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Introduction
Elements of Branch and Bound (B&B) algorithms

I Our goal is to minimize an objective function ϕ subject to
various equality and inequality constraints, and to do this
in a mathematically rigorous way.

I The algorithm essentials relevant here are:
1 while Termination criteria are not met do
2 Select a region D from a list of unprocessed regions;

Bound: Apply filters involving bounds on ranges to
eliminate D or portions of it from the search;

3 if D cannot be eliminated or stored then
4 Branch: Split D into two or more sub-regions

whose union is D;
5 Put each of the sub-regions into the list of

unprocessed regions;
6 end
7 end

3 / 12
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Introduction
Bounding ranges of a function f over a region D:

Is D a box or a simplex?

I In most B&B algorithms, D is a box or set of bounds on
the coordinates.

• For boxes, bounds on the ranges of functions f can be
computed rigorously with simple interval evaluations or
with well-studied linear relaxations.

I In some problems, the natural region is an n-simplex
(e.g. a triangle for n = 2, a tetrahedron for n = 3, defined
by n + 1 vertices), rather than a box.

• Rigorously bounding ranges over a simplex has been
less studied.

• Two different representations of a simplex are useful in
B&B algorithms, and how do we convert between these
representations?

4 / 12
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Related Work
Simplicial B&B and range computation over simplices

I Stenger, Kearfott, Stynes (1970’s)

• These works used a B&B algorithm based on simplicial
subdivision to compute the topological degree of maps.

• These used heuristics to bound ranges.
I Garloff and others (1980’s to the present)

• Mathematically rigorous range computation of
polynomials and rational functions is done with Bernstein
polynomial expansions over simplices.

• Nataraj has used this approach to range computation of
polynomials, but, to our knowledge, not over simplices.

• We are looking forward to investigation of the relative
efficiency efficiency of these techniques.

I Paulavičius, Žilinskas, et al (current)

• They have extensively studied use of simplices in B&B
algorithms for optimization.

• However, their published results involve heuristic or
probabilistic bounds for ranges.
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I Paulavičius, Žilinskas, et al (current)
• They have extensively studied use of simplices in B&B

algorithms for optimization.
• However, their published results involve heuristic or

probabilistic bounds for ranges.

5 / 12



Simplicial Branch
and Bound Tools

Introduction

Previous Work

Two Simplex
Representations

Various Bounding
Strategies

Converting
Between
Representations

6/12

Two Simplex Representations
Vertex and halfspace representations

I The vertex representation of a simplex D = S is in terms
of the cartesian coordinates of its n + 1 vertices, i.e.
S = 〈P0,P1, . . .Pn〉.

I The half-plane representation of a simplex is in terms of
the feasible set of n + 1 inequalities Ax ≥ b, A ∈ Rn+1×n,
b ∈ Rn+1.

• Each face S¬i of S opposite a vertex Pi of S is contained
in a hyperplane Ãi,:x = bi , where Ãi,: = ±Ai,:.

• The side of the hyperplane upon which Pi lies
determines the sense of the inequality Ai,:x ≥ bi .

I The vertex representation is most useful in the
branching, etc., while the halfspace representation is
most useful in constraint-propagation-based filters.

I We have studied mathematically rigorous conversions
between these two representations.
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• The side of the hyperplane upon which Pi lies

determines the sense of the inequality Ai,:x ≥ bi .
I The vertex representation is most useful in the

branching, etc., while the halfspace representation is
most useful in constraint-propagation-based filters.

I We have studied mathematically rigorous conversions
between these two representations.

6 / 12



Simplicial Branch
and Bound Tools

Introduction

Previous Work

Two Simplex
Representations

Various Bounding
Strategies

Converting
Between
Representations

7/12

Bounding the Range of f Over a Simplex
f is normally represented in terms of cartesian (box-based) coordinates.

Various possibilities

I We can enclose S in a box, then use traditional interval
extensions over the box.

• This is simple, but with significant overestimation.

I We can use the halfspace representation and constraint
propagation.

• This can result in less overestimation, but not
necessarily.

• This adds complication and, depending on the problem
and how implemented, could involve an amount of
computation comparable to that required to totally solve
the original problem

I We can analyze relationships between coordinates in
the simplex to derive simple formulas that give sharper
bounds than interval extensions over the containing
boxes.
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Bounding the Range of f Over a Simplex S
A specially derived formula for S = 〈P0,P1, . . .Pn〉, with

Pi = (pi,1, . . . , pi,n)

Begin with non-sharp bounds f = [f , f ], say, obtained by
evaluating over a box x containing S.

Theorem:
Let Li = Inf

(∑n
j=1 pi,j f̌j( sgn(pi,j))

)
, and

Ui = Sup
(∑n

j=1 pi,j f̌j(−sgn(pi,j))
)
, where

f̌j(p) =
{

f j if p ≥ 0, f j if p < 0, and f j if 0 ∈ p
}

.

Assume the domain of f has been translated so the
barycenter 1

n+1
∑n

i=0 Pi is the origin (0, . . . ,0), and the
range of f has been translated so f (0, . . . ,0) = 0.
Then the range of f over S is contained in the interval
I0 = [min0≤i≤n Li ,max0≤i≤n Ui ].

I I0 is often narrower than f .
(The theorem is proven by considering S in terms of
barycentric coordinates and an associated LP.)
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The Vertex and Halfspace Representations
Computing a rigorous enclosure of S in a halfspace representation

from a rigorous enclosure for S in a vertex representation

I We bound the set of all possible halfplane equations
subject to uncertainties in the vertices.

I We select certain halfplanes arbitrarily to construct the
system Ax ≥ b.
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Vertex Enclosure to Halfspace Enclosure
The computations for the i-th halfspace, 0 ≤ i ≤ n

corresponding to S¬i =
〈

P̃0, P̃1, . . . , P̃n−1

〉

I Begin with enclosures P̃i to the actual vertices P̃i .
I For the i-th row of A, consider an interval enclosure to

the system

Mai =

 (P̃1 − P̃0)T

...
(P̃n−1 − P̃0)T

ai = 0.

I We obtain a floating point approximation z to Mǎi = 0,
‖z‖2 = 1 using a common null-space-finding procedure.

I We construct a sufficiently large box a(0) around z, and
apply an interval Newton method to the system Mz = 0,
zT z = 1 to prove a unique solution for every M ∈ M and
generating an enclosure ai for the normal vector
perpendicular to S¬i .
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Vertex Enclosure to Halfspace Enclosure
Computations for the i-th halfspace (continued)

I We possibly reverse the sign of ai depending on the sign
of aT

i (P̃ i − P0).

I Compute bi ≈ aT
i P̃0 using floating point computations.

I Gradually decrease bi until a bi with aT
i P j ≥ bi for

0 ≤ j ≤ n.
I Proposition: Let H i = {x : aT

i x ≥ bi}. Verification of
aT

i P j ≥ bi (j = 0,1, . . . ,n) implies S ⊂ H i .
I Since aT

i P j ≥ bi , aT
i P j ≥ bi for any ai ∈ ai , so, with the

same reasoning behind the proposition,
S ⊂ Hi = {x : aT

i x ≥ bi}.
I In other words, ai can be any floating-point quantity in ai .
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What next?
Comparisons of simplicial-based and box-based B&B

I Sam has initial implementations of the same basic B&B
algorithm using both simplices and boxes, incorporating
the techniques we have explained here.

I We have selected both general test problems and test
problems on which there is an underlying simplicial
geometry.

I This work is in progress.
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