.

Example 2 (the same as Example 3 from [14], motivated from considerations
in [7]). Set F (x) = H(x, t) = (1 − t)(Ax − x2) − tx, where A ∈ R

n×n is the matrix
corresponding to central difference discretization of the boundary value problem −u′′ =
0, u(0) = u(1) = 0, and x2 = (x2

1, . . . , x
2
n)

T . t was chosen to be equal to t1 =
λ1/(1 + λ1), where λ1 is the largest eigenvalue of A.

In Example 2, if we change the exponent of x from 2 to 3 and 4, then we get
Examples 3 and 4.

Example 3. This example is identical to Example 2, except that we set F (x) =
H(x, t) = (1− t)(Ax− x3)− tx.

Example 4. This example is identical to Example 2, except that we set F (x) =
H(x, t) = (1− t)(Ax− x4)− tx.

We tested with n = 5, 10, 20, 40, 80, and 160 for Examples 2, 3, and 4.
Example 5.

f1(x1, x2, x3) = x5
1 + x2 + x6

2 + 3x3,

f2(x1, x2, x3) = 4x
5
1 + 5x2 − 4x6

2 + 5x3 − x6
3,

f3(x1, x2, x3) = 7x
5
1 + 8x2 − 100x7

2 + 10x3 + 50x
6
3.

For each test problem, we used (0, 0, . . . , 0), the exact solution to F (x) = 0, as the
approximate solution to the problem F (x) = 0. For each problem except Example 4,
we set the widths w(xk) and w(yk) to 10

−2 for 1 ≤ k ≤ n − 1; then the algorithm
automatically computed w(xn) and w(yn). For Example 4, we set the widths w(xk)
and w(yk) to 10

−1, instead of 10−2, for 1 ≤ k ≤ n− 1. The reason for this setting for
Example 4 is that the system F (x) is flatter near the singular solution, since the degree
is higher. Because of the flatness, the condition number of the Jacobian matrix of
the system F̃¬un is larger. Then, because of this ill-conditioning, the interval Newton
method to verify the unique solutions of F̃¬un in step 5 of Algorithm 2 and step 5 of
Algorithm 3 is less efficient: More iterations can be expected. We tried 10−2 first, but
the interval Newton method was not able to verify the solutions when the maximum
allowed number of iterations was set to be the same as for Examples 2 and 3.

6.2. Test environment. We programmed the algorithms in section 4 in the
Fortran 90 environment developed and described in [10, 11]. Similarly, the test func-
tions were programmed using the same Fortran 90 system, which generated internal
symbolic representations of the functions. In the actual tests, generic routines then
interpreted the internal representations to obtain both floating point and interval
values.

The Sun Fortran 95 compiler, version 6.0, was used on a Sparc Ultra-1 model 140
(with a 140 megaHertz clock) with optimization level 0 (that is, with no optimization).

2372 R. BAKER KEARFOTT AND JIANWEI DIAN

Table 6.1
Numerical results.

Heuristic Verified
Problem n degree Success degree CPU time Time ratio

Example 1 2 2 Yes 2 0.13 -

Example 2 5 2 Yes 2 1.13 -
Example 2 10 2 Yes 2 5.99 5.30
Example 2 20 2 Yes 2 38.40 6.41
Example 2 40 2 Yes 2 273.61 7.13
Example 2 80 2 Yes 2 2198.14 8.03
Example 2 160 2 Yes 2 13033.22 5.93

Example 3 5 3 Yes 3 39.27 -
Example 3 10 3 Yes 3 10.31 0.26
Example 3 20 3 Yes 3 74.32 7.21
Example 3 40 3 Yes 3 481.23 6.48
Example 3 80 3 Yes 3 3805.06 7.91
Example 3 160 3 Yes 3 33944.20 8.92

Example 4 5 4 Yes 4 23.02 -
Example 4 10 4 Yes 4 154.00 6.69
Example 4 20 4 Yes 4 115.55 0.75
Example 4 40 4 Yes 4 3867.51 33.47
Example 4 80 4 Yes 4 6671.20 1.72
Example 4 160 4 - - - -

Example 5 3 5 Yes 5 16.43 -

Execution times were measured with the Port library routine ETIME. All times are
given in CPU seconds.

6.3. Test results. We present the numerical results in Table 6.1. The column
labels of the table are as follows:

Problem: names of the problems identified in section 6.1,
n: number of independent variables,
Heuristic degree: the heuristic value of the degree computed by the heuristic

described in section 5,
Success: whether the algorithm was successful,
Verified degree: topological degree verified by the algorithm,
CPU time: CPU time in seconds of the algorithm,
Time ratio: the ratio of two successive CPU times. This column is only meaningful

for Examples 2, 3, and 4.
The algorithm, that is, existence verification, succeeded for all problems except

Example 4 when n = 160. For that problem, we aborted the program after it ran for
36 hours.

We can see from the CPU time ratios that the algorithm is approximately of
order O(n3) for Examples 2 and 3. However, as we pointed out at the end of sec-
tion 6.1, when the degree is higher, the system F (x) is flatter near the singular
solution. Because of this ill-conditioning, the interval Newton method to verify the
unique solutions of F̃¬un in step 5 of Algorithm 2 and step 5 of Algorithm 3 will
be less efficient: More iterations should be expected, and more irregularity in timing
could occur. We can see this from the timing results of Example 4. The experimental
results are consistent with our expectations.

In certain preliminary experiments, the heuristic failed to compute the correct
value of d. The subsequent verification then returned fairly rapidly with “failure to

HIGHER DEGREE EXISTENCE VERIFICATION 2373

verify” (generally due to failure to verify that there were no solutions to uk = 0 on xk

or xk or to vk = 0 on yk or yk). The heuristic is the weakest part of the verification
process.

Although we arranged x̌ to be exactly the solution x∗, this should not be crucial
to the functioning of the algorithm, as long as the box center x̌ is a sufficiently
accurate approximation to an actual root x∗ to allow us to choose a box that is large
in relationship to this accuracy but small enough to satisfy our other criteria.

Finally, we expect that additional tuning (selection of initial box size, maximum
number of inner iterations in the interval Gauss–Seidel method, etc.) could signif-
icantly change timing and success for particular problems. The actual times could
improve significantly with a more efficient interval arithmetic environment than that
of [10, 11], such as direct use of Sun’s interval data type in Fortran.

Acknowledgments. We wish to thank both referees for their careful reading
and their valuable suggestions to make the exposition more lucid.

REFERENCES

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
New York, 1983.

[2] P. S. Alexandrov and H. Hopf, Topologie, Springer, Berlin, 1935.
[3] J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, American Mathematical

Society, Providence, RI, 1964.
[4] J. Dian and R. B. Kearfott, Existence verification for singular and non-smooth zeros of real

nonlinear systems, Math. Comp., 72 (2003), pp. 757–766.
[5] C.-Y. Gau, J. F. Brennecke, and M. A. Stadtherr, Reliable parameter estimation in VLE

modeling, Fluid Phase Equilib., 168 (2000), pp. 1–18.
[6] E. R. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.
[7] H. Jürgens, H.-O. Peitgen, and D. Saupe, Topological perturbations in the numerical non-

linear eigenvalue and bifurcation problems, in Analysis and Computation of Fixed Points,
S. M. Robinson, ed., Academic Press, New York, 1980, pp. 139–181.

[8] R. B. Kearfott, Computing the Degree of Maps and a Generalized Method of Bisection, Ph.D.
thesis, University of Utah, Salt Lake City, UT, 1977.

[9] R. B. Kearfott, An efficient degree-computation method for a generalized method of bisection,
Numer. Math., 32 (1979), pp. 109–127.

[10] R. B. Kearfott, A Fortran 90 environment for research and prototyping of enclosure algo-
rithms for nonlinear equations and global optimization, ACM Trans. Math. Software, 21
(1995), pp. 63–78.

[11] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht, The
Netherlands, 1996.

[12] R. B. Kearfott and J. Dian, Verifying topological indices for higher-order rank deficiencies,
J. Complexity, 18 (2002), pp. 589–611.

[13] R. B. Kearfott, J. Dian, and A. Neumaier, Existence verification for singular zeros of
nonlinear systems, Technical report, University of Louisiana at Lafayette, Lafayette, LA,
1999; available online at http://interval.louisiana.edu/preprints/singular existence.ps.

[14] R. B. Kearfott, J. Dian, and A. Neumaier, Existence verification for singular zeros of
complex nonlinear systems, SIAM. J. Numer. Anal., 38 (2000), pp. 360–379.

[15] C. F. Korn and Ch. Ullrich, Extending LINPACK by verification routines for linear systems,
Math. Comput. Simulation, 39 (1995), pp. 21–37.

[16] G. Mayer, Epsilon-inflation in verification algorithms, J. Comput. Appl. Math., 60 (1994),
pp. 147–169.

[17] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, UK, 1990.

[18] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

[19] H. Ratschek and J. Rokne, New Computer Methods for Global Optimization, Wiley, New
York, 1988.

[20] F. Stenger, Computing the topological degree of a mapping in Rn, Numer. Math., 25 (1975),
pp. 23–38.

