

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Tools for Simplicial Branch and Bound in Global Optimization

Sam Karhbet and Ralph Baker Kearfott

Department of Mathematics University of Louisiana at Lafayette

SCAN 2016, September 27, 2016 11:45–12:10

Outline

Simplicial Branch and Bound Tools

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Introduction Elements of Branch and Bound (B&B) algorithms

Our goal is to minimize an objective function φ subject to various equality and inequality constraints, and to do this in a mathematically rigorous way.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Introduction Elements of Branch and Bound (B&B) algorithms

- Our goal is to minimize an objective function φ subject to various equality and inequality constraints, and to do this in a mathematically rigorous way.
- The algorithm essentials relevant here are:
- 1 while Termination criteria are not met do
 - Select a region D from a list of unprocessed regions;
 Bound: Apply filters involving bounds on ranges to eliminate D or portions of it from the search;
 - if ${\mathcal D}$ cannot be eliminated or stored then
 - **Branch:** Split \mathcal{D} into two or more sub-regions whose union is \mathcal{D} ;
 - Put each of the sub-regions into the list of unprocessed regions;
- 7 end

end

2

3

4

5

6

$\begin{array}{c} \textbf{Introduction}\\ \textbf{Bounding ranges of a function } f \text{ over a region } \mathcal{D} \text{:}\\ \textbf{Is } \mathcal{D} \text{ a box or a simplex} \text{?} \end{array}$

Simplicial Branch and Bound Tools

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

$\begin{array}{c} \textbf{Introduction}\\ \textbf{Bounding ranges of a function } f \text{ over a region } \mathcal{D} \text{:}\\ \textbf{Is } \mathcal{D} \text{ a box or a simplex} \text{?} \end{array}$

► In most B&B algorithms, *D* is a box or set of bounds on the coordinates.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

- ► In most B&B algorithms, *D* is a box or set of bounds on the coordinates.
 - For boxes, bounds on the ranges of functions *f* can be computed rigorously with simple interval evaluations or with well-studied linear relaxations.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

- ► In most B&B algorithms, *D* is a box or set of bounds on the coordinates.
 - For boxes, bounds on the ranges of functions *f* can be computed rigorously with simple interval evaluations or with well-studied linear relaxations.
- In some problems, the natural region is an *n*-simplex (e.g. a triangle for n = 2, a tetrahedron for n = 3, defined by n + 1 vertices), rather than a box.

Introduction

- **Previous Work**
- Two Simplex Representations
- Various Bounding Strategies
- Converting Between Representations

- ► In most B&B algorithms, *D* is a box or set of bounds on the coordinates.
 - For boxes, bounds on the ranges of functions *f* can be computed rigorously with simple interval evaluations or with well-studied linear relaxations.
- In some problems, the natural region is an *n*-simplex (e.g. a triangle for n = 2, a tetrahedron for n = 3, defined by n + 1 vertices), rather than a box.
 - Rigorously bounding ranges over a simplex has been less studied.

Introduction

- **Previous Work**
- Two Simplex Representations
- Various Bounding Strategies
- Converting Between Representations

- ► In most B&B algorithms, *D* is a box or set of bounds on the coordinates.
 - For boxes, bounds on the ranges of functions *f* can be computed rigorously with simple interval evaluations or with well-studied linear relaxations.
- In some problems, the natural region is an *n*-simplex (e.g. a triangle for n = 2, a tetrahedron for n = 3, defined by n + 1 vertices), rather than a box.
 - Rigorously bounding ranges over a simplex has been less studied.
 - Two different representations of a simplex are useful in B&B algorithms, and how do we convert between these representations?

Related Work

Simplicial B&B and range computation over simplices

Simplicial Branch and Bound Tools

Stenger, Kearfott, Stynes (1970's)

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Related Work

Simplicial B&B and range computation over simplices

Stenger, Kearfott, Stynes (1970's)

• These works used a B&B algorithm based on simplicial subdivision to compute the topological degree of maps.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Related Work

Simplicial B&B and range computation over simplices

- These works used a B&B algorithm based on simplicial subdivision to compute the topological degree of maps.
- These used heuristics to bound ranges.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Related Work

Simplicial B&B and range computation over simplices

- These works used a B&B algorithm based on simplicial subdivision to compute the topological degree of maps.
- These used heuristics to bound ranges.
- Garloff and others (1980's to the present)

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Related Work

Simplicial B&B and range computation over simplices

- These works used a B&B algorithm based on simplicial subdivision to compute the topological degree of maps.
- These used heuristics to bound ranges.
- Garloff and others (1980's to the present)
 - Mathematically rigorous range computation of polynomials and rational functions is done with Bernstein polynomial expansions over simplices.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Related Work

Simplicial B&B and range computation over simplices

- These works used a B&B algorithm based on simplicial subdivision to compute the topological degree of maps.
- These used heuristics to bound ranges.
- Garloff and others (1980's to the present)
 - Mathematically rigorous range computation of polynomials and rational functions is done with Bernstein polynomial expansions over simplices.
 - Nataraj has used this approach to range computation of polynomials, but, to our knowledge, not over simplices.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Related Work

Simplicial B&B and range computation over simplices

- These works used a B&B algorithm based on simplicial subdivision to compute the topological degree of maps.
- These used heuristics to bound ranges.
- Garloff and others (1980's to the present)
 - Mathematically rigorous range computation of polynomials and rational functions is done with Bernstein polynomial expansions over simplices.
 - Nataraj has used this approach to range computation of polynomials, but, to our knowledge, not over simplices.
 - We are looking forward to investigation of the relative efficiency efficiency of these techniques.
- Paulavičius, Žilinskas, et al (current)

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Related Work

Simplicial B&B and range computation over simplices

- These works used a B&B algorithm based on simplicial subdivision to compute the topological degree of maps.
- These used heuristics to bound ranges.
- Garloff and others (1980's to the present)
 - Mathematically rigorous range computation of polynomials and rational functions is done with Bernstein polynomial expansions over simplices.
 - Nataraj has used this approach to range computation of polynomials, but, to our knowledge, not over simplices.
 - We are looking forward to investigation of the relative efficiency efficiency of these techniques.
- Paulavičius, Žilinskas, et al (current)
 - They have extensively studied use of simplices in B&B algorithms for optimization.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Related Work

Simplicial B&B and range computation over simplices

- These works used a B&B algorithm based on simplicial subdivision to compute the topological degree of maps.
- These used heuristics to bound ranges.
- Garloff and others (1980's to the present)
 - Mathematically rigorous range computation of polynomials and rational functions is done with Bernstein polynomial expansions over simplices.
 - Nataraj has used this approach to range computation of polynomials, but, to our knowledge, not over simplices.
 - We are looking forward to investigation of the relative efficiency efficiency of these techniques.
- Paulavičius, Žilinskas, et al (current)
 - They have extensively studied use of simplices in B&B algorithms for optimization.
 - However, their published results involve heuristic or probabilistic bounds for ranges.

Two Simplex Representations Vertex and halfspace representations

Simplicial Branch and Bound Tools

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Two Simplex Representations

► The vertex representation of a simplex D = S is in terms of the cartesian coordinates of its n + 1 vertices, i.e. $S = \langle P_0, P_1, \dots, P_n \rangle.$

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Two Simplex Representations Vertex and halfspace representations

► The vertex representation of a simplex D = S is in terms of the cartesian coordinates of its n + 1 vertices, i.e.

$$\mathcal{S} = \langle \mathcal{P}_0, \mathcal{P}_1, \dots \mathcal{P}_n \rangle.$$

The half-plane representation of a simplex is in terms of the feasible set of n + 1 inequalities Ax ≥ b, A ∈ ℝ^{n+1×n}, b ∈ ℝⁿ⁺¹.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Two Simplex Representations Vertex and halfspace representations

► The vertex representation of a simplex D = S is in terms of the cartesian coordinates of its n + 1 vertices, i.e.

$$\mathcal{S} = \langle \mathcal{P}_0, \mathcal{P}_1, \dots \mathcal{P}_n \rangle.$$

- The half-plane representation of a simplex is in terms of the feasible set of n + 1 inequalities Ax ≥ b, A ∈ ℝ^{n+1×n}, b ∈ ℝⁿ⁺¹.
 - Each face S_{¬i} of S opposite a vertex P_i of S is contained in a hyperplane Ã_{i,:}x = b_i, where Ã_{i,:} = ±A_{i,:}.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Two Simplex Representations Vertex and halfspace representations

- ► The vertex representation of a simplex D = S is in terms of the cartesian coordinates of its n + 1 vertices, i.e.
 - $\mathcal{S} = \langle P_0, P_1, \dots P_n \rangle.$
- The half-plane representation of a simplex is in terms of the feasible set of n + 1 inequalities Ax ≥ b, A ∈ ℝ^{n+1×n}, b ∈ ℝⁿ⁺¹.
 - Each face S_{¬i} of S opposite a vertex P_i of S is contained in a hyperplane Ã_{i,:}x = b_i, where Ã_{i,:} = ±A_{i,:}.
 - The side of the hyperplane upon which P_i lies determines the sense of the inequality A_{i,}x ≥ b_i.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Two Simplex Representations

- ► The vertex representation of a simplex D = S is in terms of the cartesian coordinates of its n + 1 vertices, i.e.
 - $\mathcal{S} = \langle P_0, P_1, \dots P_n \rangle.$
- The half-plane representation of a simplex is in terms of the feasible set of n + 1 inequalities Ax ≥ b, A ∈ ℝ^{n+1×n}, b ∈ ℝⁿ⁺¹.
 - Each face S_{¬i} of S opposite a vertex P_i of S is contained in a hyperplane Ã_{i,:}x = b_i, where Ã_{i,:} = ±A_{i,:}.
 - The side of the hyperplane upon which P_i lies determines the sense of the inequality A_i, x ≥ b_i.
- The vertex representation is most useful in the branching, etc., while the halfspace representation is most useful in constraint-propagation-based filters.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Two Simplex Representations

- ► The vertex representation of a simplex D = S is in terms of the cartesian coordinates of its n + 1 vertices, i.e.
 - $\mathcal{S} = \langle P_0, P_1, \dots P_n \rangle.$
- The half-plane representation of a simplex is in terms of the feasible set of n + 1 inequalities Ax ≥ b, A ∈ ℝ^{n+1×n}, b ∈ ℝⁿ⁺¹.
 - Each face S_{¬i} of S opposite a vertex P_i of S is contained in a hyperplane Ã_{i,:}x = b_i, where Ã_{i,:} = ±A_{i,:}.
 - The side of the hyperplane upon which P_i lies determines the sense of the inequality A_i, x ≥ b_i.
- The vertex representation is most useful in the branching, etc., while the halfspace representation is most useful in constraint-propagation-based filters.
- We have studied mathematically rigorous conversions between these two representations.

Bounding the Range of *f* Over a Simplex *f* is normally represented in terms of cartesian (box-based) coordinates.

Various possibilities

Simplicial Branch and Bound Tools

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Bounding the Range of *f* Over a Simplex *f* is normally represented in terms of cartesian (box-based) coordinates. Various possibilities

► We can enclose S in a box, then use traditional interval extensions over the box.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

- ► We can enclose S in a box, then use traditional interval extensions over the box.
 - This is simple, but with significant overestimation.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

- ► We can enclose S in a box, then use traditional interval extensions over the box.
 - This is simple, but with significant overestimation.
- We can use the halfspace representation and constraint propagation.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

- ► We can enclose S in a box, then use traditional interval extensions over the box.
 - This is simple, but with significant overestimation.
- We can use the halfspace representation and constraint propagation.
 - This can result in less overestimation, but not necessarily.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

- ► We can enclose S in a box, then use traditional interval extensions over the box.
 - This is simple, but with significant overestimation.
- We can use the halfspace representation and constraint propagation.
 - This can result in less overestimation, but not necessarily.
 - This adds complication and, depending on the problem and how implemented, could involve an amount of computation comparable to that required to totally solve the original problem

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

- ► We can enclose S in a box, then use traditional interval extensions over the box.
 - This is simple, but with significant overestimation.
- We can use the halfspace representation and constraint propagation.
 - This can result in less overestimation, but not necessarily.
 - This adds complication and, depending on the problem and how implemented, could involve an amount of computation comparable to that required to totally solve the original problem
- We can analyze relationships between coordinates in the simplex to derive simple formulas that give sharper bounds than interval extensions over the containing boxes.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations Bounding the Range of *f* Over a Simplex S A specially derived formula for $S = \langle P_0, P_1, \dots, P_n \rangle$, with $P_i = (p_{i,1}, \dots, p_{i,n})$

Begin with non-sharp bounds $\mathbf{f} = [\underline{f}, \overline{f}]$, say, obtained by evaluating over a box \mathbf{x} containing S.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations Bounding the Range of *f* Over a Simplex S A specially derived formula for $S = \langle P_0, P_1, \dots, P_n \rangle$, with $P_i = (p_{i,1}, \dots, p_{i,n})$

Begin with non-sharp bounds $\mathbf{f} = [\underline{f}, \overline{f}]$, say, obtained by evaluating over a box \mathbf{x} containing S.

Theorem:

$$\begin{array}{rcl} \text{Let } L_i &=& \text{Inf} \left(\sum_{j=1}^n p_{i,j} \check{f}_j(sgn(p_{i,j})) \right), \text{ and} \\ U_i &=& \text{Sup} \left(\sum_{j=1}^n p_{i,j} \check{f}_j(-sgn(p_{i,j})) \right), \text{ where} \\ \check{f}_j(p) &= \left\{ \underline{f}_j \text{ if } p \geq 0, \ \bar{f}_j \text{ if } p < 0, \text{ and } \mathbf{f}_j \text{ if } 0 \in p \right\}. \end{array}$$

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations Bounding the Range of *f* Over a Simplex S A specially derived formula for $S = \langle P_0, P_1, \dots, P_n \rangle$, with $P_i = (p_{i,1}, \dots, p_{i,n})$

Begin with non-sharp bounds $\mathbf{f} = [\underline{f}, \overline{f}]$, say, obtained by evaluating over a box \mathbf{x} containing S.

Theorem:

Let
$$L_i = Inf\left(\sum_{j=1}^n p_{i,j}\check{f}_j(sgn(p_{i,j}))\right)$$
, and
 $U_i = Sup\left(\sum_{j=1}^n p_{i,j}\check{f}_j(-sgn(p_{i,j}))\right)$, where
 $\check{f}_j(p) = \left\{\underline{f}_j \text{ if } p \ge 0, \ \bar{f}_j \text{ if } p < 0, \ \text{ and } \ \mathbf{f}_j \text{ if } 0 \in p\right\}$.

Assume the domain of *f* has been translated so the barycenter $\frac{1}{n+1} \sum_{i=0}^{n} P_i$ is the origin (0, ..., 0), and the range of *f* has been translated so f(0, ..., 0) = 0.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations Bounding the Range of *f* Over a Simplex S A specially derived formula for $S = \langle P_0, P_1, \dots, P_n \rangle$, with $P_i = (p_{i,1}, \dots, p_{i,n})$

Begin with non-sharp bounds $\mathbf{f} = [\underline{f}, \overline{f}]$, say, obtained by evaluating over a box \mathbf{x} containing S.

Theorem:

Let
$$L_i = Inf\left(\sum_{j=1}^n p_{i,j}\check{f}_j(sgn(p_{i,j}))\right)$$
, and
 $U_i = Sup\left(\sum_{j=1}^n p_{i,j}\check{f}_j(-sgn(p_{i,j}))\right)$, where
 $\check{f}_j(p) = \left\{\underline{f}_j \text{ if } p \ge 0, \ \bar{f}_j \text{ if } p < 0, \ \text{ and } \ \mathbf{f}_j \text{ if } 0 \in p\right\}$.

Assume the domain of *f* has been translated so the barycenter $\frac{1}{n+1}\sum_{i=0}^{n} P_i$ is the origin (0, ..., 0), and the range of *f* has been translated so f(0, ..., 0) = 0. Then the range of *f* over *S* is contained in the interval

 $I_0 = [\min_{0 \le i \le n} L_i, \max_{0 \le i \le n} U_i].$

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations Bounding the Range of *f* Over a Simplex S A specially derived formula for $S = \langle P_0, P_1, \dots, P_n \rangle$, with $P_i = (p_{i,1}, \dots, p_{i,n})$

Begin with non-sharp bounds $\mathbf{f} = [\underline{f}, \overline{f}]$, say, obtained by evaluating over a box \mathbf{x} containing S.

Theorem:

Let
$$L_i = Inf\left(\sum_{j=1}^n p_{i,j}\check{f}_j(sgn(p_{i,j}))\right)$$
, and
 $U_i = Sup\left(\sum_{j=1}^n p_{i,j}\check{f}_j(-sgn(p_{i,j}))\right)$, where
 $\check{f}_j(p) = \left\{\underline{f}_j \text{ if } p \ge 0, \ \bar{f}_j \text{ if } p < 0, \text{ and } \mathbf{f}_j \text{ if } 0 \in p\right\}$.

Assume the domain of *f* has been translated so the barycenter $\frac{1}{n+1} \sum_{i=0}^{n} P_i$ is the origin (0, ..., 0), and the range of *f* has been translated so f(0, ..., 0) = 0.

Then the range of f over S is contained in the interval $I_0 = [\min_{0 \le i \le n} L_i, \max_{0 \le i \le n} U_i].$

• I_0 is often narrower than f.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations Bounding the Range of *f* Over a Simplex S A specially derived formula for $S = \langle P_0, P_1, \dots, P_n \rangle$, with $P_i = (p_{i,1}, \dots, p_{i,n})$

Begin with non-sharp bounds $\mathbf{f} = [\underline{f}, \overline{f}]$, say, obtained by evaluating over a box \mathbf{x} containing S.

Theorem:

Let
$$L_i = Inf\left(\sum_{j=1}^n p_{i,j}\check{f}_j(sgn(p_{i,j}))\right)$$
, and
 $U_i = Sup\left(\sum_{j=1}^n p_{i,j}\check{f}_j(-sgn(p_{i,j}))\right)$, where
 $\check{f}_j(p) = \left\{\underline{f}_j \text{ if } p \ge 0, \ \bar{f}_j \text{ if } p < 0, \text{ and } \mathbf{f}_j \text{ if } 0 \in p\right\}$.

Assume the domain of *f* has been translated so the barycenter $\frac{1}{n+1} \sum_{i=0}^{n} P_i$ is the origin (0, ..., 0), and the range of *f* has been translated so f(0, ..., 0) = 0.

Then the range of f over S is contained in the interval $I_0 = [\min_{0 \le i \le n} L_i, \max_{0 \le i \le n} U_i].$

• I_0 is often narrower than f.

(The theorem is proven by considering ${\cal S}$ in terms of barycentric coordinates and an associated LP.)

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

The Vertex and Halfspace Representations

Computing a rigorous enclosure of ${\cal S}$ in a halfspace representation from a rigorous enclosure for ${\cal S}$ in a vertex representation

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

The Vertex and Halfspace Representations

Computing a rigorous enclosure of S in a halfspace representation from a rigorous enclosure for S in a vertex representation

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

The Vertex and Halfspace Representations

Computing a rigorous enclosure of S in a halfspace representation from a rigorous enclosure for S in a vertex representation

We bound the set of all possible halfplane equations subject to uncertainties in the vertices.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

The Vertex and Halfspace Representations Computing a rigorous enclosure of *S* in a halfspace representation

omputing a rigorous enclosure of S in a halfspace representation from a rigorous enclosure for S in a vertex representation

- We bound the set of all possible halfplane equations subject to uncertainties in the vertices.
- ► We select certain halfplanes arbitrarily to construct the system Ax ≥ b.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Vertex Enclosure to Halfspace Enclosure

The computations for the *i*-th halfspace, $0 \le i \le n$

corresponding to $S_{\neg i} = \left\langle \tilde{P}_0, \tilde{P}_1, \dots, \tilde{P}_{n-1} \right\rangle^{-1}$

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Vertex Enclosure to Halfspace Enclosure

The computations for the *i*-th halfspace, $0 \le i \le n$ corresponding to $S_{\neg i} = \langle \tilde{P}_0, \tilde{P}_1, \dots, \tilde{P}_{n-1} \rangle$

• Begin with enclosures \tilde{P}_i to the actual vertices \tilde{P}_i .

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations Vertex Enclosure to Halfspace Enclosure

The computations for the *i*-th halfspace, $0 \le i \le n$ corresponding to $S_{\neg i} = \langle \tilde{P}_0, \tilde{P}_1, \dots, \tilde{P}_{n-1} \rangle$

- Begin with enclosures \tilde{P}_i to the actual vertices \tilde{P}_i .
- For the *i*-th row of A, consider an interval enclosure to the system

$$oldsymbol{M} oldsymbol{a}_i = egin{pmatrix} (ilde{oldsymbol{P}}_1 - ilde{oldsymbol{P}}_0)^T \ dots \ (ilde{oldsymbol{P}}_{n-1} - ilde{oldsymbol{P}}_0)^T \end{pmatrix} oldsymbol{a}_i = 0.$$

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations Vertex Enclosure to Halfspace Enclosure

The computations for the *i*-th halfspace, $0 \le i \le n$ corresponding to $S_{\neg i} = \langle \tilde{P}_0, \tilde{P}_1, \dots, \tilde{P}_{n-1} \rangle$

- Begin with enclosures \tilde{P}_i to the actual vertices \tilde{P}_i .
- For the *i*-th row of A, consider an interval enclosure to the system

$$oldsymbol{M}oldsymbol{a}_i = egin{pmatrix} (ilde{oldsymbol{P}}_1 - ilde{oldsymbol{P}}_0)^T \ dots \ (ilde{oldsymbol{P}}_{n-1} - ilde{oldsymbol{P}}_0)^T \end{pmatrix} oldsymbol{a}_i = 0.$$

► We obtain a floating point approximation z to Mă_i = 0, ||z||₂ = 1 using a common null-space-finding procedure.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations Vertex Enclosure to Halfspace Enclosure

The computations for the *i*-th halfspace, $0 \le i \le n$ corresponding to $S_{\neg i} = \langle \tilde{P}_0, \tilde{P}_1, \dots, \tilde{P}_{n-1} \rangle$

- Begin with enclosures \tilde{P}_i to the actual vertices \tilde{P}_i .
- For the *i*-th row of *A*, consider an interval enclosure to the system

$$m{M}m{a}_i = egin{pmatrix} (ilde{m{P}}_1 - ilde{m{P}}_0)^T \ dots \ (ilde{m{P}}_{n-1} - ilde{m{P}}_0)^T \end{pmatrix} m{a}_i = 0.$$

- ► We obtain a floating point approximation z to Mă_i = 0, ||z||₂ = 1 using a common null-space-finding procedure.
- ▶ We construct a sufficiently large box $a^{(0)}$ around z, and apply an interval Newton method to the system Mz = 0, $z^T z = 1$ to prove a unique solution for every $M \in M$ and generating an enclosure a_i for the normal vector perpendicular to $S_{\neg i}$.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

Vertex Enclosure to Halfspace Enclosure

Computations for the *i*-th halfspace (continued)

We possibly reverse the sign of *a_i* depending on the sign of *a_i^T*(*P̃_i* − *P*₀).

- Introduction
- **Previous Work**
- Two Simplex Representations
- Various Bounding Strategies
- Converting Between Representations

Vertex Enclosure to Halfspace Enclosure

- We possibly reverse the sign of *a_i* depending on the sign of *a_i^T*(*P̃_i* − *P*₀).
- Compute $b_i \approx a_i^T \tilde{P}_0$ using floating point computations.

- Introduction
- Previous Work
- Two Simplex Representations
- Various Bounding Strategies
- Converting Between Representations

Vertex Enclosure to Halfspace Enclosure

- We possibly reverse the sign of *a_i* depending on the sign of *a_i^T*(*P̃_i* − *P*₀).
- Compute $b_i \approx a_i^T \tilde{P}_0$ using floating point computations.
- Gradually decrease *b_i* until a <u>*b_i*</u> with *a_i^TP_j* ≥ <u>*b_i*</u> for 0 ≤ *j* ≤ *n*.

- Introduction
- **Previous Work**
- Two Simplex Representations
- Various Bounding Strategies
- Converting Between Representations

Vertex Enclosure to Halfspace Enclosure

- We possibly reverse the sign of *a_i* depending on the sign of *a_i^T*(*P̃_i* − *P*₀).
- Compute $b_i \approx a_i^T \tilde{P}_0$ using floating point computations.
- Gradually decrease *b_i* until a <u>*b_i*</u> with *a_i^TP_j* ≥ <u>*b_i*</u> for 0 ≤ *j* ≤ *n*.
- ▶ Proposition: Let $\boldsymbol{H}_i = \{x : \boldsymbol{a}_i^T x \ge \underline{b}_i\}$. Verification of $\boldsymbol{a}_i^T \boldsymbol{P}_j \ge \underline{b}_i \ (j = 0, 1, ..., n) \text{ implies } \mathcal{S} \subset \boldsymbol{H}_i$.

- Introduction
- Previous Work
- Two Simplex Representations
- Various Bounding Strategies
- Converting Between Representations

Vertex Enclosure to Halfspace Enclosure

- We possibly reverse the sign of *a_i* depending on the sign of *a_i^T*(*P̃_i* − *P*₀).
- Compute $b_i \approx a_i^T \tilde{P}_0$ using floating point computations.
- Gradually decrease b_i until a \underline{b}_i with $\boldsymbol{a}_i^T \boldsymbol{P}_j \ge \underline{b}_i$ for $0 \le j \le n$.
- ▶ Proposition: Let $\boldsymbol{H}_i = \{x : \boldsymbol{a}_i^T x \ge \underline{b}_i\}$. Verification of $\boldsymbol{a}_i^T \boldsymbol{P}_j \ge \underline{b}_i \ (j = 0, 1, ..., n) \text{ implies } \mathcal{S} \subset \boldsymbol{H}_i$.
- Since a_i^T P_j ≥ <u>b</u>_i, a_i^T P_j ≥ <u>b</u>_i for any a_i ∈ a_i, so, with the same reasoning behind the proposition,
 S ⊂ H_i = {x : a_i^T x ≥ <u>b</u>_i}.

- Introduction
- Previous Work
- Two Simplex Representations
- Various Bounding Strategies
- Converting Between Representations

Vertex Enclosure to Halfspace Enclosure

- We possibly reverse the sign of *a_i* depending on the sign of *a_i^T*(*P̃_i* − *P*₀).
- Compute $b_i \approx a_i^T \tilde{P}_0$ using floating point computations.
- Gradually decrease *b_i* until a <u>*b_i*</u> with *a_i^TP_j* ≥ <u>*b_i*</u> for 0 ≤ *j* ≤ *n*.
- ▶ Proposition: Let $\boldsymbol{H}_i = \{x : \boldsymbol{a}_i^T x \ge \underline{b}_i\}$. Verification of $\boldsymbol{a}_i^T \boldsymbol{P}_j \ge \underline{b}_i \ (j = 0, 1, ..., n) \text{ implies } \mathcal{S} \subset \boldsymbol{H}_i$.
- Since a_i^T P_j ≥ <u>b</u>_i, a_i^T P_j ≥ <u>b</u>_i for any a_i ∈ a_i, so, with the same reasoning behind the proposition,
 S ⊂ H_i = {x : a_i^T x ≥ <u>b</u>_i}.
- ▶ In other words, *a_i* can be *any* floating-point quantity in *a_i*.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

What next? Comparisons of simplicial-based and box-based B&B

Sam has initial implementations of the same basic B&B algorithm using both simplices and boxes, incorporating the techniques we have explained here.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

What next? Comparisons of simplicial-based and box-based B&B

- Sam has initial implementations of the same basic B&B algorithm using both simplices and boxes, incorporating the techniques we have explained here.
- We have selected both general test problems and test problems on which there is an underlying simplicial geometry.

Introduction

Previous Work

Two Simplex Representations

Various Bounding Strategies

Converting Between Representations

What next? Comparisons of simplicial-based and box-based B&B

- Sam has initial implementations of the same basic B&B algorithm using both simplices and boxes, incorporating the techniques we have explained here.
- We have selected both general test problems and test problems on which there is an underlying simplicial geometry.
- ► This work is in progress.