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and Bound Tools » Our goal is to minimize an objective function ¢ subject to
various equality and inequality constraints, and to do this
in a mathematically rigorous way.

Introduction

» The algorithm essentials relevant here are:

1 while Termination criteria are not met do

2 Select a region D from a list of unprocessed regions;
Bound: Apply filters involving bounds on ranges to
eliminate D or portions of it from the search;

3 if D cannot be eliminated or stored then

4 Branch: Split D into two or more sub-regions
whose union is D;

5 Put each of the sub-regions into the list of

unprocessed regions;

6 end
7 end
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Introduction » In most B&B algorithms, D is a box or set of bounds on
the coordinates.

e For boxes, bounds on the ranges of functions f can be
computed rigorously with simple interval evaluations or
with well-studied linear relaxations.

» In some problems, the natural region is an n-simplex
(e.g. a triangle for n = 2, a tetrahedron for n = 3, defined
by n+ 1 vertices), rather than a box.

e Rigorously bounding ranges over a simplex has been
less studied.

o Two different representations of a simplex are useful in
B&B algorithms, and how do we convert between these
representations?
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Smplca Saneh - » Stenger, Kearfott, Stynes (1970’s)
e These works used a B&B algorithm based on simplicial
subdivision to compute the topological degree of maps.
Previous Work « These used heuristics to bound ranges.

» Garloff and others (1980’s to the present)

e Mathematically rigorous range computation of
polynomials and rational functions is done with Bernstein
polynomial expansions over simplices.

e Nataraj has used this approach to range computation of
polynomials, but, to our knowledge, not over simplices.

e We are looking forward to investigation of the relative
efficiency efficiency of these techniques.

» Paulavi¢ius, Zilinskas, et al (current)
e They have extensively studied use of simplices in B&B
algorithms for optimization.
e However, their published results involve heuristic or
probabilistic bounds for ranges.
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» The vertex representation of a simplex D = S is in terms
of the cartesian coordinates of its n + 1 vertices, i.e.
S =(Py,Py,...Pp).
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b e R,
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in a hyperplane A .X = b;, where A, ==A.
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Two Simplex Representations

Vertex and halfspace representations

The vertex representation of a simplex D = S is in terms
of the cartesian coordinates of its n + 1 vertices, i.e.
S =(Py,Py,...Pp).
The half-plane representation of a simplex is in terms of
the feasible set of n+ 1 inequalities Ax > b, A € R"1x",
bc ]Rn+1
e Each face S-; of S opposite a vertex P; of S is contained
in a hyperplane A;.x = b;, where A, ==A.
e The side of the hyperplane upon which P; I|es
determines the sense of the inequality A;.x > b;.
The vertex representation is most useful in the
branching, etc., while the halfspace representation is
most useful in constraint-propagation-based filters.

We have studied mathematically rigorous conversions
between these two representations.
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e This can result in less overestimation, but not
necessarily.

e This adds complication and, depending on the problem
and how implemented, could involve an amount of
computation comparable to that required to totally solve
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Bounding the Range of f Over a Simplex
f is normally represented in terms of cartesian (box-based) coordinates.
Various possibilities

» We can enclose S in a box, then use traditional interval
extensions over the box.

e This is simple, but with significant overestimation.

» We can use the halfspace representation and constraint
propagation.

e This can result in less overestimation, but not
necessarily.

e This adds complication and, depending on the problem
and how implemented, could involve an amount of
computation comparable to that required to totally solve
the original problem

» We can analyze relationships between coordinates in
the simplex to derive simple formulas that give sharper
bounds than interval extensions over the containing
boxes.
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Bounding the Range of f Over a Simplex S

A specially derived formula for S = (Po, P1, . .. Pn), with
Pf = (pf-17 s 7p/'~,”)

Begin with non-sharp bounds f = [f, f], say, obtained by
evaluating over a box x containing S.

Theorem:
Letl; = Inf(Z, 1Pijlj ( sgn(pif))), and

U = Sup(zj 1 pijTi( —sgn(pij))), where
fi(p) = {[j ifp>0, 7ifp<0, and f;if0¢c p}.
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Bounding the Range of f Over a Simplex S

A specially derived formula for S = (P, P, . .. Py), with
Pi=(pi,---,Pin)
Begin with non-sharp bounds f = [f, f], say, obtained by
evaluating over a box x containing S.
Theorem:
Letl; = Inf(Z, 1Pijlj ( sgn(pij))). and
U = Sup Z] 1 pijTi( —sgn(pij))), where

f(p) = {[j ifp>0, 7ifp<0, and f;if0¢c p}.
Assume the domain of f has been translated so the
barycenter -+ >~ P; is the origin (0, ..., 0), and the
range of f has been translated so f(0,...,0) = 0.
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Bounding the Range of f Over a Simplex S

A specially derived formula for S = (Po, P1, . .. Pn), with
Pi=(pia;---,Pin)
Begin with non-sharp bounds f = [f, f], say, obtained by
evaluating over a box x containing S.
Theorem:
Letl; = Inf(Z, 1Pijlj ( sgn(pif))), and
U = Sup Z] 1 pijTi( —sgn(pij))), where

f(p) = {[j ifp>0, 7ifp<0, and f;if0¢c p}.
Assume the domain of f has been translated so the
barycenter -+ >~ P; is the origin (0, ..., 0), and the
range of f has been translated so f(0,...,0) = 0.
Then the range of f over S is contained in the interval
Io = [minog,-gn L,‘, maxog,-g,, U,]

» Iy is often narrower than f.
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Bounding the Range of f Over a Simplex S

A specially derived formula for S = (Po, P1, . .. Pn), with
Pi = (pit,---Pin)
Begin with non-sharp bounds f = [f, f], say, obtained by
evaluating over a box x containing S.
Theorem:
Letl; = Inf(Z, 1Pijlj ( sgn(pij))). and
U = Sup Z] 1 p,/ —sgn(pij))), where

fi(p) = {[j ifp>0, 7ifp<0, and f;if0¢c p}.
Assume the domain of f has been translated so the
barycenter -+ >~ P; is the origin (0, ..., 0), and the
range of f has been translated so f(0,...,0) = 0.
Then the range of f over S is contained in the interval
Io = [minog,-gn L,‘, maxog,-gn U,]
Iy is often narrower than f.

(The theorem is proven by considering S in terms of
barycentric coordinates and an associated LP.)
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» We bound the set of all possible halfplane equations
subject to uncertainties in the vertices.
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The Vertex and Halfspace Representations
Computing a rigorous enclosure of S in a halfspace representation
from a rigorous enclosure for S in a vertex representation

N o

» We bound the set of all possible halfplane equations
subject to uncertainties in the vertices.

» We select certain halfplanes arbitrarily to construct the
system Ax > b.
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b The computations for the i-th halfspace, 0 < i < n
"""""" corresponding to S_; = <l50, P, ... ,Pn,1>

Simplicial Branch

adBndToos > Begin with enclosures P; to the actual vertices P;.

» For the j-th row of A, consider an interval enclosure to
the system

(B~ Py

Converting ~ R
Between (Pn_1 — PO)T

Representations
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The computations for the i-th halfspace, 0 < i < n
corresponding to S_; = <l50, Py, ... ,I:"n,1>
» Begin with enclosures P; to the actual vertices P;.

» For the j-th row of A, consider an interval enclosure to
the system

(By — Py)’
Ma; = a=0.
(pn—1 - pO)T
» We obtain a floating point approximation z to Ma; = 0,
|z|]]2 = 1 using a common null-space-finding procedure.
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Vertex Enclosure to Halfspace Enclosure

The computations for the i-th halfspace, 0 < i < n
corresponding to S_; = <I50, Py, ... ,I:"n,1>
Begin with enclosures P; to the actual vertices P;.

For the i-th row of A, consider an interval enclosure to
the system

(By — Po)T
Ma; = a=0.
(pn—1 - pO)T
We obtain a floating point approximation z to Ma; = 0,

|z||2 = 1 using a common null-space-finding procedure.

We construct a sufficiently large box a(®) around z, and
apply an interval Newton method to the system Mz = 0,
zTz =1 to prove a unique solution for every M € M and
generating an enclosure a; for the normal vector
perpendicular to S_;.
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» We possibly reverse the sign of a; depending on the sign
of a,.T(P,- — Po)
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» We possibly reverse the sign of a; depending on the sign
of a] (P; — Py).
» Compute b; ~ a,.TfDo using floating point computations.
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Computations for the i-th halfspace (continued)

» We possibly reverse the sign of a; depending on the sign
of a] (P; — Py).
» Compute b; ~ a,.TfDO using floating point computations.

» Gradually decrease b; until a b; with a/ P; > b for
0<j<n
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We possibly reverse the sign of a; depending on the sign
of al (P; — Py).

Compute b; ~ a,.TfDO using floating point computations.
Gradually decrease b; until a b; with a/ P; > b, for

Converting 0 Sj <n.

Represenations Proposition: Let H; = {x : al x > b;}. Verification of
aP;>b;(j=0,1,...,n) implies S C H;.

v

v

v
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Computations for the i-th halfspace (continued)

We possibly reverse the sign of a; depending on the sign
of a] (P; — Py).

Compute b; ~ a,TfDO using floating point computations.
Gradually decrease b; until a b; with a/ P; > b, for
0<j<n

Proposition: Let H; = {x : al x > b;}. Verification of
aP;>b;(j=0,1,...,n) implies S C H;.

Since a] P; > b;, al P; > b; for any a; € aj, so, with the
same reasoning behind the proposition,

SCH ={x:alx>b}.
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Vertex Enclosure to Halfspace Enclosure

Computations for the i-th halfspace (continued)

We possibly reverse the sign of a; depending on the sign
of al (P; — Py).

Compute b; ~ a,TfDO using floating point computations.
Gradually decrease b; until a b; with a/ P; > b, for
0<j<n

Proposition: Let H; = {x : al x > b;}. Verification of
aP;>b;(j=0,1,...,n) implies S C H;.

Since a] P; > b;, al P; > b; for any a; € aj, so, with the
same reasoning behind the proposition,

SCH ={x:alx>b}.

In other words, a; can be any floating-point quantity in a;.
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the techniques we have explained here.
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What next?

Comparisons of simplicial-based and box-based B&B

» Sam has initial implementations of the same basic B&B
algorithm using both simplices and boxes, incorporating
the techniques we have explained here.

» We have selected both general test problems and test
problems on which there is an underlying simplicial
geometry.

» This work is in progress.
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