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Abstract. We are concerned with tools to find bounds on the range
of certain polynomial functions of n variables. Although our motivation
and history of the tools are from crisp global optimization, bounding the
range of such functions is also important in fuzzy logic implementations.
We review and provide a new perspective on one such tool. We have been
examining problems naturally posed in terms of barycentric coordinates,
that is, over simplexes. There is a long history of using Bernstein expan-
sions to bound ranges of polynomials over simplexes, particularly within
the computer graphics community for 1-; 2-; and 3-dimensional prob-
lems, with some literature on higher-dimensional generalizations, and
some work on use in global optimization. We revisit this work, identify-
ing efficient implementation and practical application contexts, to bound
ranges of polynomials over simplexes in dimensions, 2, 3, and higher.

1 Introduction

Finding bounds on the range of a function
f(x) = f(xo,...,zn) : DCR™™ 5 R

of n+ 1 variables xg, ..., x, over some region D is an important problem occur-
ring in many forms and contexts. Indeed, evaluating the value of a function over
fuzzy inputs involves finding its range over the appropriate non-fuzzy (“crisp”)
sets (namely, alpha-cuts); such evaluations are central to computing fuzzy out-
puts based on fuzzy inputs; see [6] for an excellent explanation of this. Finding
the exact range (or good numerical approximation thereof), or equivalently, the
global optimization problem, is known, for general continuous f and general
compact region D, to be NP-hard, and is not NP-hard only for certain special
classes of f and D. However, non-sharp bounds, if not too wide, can be a use-
ful basic tool, even in global optimization algorithms. The literature is replete
with discussion of the relationship between bounding the range of a function
and fuzzy computations, as pointed out, say, in the overviews [8I11], in [24], or
the more recent work [22]. (A plethora of references is omitted.) One survey on
fuzzy optimization, including its relationship to crisp optimization techniques,
is [18].



Various approaches to easily computing usable bounds on ranges, many de-
pending on particular contexts and applications, have been proposed and imple-
mented. A common context is where the region D is defined by lower and upper
bounds z; and Z; on each of the variables z;, that is, z, < x; <Z;, 0 < i < n.
We speak of such regions as a box, or interval vector, and write

x = (xo,...,xn) = ([Zg,Tols- - -, [Zy, Tn))-

In this context, simple (or “naive”) interval arithmetic, introduced and explained
in numerous texts and reviews, such as our relatively recent work [I0], is a
possibility. However, such bounds are not guaranteed to be sufficiently close to
the actual range to be useful; experts in interval arithmetic have extensively
studied techniques to obtain the best possible bounds with the minimal amount
of work.

1.1 Simplexes

In various applications, range bounds are required, not over a box, but over a
simplex S. In particular, to within an affine transformation, an n-dimensional
simplex in R™*! is characterized by:

Sc:{(xo,...,l‘n), .23120, 21‘221}, (1)
=0

Thus, a simplex can be viewed as a box £ € R"*! subject to the additional
(commonly occurring) constraint y ., z; = 1. Alternatively, a simplex can be
viewed as a volume in R™ bounded by affine constraints:

n n
S:{inpﬂ 33120’ Piequ QZW Zmlzl} (2)
=0 i=0

The P; in are called the vertezxes of S, and the z; are called the barycentric
coordinates of points in S. (In , the vertexes are the coordinate vectors in
R™*1)) Simplexes are often specified in terms of their vertexes:

S=(Py,...,P;) (and usually ¢ = n). (3)

When n = 1, a simplex corresponds to a line segment, when n = 2, a sim-
plex corresponds to a triangle in R3, while simplexes with n = 3 correspond to
tetrahedra.

Remark 1. In branch and bound algorithms for global optimization, the simplex
S is partitioned or subdivided in various ways. That is,

Definition 1. A subdivision of a simplex S is a set of simplezes {S1,...,Sm}
such that

S = U Si, S;NS; lies on the boundary of S; and S; for each i,j. (4)
i=1



A common subdivision in this context is bisection into two simplexes, S; and
Sa, by replacing P; by %(PZ + P;) in & and replacing P; by %(R + P;) in Ss,
for some suitably chosen ¢ and j. If S is identified with S, and f(xo,...z,) is
defined on S., we can identify each of S; and S; with S, but then the domain of
f (or coefficients of f if f is a polynomial in the barycentric coordinates) needs
to be rescaled to the barycentric coordinates over S&; and over Ss.

1.2 Bernstein Polynomials

Univariate Bernstein Polynomials If f is a polynomial, or in some cases a
rational function, bounds on the ranges can be computed with Bernstein polyno-
mials, both over boxes and simplexes. Bernstein polynomials have been analyzed
by approximation theorists for over a century. The d + 1 Bernstein polynomials
of degree d form a basis for degree d polynomials over the interval [0, 1], and are
given by

BO(1) = (f)tf(l —0 0<i<d, (%)

Following the notation in [2 p. 7], the properties of Bernstein polynomials that
make them useful are:

d
Z B (partition of unity).

=0 () . (6)
() >0 forte|0,1] (non-negativity).
(

'd)(t) (1-1)B; B\ 1)( )—i—tB(d 1)() (recursion).

The general form combined with the partition of unity property makes
Bernstein polynomials suitable for representation of functions defined on sim-
plexes. Observe, for n = 1, if g = 1 —t and 1 = ¢, Bgl) = x;. For a general

function f defined on [0,1], the Bernstein approximation to f by a degree d

polynomial is
d .
d
)~ fon (0 =31 (5) B0 @
=0

For continuous f, the Bernstein approximation converges relatively slowly to f
as the degree n increases, but the fp are very smooth (without the overshoot
in high degree polynomial interpolation and regression, or even in splines), and
the convergence is uniform. Furthermore:

1. Because of the partition of unity property (6)), fzw (t) is a weighted average
of the f(t;) = f(i/d), and therefore lies between the smallest and largest
values of f at these n + 1 equally spaced sample points ;.

2. Suppose f is a homogeneous degree d polynomial of two variables:

fxo,x1) E aixgx‘f i with the condition zo+x1 = 1.



Then
d .
flxo, 1) = Z C: de)(t), where xg =t, xy =1 —t, and
iz (3 (8)

. . Oy _ ai
zor?[%r,lu, flxo,z1) = o%lgd@’ 15161%’}%]’ flxo,z1) = Ofgfgd@~
zo+xy=1 7 zo+txz1=1 7

Property [2| concerns a homogeneous polynomial defined on a one-dimensional
simplex (n = 1), and shows a quick way of computing exact bounds on the range
of that polynomial. For example, a multi-dimensional analog of Property [2| can
be used directly in algorithms for quadratic programming problems.

Property [1| can be used in conjunction with for vector valued functions

— —

f(t), in particular for f(t) € R? or R3. In that case, the resulting curve f(t),
0 <t <1is called a Bézier curve, and the values f (i/d), usually given as dis-
crete points in R? or R? rather than with reference to an underlying function,
are called the control points. In 1959, Paul de Casteljau at Citroén (and inde-
pendently, Pierre Bézier at Renault) at developed an ingenious algorithm, based
on the above properties of Bernstein polynomials, to evaluate Bézier curves, for
computer aided geometric design. The de Casteljau algorithm is now ubiquitous
throughout the computer science literature and common in implementations.
Furthermore, the de Casteljau algorithm is found in the literature on global op-
timization. Information about Bézier curves is available in numerous papers and
course notes; a somewhat recent review is [3].

In addition to Bézier curves, the de Casteljau algorithm has been studied in
the context of bounding ranges of functions. Thus, the plethora of literature on
the de Casteljau algorithm within the computer aided geometric design literature
is available to designers of global optimization algorithms.

Multivariate Bernstein Polynomials Computer-aided geometric design re-
searchers, as well as global optimization experts and others, have examined gen-
eralizations of the definition , properties @ and the approximation (7)) to
n > 1. Tensor products of the B;(d) are used, with generalizations to both boxes
and simplexes. Here, we focus on such generalizations to homogeneous polyno-
mials and n-simplexes in R**+1,

In much of the literature, the multi-dimensional forms are written down with
the aid of multi-indexes. Loosely following the notation in [I4] for the simplicial
extension, we have

Definition 2. A multi-index 7 is simply an (n + 1)-vector of indezxes:
n n
< . . = . 7 i) d d!
l:(ZO,...,Zn)7 |Z|: E 15, and leijJ, <; :W
j=0 Jj=0 J=01"7

The multi-dimensional simplicial Bernstein functions are defined on the canon-
ical n—simplexﬂ S. € Rt of . With the notation in Definition [2| the n-

! not to be confused with the standard simplez in R™ of the literature, defined in terms

of ()



dimensional simplicial Bernstein basis functions corresponding to are

B (3) = (?) o' for @ = (zo,...2,) € S. and |i] = d, 9)

K3

where S, is the canonical simplex (). Observe that (9) corresponds to (5) for
n=1,xg=1—-1, 21 =1.

Definition 3. A homogeneous degree d polynomial of n + 1 variables is a pol-
ynomial of the form f(xzq,...x,) = Z azz’, that is, a polynomial of n + 1
|i|=d

variables each of whose non-zero terms has total degree d.

Remark 2. Corresponding to , if f is a homogeneous polynomial of n + 1
variables of the form in Definition [3| defined on S., and & = (xq, ..., x,), then

f(@) = Z %Bgdm) (t), where ¥ €S,, and
m:d (;)
a;

o G - Gi
mig /(@) = min Gy e f(@) = max o

%

(10)

In fact, arbitrary (non-homogeneous) polynomials can be represented in terms of
the Bernstein basis; this is necessary for many important problems when using
Bernstein techniques in global optimization. The conversion process, for various
n has been presented and studied in the literature; for example, an algorithm
for the n = 2 case is given in [23]. We analyze the conversion for an important
case in global optimization in §2| below.

An advantage of the Bernstein polynomial representation is that the de
Casteljau algorithm can simultaneously compute coefficients and bounds over
each element S; of a subdivision of S, with respect to the local barycentric
coordinates for S;, by taking combinations of the coefficients over S. In partic-
ular:

Remark 3. if §; and Sy are formed from bisection and the coefficients are known
for S, then the coefficients (and hence bounds on f, via ) can be computed

in (Zi’{) add-and-shift operations; see [14, Lemma 3.2].

For example, for quadratic programming problems (d = 2) with the constraints
E?:o z; =1, 2; > 0,0 < i < n, this requires n 4+ 2 adds and shifts, and may
require less if many of the coefficients are non-zero.

Remark 4. Points to make: The multidimensional de Casteljau algorithm is most
clearly implemented using recursion within a programming language, a technique
that can be very inefficient in certain environments. On the other hand, imple-
mentation without recursion leads to confusing indexing schemes. Identification
of important problems representing special cases where the algorithm can be
simplified may thus be of use.



1.3 Alternatives and Previous Work

Garloff et al (see [I920021] and earlier works) Leroy (see [7]), Nataraj et al (see
[I3II516], etc.) and others have studied Bernstein polynomials in the context of
global optimization, in particular, in the conjunction with interval arithmetic to
supply mathematical guarantees on the results. Mufoz and Narkawicz (see [12])
consider efficient representation of Bernstein polynomials for symbolic compu-
tations to be incorporated in global optimization algorithms.

In [5], we analyze the interplay between interval arithmetic and the con-
straints defining a simplex, to obtain formulas that are superior to naive interval
arithmetic.

Here, we identify applications for which the simplicial Bernstein form is nat-
ural and likely to be competitive. We look at sharpness of bounds on the range,
and we count the number of operations. Exhaustive comparison of implementa-
tion efficiencies on appropriate problems will be in future work.

2 Quadratic Programming Problems

The quadratic programming problems naturally suited to benefiting from Bern-
stein representations can be written as

n n n
minimize f(Z) = Z Z a; ;T + Z b;x;
i=0 j=0 i=0
n
subject to in =1, z;>0, i=0,...,n, (11)

=0

n
h; () :Zhi,jxi =rj, j=1,...,m.
i=0

The non-negativity conditions and the condition Z?:o x; = 1 are common to
many practical problems, and define the optimization to be over the unit simplex
S. However, the linear terms Z?:o b;x; and Z?:o hi,jx; in the objective function
as well as in the m additional equality constraints are usually present, and cannot
be easily eliminated. In the absence of these additional constraints, would
be of the form in with d = 2, and no conversion would be required. However,
for this d = 2 case, rewriting each xx, 0 < k < n in terms of the basis functions
B;(Z’n) is relatively simple, so the objective function f and the constraints h; are
written in terms of barycentric coordinates over the canonical simplex S. We
have

n
xkzl—Za:j, SO Tk 1—ij zxk—Zxkxj:xi. (12)
=0 j

Gk G#k G#k



Adding the sum ECL:Q zrx; to both sides thus gives
J

n BEZn) n

w= = 3 =2 BB hee (19
7=0 3=0 i ;;k

Zj,k is the multi-index with n + 1 entries whose j-th and k-th entries are 1 and
all of whose other entries are 0, and

B —

2xpx;, § # k,
( { KTj, J F (14)
5,k

zi, 5=k

Replacing linear terms in using and collecting terms gives the linear
programming problem completely in terms of barycentric coordinates:

n n
minimize f(Z) = Z Z Qi j ;(,2’,71)
i=0 j=0 "
n
subject to inzl, z; >0, 1=0,...,n, (15)
i=0
n n
— (2) ) — —
hj([li) = Z Z’}/j,LkB;i’: =T J= 1, e, M.
i=0 k=0

The conversion process need be done only once, before beginning the branch
and bound algorithm. Once the conversion is done, the de Casteljau algorithm
may be applied separately to f and the h; in , to obtain a barycentric
representation of the quadratic program over each element of a subdivision of
S. As those elements of the subdivision are further subdivided, the process can
be repeated.

Remark 5. Higher degree polynomials can be treated with this method, but the
total number of adds and shifts for a bisection (‘;j'_’l’) grows rapidly with the
degree d, and implementation is not as simple. This may cause computations
with high d to be impractical, although parallelization, and indeed, computations

similar to fast Fourier transforms can possibly be used; see [IJ.

3 Examples

The following examples are applications that have appeared in the literature or
in private correspondence.

FEzample 1. This example, namely, the Markowitz model of stock portfolio opti-
mization, originates with [9]. It consists precisely of , with b; = 0,0 <1i <mn,
and m = 1. The objective f represents risk to be minimized, the a;; are the
correlations between holdings, and the constant r in the constraint ¢ represents
the required rate of return.



We will illustrate the use of Bernstein expansions in the de Casteljau algoritnm,
as in [I4], to facilitate computations associated with a subdivision process. In
Example[I} f and the h; have separate Bernstein expansions, and their ranges
subject to the barycentric condition Zf\;o x; = 1 can be computed in parallel
(e.g. in a vector computation). For brevity, we illustrate the technique with f
alone. The objective function of Example[l}is exactly the objective function f in
. We consider the case d = 2, n = 2. Then & = (z¢, x1,22), and the objective
function has 6 coefficients ag o, ao,1, @02, a1,1, a1,2, and as 2. In our illustration,
set the coefficients the following:

ap0 =2, ag,1 =6, ap2 =38, a11 =4, a12 =12, az> =38,
so the objective function is
[ (%) = 223 4 62021 + 82020 + 427 4+ 122175 + 823 (16)

To apply the de Casteljau algorithm, the homogeneous polynomial needs to
be transformed into Bernstein form according to Remark [2| The corresponding
Bernstein coefficients after conversion are

o0 =2,0a0,1 = 3,02 =4, 011 =4, 012 = 6,92 = 8.
The objective function in Bernstein form is given by
f(@) =2BP? 438> 1 4B®*? 14> 4 6B*? 4 8B*?) (17)
20,0 20,1 20,2 11,1 11,2 12,2

We introduce additional notation, similar to that in [I4], to denote Bernstein
coefficients associated with subdivisions of the original simplex, as follows.

0,0 = =C200=2 a1 =¢  =cC10=3 Qo2=C¢, =Cc01=4

a1 =¢,, =cp20=%4% oma=c¢ A =co11=0 a2=¢,, =coo2=28.

The indexes for these coefficients correspond to scaled barycentric coordinates on
edges of the simplex, as illustrated in Figure [T} they are related to the values of
the polynomial at those points through @D According to Remark the objective
function is bounded within [2, 8§].

We now illustrate how these coefficients are reassigned and combined to ob-
tain the coefficients for the barycentric representation over the two subsimplexes
S1 and Ss obtained by bisecting the edge connecting P, and P,. The correspond-
ing computations may be done efficiently with the EdgeDeCasteljau algorithm
n [14]. In particular, running EdgeDecasteljau(by2[S],1;...) gives the coef-
ficients in Figure b). The de Casteljau algorithm computes these coefficients
through a simple averaging process of adjacent coefficients. One reads off the
Bernstein coefficients of the polynomials in barycentric form for &; and Ss di-
rectly from this diagram, as illustrated in Figure [3] According to Remark 2] f is
bounded over S; by [2,8], and f is bounded over Sy by [2,6]. If we continued
the process within a branch and bound algorithm, S; and / or Sz can replace S,
for the process to be repeated. Note that, since f is quadratic, the ranges [2, 8]
and [2.6] are exact ranges over §; amd Sy, respectively.



Py

€0,0,2

4 6

C1,0,1 Co,1,1

2 3 4
P P C€2,0,0 C1.1.0 C€0,2,0
(a) The original simplex. (b) Corresponding coefficient labeling.

Fig. 1. Simplex coefficients for Example

P,
8
7
S1 4 6
7
82 2 5
2 3 4
Py Py
(a) Bisected simplex. (b) de Casteljau output.
Fig. 2. Bisecting the simplex.
8 6
C0,0,2 C€0,0,2
4 7 z 5
€1,0,1 €0,1,1 €1,0,1  Co,1,1
2 z 6 2 3 4
C€2,0,0 C1.1.0 €0,2,0 C2,0,0 C1.1.0 C0,2,0
(a) Coefficients for S;. (b) Coefficients for So.

Fig. 3. Bernstein coefficients for §; and Ss.



Ezample 2. The condition Y ., x? = 1 is equivalent to requiring the optimum
be on the unit (n+ 1)-sphere, a much-studied condition with many applications.
As one of many examples of this, the work [I7] deals with minimization of a
homogeneous polynomial on a sphere. If each x; only occurs to even powers in
the objective and other constraints, a change of variables Z; = ? transforms the
problem to optimization over the unit simplex.

Ezample 3. Minimization over the ¢; sphere is minimization subject to the con-
dition Y7 ,|z;| = 1. Minimization over the first orthant of the ¢;-sphere can
thus be viewed as minimization over the standard simplex S. If, for example,
there is some symmetry across orthants, techniques for optimization over a sim-
plex (and in particular, the Bernstein representation) can be used. This would
happen, for example, if most of the individual variables only occur with even
powers, or if there are a few variables that just occur with odd powers. How-
ever, associated branch and bound algorithms are likely to be practical only for
relatively small n.

4 Summary

We have reviewed simplexes and the simplicial Bernstein form for multivariate
polynomials in the context of global optimization and, indirectly, computing a-
cuts of a fuzzy logic output. We have identified contexts commonly occurring
in applications in which the simplicial Bernstein form and computations with it
simplify and are likely to prove practical and competitive, and have presented
some preliminary examples. Actual comparisons and computations, including
within a fuzzy logic context, will appear in future work.
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