
IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

The IEEE 754-2008 Floating Point Standard
and its Pending Revision

Ralph Baker Kearfott

Department of Mathematics
University of Louisiana at Lafayette

Abstract

The IEEE 754 floating point standard, important in science and
engineering, is due to expire in 2018 unless it is reviewed, and the P-754
working group has again become active. We review the IEEE 754-2008
floating point standard, explain some issues, and invite input and
participation.

UL Applied Math. Seminar, Fall, 2015



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Outline

History

Main Features

Issues

The Pending Revision

How to Participate

Additional Resources



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (3 / 26)

(prehistory)

I Early computers used “fixed point” arithmetic, but those
computations suffered extreme limitations on size.

I Prior to 1977, there were many arithmetic systems
based roughly on scientific notation (“floating point:”
structured with a sign, mantissa, exponent sign, and
exponent). Almost all∗ had base either 10 or a power of
2, but with varying word lengths (total number of digits
used to store a number), varying exponent range, and
varying ways of rounding after operations.
Examples:
· IBM mainframes had base 16, with a 32-bit word.
· Univac and Honeywell systems had base 2, with a 36-bit word length.
∗ The proposed Russian “Setun” computer would have used base 3!



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (3 / 26)

(prehistory)

I Early computers used “fixed point” arithmetic, but those
computations suffered extreme limitations on size.

I Prior to 1977, there were many arithmetic systems
based roughly on scientific notation (“floating point:”
structured with a sign, mantissa, exponent sign, and
exponent). Almost all∗ had base either 10 or a power of
2, but with varying word lengths (total number of digits
used to store a number), varying exponent range, and
varying ways of rounding after operations.

Examples:
· IBM mainframes had base 16, with a 32-bit word.
· Univac and Honeywell systems had base 2, with a 36-bit word length.
∗ The proposed Russian “Setun” computer would have used base 3!



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (3 / 26)

(prehistory)

I Early computers used “fixed point” arithmetic, but those
computations suffered extreme limitations on size.

I Prior to 1977, there were many arithmetic systems
based roughly on scientific notation (“floating point:”
structured with a sign, mantissa, exponent sign, and
exponent). Almost all∗ had base either 10 or a power of
2, but with varying word lengths (total number of digits
used to store a number), varying exponent range, and
varying ways of rounding after operations.
Examples:

· IBM mainframes had base 16, with a 32-bit word.
· Univac and Honeywell systems had base 2, with a 36-bit word length.
∗ The proposed Russian “Setun” computer would have used base 3!



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (3 / 26)

(prehistory)

I Early computers used “fixed point” arithmetic, but those
computations suffered extreme limitations on size.

I Prior to 1977, there were many arithmetic systems
based roughly on scientific notation (“floating point:”
structured with a sign, mantissa, exponent sign, and
exponent). Almost all∗ had base either 10 or a power of
2, but with varying word lengths (total number of digits
used to store a number), varying exponent range, and
varying ways of rounding after operations.
Examples:
· IBM mainframes had base 16, with a 32-bit word.

· Univac and Honeywell systems had base 2, with a 36-bit word length.
∗ The proposed Russian “Setun” computer would have used base 3!



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (3 / 26)

(prehistory)

I Early computers used “fixed point” arithmetic, but those
computations suffered extreme limitations on size.

I Prior to 1977, there were many arithmetic systems
based roughly on scientific notation (“floating point:”
structured with a sign, mantissa, exponent sign, and
exponent). Almost all∗ had base either 10 or a power of
2, but with varying word lengths (total number of digits
used to store a number), varying exponent range, and
varying ways of rounding after operations.
Examples:
· IBM mainframes had base 16, with a 32-bit word.
· Univac and Honeywell systems had base 2, with a 36-bit word length.

∗ The proposed Russian “Setun” computer would have used base 3!



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (3 / 26)

(prehistory)

I Early computers used “fixed point” arithmetic, but those
computations suffered extreme limitations on size.

I Prior to 1977, there were many arithmetic systems
based roughly on scientific notation (“floating point:”
structured with a sign, mantissa, exponent sign, and
exponent). Almost all∗ had base either 10 or a power of
2, but with varying word lengths (total number of digits
used to store a number), varying exponent range, and
varying ways of rounding after operations.
Examples:
· IBM mainframes had base 16, with a 32-bit word.
· Univac and Honeywell systems had base 2, with a 36-bit word length.
∗ The proposed Russian “Setun” computer would have used base 3!



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (4 / 26)

Reasons for (or against?) a standard

I The same program (written in standard Fortran) would
give different results on different machines: Precision
requirements were not portable.

I Results on one machine could not be reproduced on
another machine, not even approximately.

I Even if condition numbers were known, required
precision mandated different programs on different
machines.

I Existence of common elementary functions could not be
assumed.

I However, different accuracies on different machines
could sometimes be exploited to identify ill-conditioning.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (4 / 26)

Reasons for (or against?) a standard

I The same program (written in standard Fortran) would
give different results on different machines: Precision
requirements were not portable.

I Results on one machine could not be reproduced on
another machine, not even approximately.

I Even if condition numbers were known, required
precision mandated different programs on different
machines.

I Existence of common elementary functions could not be
assumed.

I However, different accuracies on different machines
could sometimes be exploited to identify ill-conditioning.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (4 / 26)

Reasons for (or against?) a standard

I The same program (written in standard Fortran) would
give different results on different machines: Precision
requirements were not portable.

I Results on one machine could not be reproduced on
another machine, not even approximately.

I Even if condition numbers were known, required
precision mandated different programs on different
machines.

I Existence of common elementary functions could not be
assumed.

I However, different accuracies on different machines
could sometimes be exploited to identify ill-conditioning.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (4 / 26)

Reasons for (or against?) a standard

I The same program (written in standard Fortran) would
give different results on different machines: Precision
requirements were not portable.

I Results on one machine could not be reproduced on
another machine, not even approximately.

I Even if condition numbers were known, required
precision mandated different programs on different
machines.

I Existence of common elementary functions could not be
assumed.

I However, different accuracies on different machines
could sometimes be exploited to identify ill-conditioning.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (4 / 26)

Reasons for (or against?) a standard

I The same program (written in standard Fortran) would
give different results on different machines: Precision
requirements were not portable.

I Results on one machine could not be reproduced on
another machine, not even approximately.

I Even if condition numbers were known, required
precision mandated different programs on different
machines.

I Existence of common elementary functions could not be
assumed.

I However, different accuracies on different machines
could sometimes be exploited to identify ill-conditioning.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (5 / 26)

(committee formation)

1977: Intel starts design of microcomputer processor,
and is persuaded to standardize the floating
point operations; other vendors set up a
standardization effort (the IEEE 754 working
group) in response, to avoid unfair advantage
from Intel.

Nov., 1977: William Kahan*, also an Intel consultant,
supplied the 754 WG with a draft proposal.
∗ Bill (Velvel) Kahan, the “Father of Floating Point,” has been a

highly outspoken advocate of reliable floating point arithmetic, did

early work in interval arithmetic, and has supervised prominent

graduate students at U.C. Berkeley.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (5 / 26)

(committee formation)

1977: Intel starts design of microcomputer processor,
and is persuaded to standardize the floating
point operations; other vendors set up a
standardization effort (the IEEE 754 working
group) in response, to avoid unfair advantage
from Intel.

Nov., 1977: William Kahan*, also an Intel consultant,
supplied the 754 WG with a draft proposal.

∗ Bill (Velvel) Kahan, the “Father of Floating Point,” has been a

highly outspoken advocate of reliable floating point arithmetic, did

early work in interval arithmetic, and has supervised prominent

graduate students at U.C. Berkeley.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (5 / 26)

(committee formation)

1977: Intel starts design of microcomputer processor,
and is persuaded to standardize the floating
point operations; other vendors set up a
standardization effort (the IEEE 754 working
group) in response, to avoid unfair advantage
from Intel.

Nov., 1977: William Kahan*, also an Intel consultant,
supplied the 754 WG with a draft proposal.
∗ Bill (Velvel) Kahan, the “Father of Floating Point,” has been a

highly outspoken advocate of reliable floating point arithmetic, did

early work in interval arithmetic, and has supervised prominent

graduate students at U.C. Berkeley.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (6 / 26)

(Implementation and revision)

1980: Intel introduces the 8087 coprocessor, an
optional add-on to PC’s with circuitry based on a
draft of the standard.

I 754 support was provided in software (much
slower) if the 8087 was absent.

I Current Intel chips have 754-support built-in.

1985: IEEE 754-1985 becomes an official standard;
see https:

//en.wikipedia.org/wiki/IEEE_754-1985

2008: A revision is published, and IEEE 754-2008
becomes the official standard.

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-1985


IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (6 / 26)

(Implementation and revision)

1980: Intel introduces the 8087 coprocessor, an
optional add-on to PC’s with circuitry based on a
draft of the standard.

I 754 support was provided in software (much
slower) if the 8087 was absent.

I Current Intel chips have 754-support built-in.

1985: IEEE 754-1985 becomes an official standard;
see https:

//en.wikipedia.org/wiki/IEEE_754-1985

2008: A revision is published, and IEEE 754-2008
becomes the official standard.

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-1985


IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (6 / 26)

(Implementation and revision)

1980: Intel introduces the 8087 coprocessor, an
optional add-on to PC’s with circuitry based on a
draft of the standard.

I 754 support was provided in software (much
slower) if the 8087 was absent.

I Current Intel chips have 754-support built-in.

1985: IEEE 754-1985 becomes an official standard;
see https:

//en.wikipedia.org/wiki/IEEE_754-1985

2008: A revision is published, and IEEE 754-2008
becomes the official standard.

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-1985


IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (6 / 26)

(Implementation and revision)

1980: Intel introduces the 8087 coprocessor, an
optional add-on to PC’s with circuitry based on a
draft of the standard.

I 754 support was provided in software (much
slower) if the 8087 was absent.

I Current Intel chips have 754-support built-in.

1985: IEEE 754-1985 becomes an official standard;
see https:

//en.wikipedia.org/wiki/IEEE_754-1985

2008: A revision is published, and IEEE 754-2008
becomes the official standard.

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-1985


IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Origins and Early History (6 / 26)

(Implementation and revision)

1980: Intel introduces the 8087 coprocessor, an
optional add-on to PC’s with circuitry based on a
draft of the standard.

I 754 support was provided in software (much
slower) if the 8087 was absent.

I Current Intel chips have 754-support built-in.

1985: IEEE 754-1985 becomes an official standard;
see https:

//en.wikipedia.org/wiki/IEEE_754-1985

2008: A revision is published, and IEEE 754-2008
becomes the official standard.

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-1985


IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (7 / 26)

Classic binary

I Single Precision is based on a 32-bit word (viewed as 4
8-bit bytes), with a 23-bit fraction:

(roughly 7 decimal digits and decimal exponent range ±38)

I Double Precision is based on a 64-bit word (viewed as 8
8-bit bytes), with a 52-bit fraction:

(roughly 16 decimal digits and decimal exponent range ±308)

(figures from Wikipedia: “IEEE 754 Single Floating Point Format” by Codekaizen)



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (7 / 26)

Classic binary

I Single Precision is based on a 32-bit word (viewed as 4
8-bit bytes), with a 23-bit fraction:

(roughly 7 decimal digits and decimal exponent range ±38)

I Double Precision is based on a 64-bit word (viewed as 8
8-bit bytes), with a 52-bit fraction:

(roughly 16 decimal digits and decimal exponent range ±308)

(figures from Wikipedia: “IEEE 754 Single Floating Point Format” by Codekaizen)



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (8 / 26)

Rounding Modes

I Has four rounding modes: round to nearest, round up,
round down, and round towards 0.

I The correctly rounded concept: The stored result is the
nearest floating point number to the mathematically
exact result, according to the selected rounding scheme.

I Requires +, −, ×, ÷, and
√
· be correctly rounded, as

well as binary to decimal, decimal to binary, binary to
integer, and integer to binary conversions.

I When used astutely, with or without interval arithmetic,
the rounding modes∗ can provide mathematically
rigorous lower and upper bounds on exact solutions.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (8 / 26)

Rounding Modes

I Has four rounding modes: round to nearest, round up,
round down, and round towards 0.

I The correctly rounded concept: The stored result is the
nearest floating point number to the mathematically
exact result, according to the selected rounding scheme.

I Requires +, −, ×, ÷, and
√
· be correctly rounded, as

well as binary to decimal, decimal to binary, binary to
integer, and integer to binary conversions.

I When used astutely, with or without interval arithmetic,
the rounding modes∗ can provide mathematically
rigorous lower and upper bounds on exact solutions.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (8 / 26)

Rounding Modes

I Has four rounding modes: round to nearest, round up,
round down, and round towards 0.

I The correctly rounded concept: The stored result is the
nearest floating point number to the mathematically
exact result, according to the selected rounding scheme.

I Requires +, −, ×, ÷, and
√
· be correctly rounded, as

well as binary to decimal, decimal to binary, binary to
integer, and integer to binary conversions.

I When used astutely, with or without interval arithmetic,
the rounding modes∗ can provide mathematically
rigorous lower and upper bounds on exact solutions.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (8 / 26)

Rounding Modes

I Has four rounding modes: round to nearest, round up,
round down, and round towards 0.

I The correctly rounded concept: The stored result is the
nearest floating point number to the mathematically
exact result, according to the selected rounding scheme.

I Requires +, −, ×, ÷, and
√
· be correctly rounded, as

well as binary to decimal, decimal to binary, binary to
integer, and integer to binary conversions.

I When used astutely, with or without interval arithmetic,
the rounding modes∗ can provide mathematically
rigorous lower and upper bounds on exact solutions.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (9 / 26)

Extended Formats

I The standard allows for (but does not mandate) floating
point formats that are wider (with more digits in the
mantissa) than the standard ones, as an aid to achieving
correct rounding.

I For example, the Intel line of chips (80x87, “Pentium”,
“Core. . . ””) have 80-bit registers, with 3 extra bits.

I In contrast, the Motorola chips that were used in Sun
workstations did not have an extended format, but
achieved correct rounding in other ways.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (9 / 26)

Extended Formats

I The standard allows for (but does not mandate) floating
point formats that are wider (with more digits in the
mantissa) than the standard ones, as an aid to achieving
correct rounding.

I For example, the Intel line of chips (80x87, “Pentium”,
“Core. . . ””) have 80-bit registers, with 3 extra bits.

I In contrast, the Motorola chips that were used in Sun
workstations did not have an extended format, but
achieved correct rounding in other ways.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (9 / 26)

Extended Formats

I The standard allows for (but does not mandate) floating
point formats that are wider (with more digits in the
mantissa) than the standard ones, as an aid to achieving
correct rounding.

I For example, the Intel line of chips (80x87, “Pentium”,
“Core. . . ””) have 80-bit registers, with 3 extra bits.

I In contrast, the Motorola chips that were used in Sun
workstations did not have an extended format, but
achieved correct rounding in other ways.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (10 / 26)

Additional features

I Has +∞ and −∞ (generated e.g. through overflow,
etc.), treated as numbers in expressions.

I Has the (sometimes infamous) NaN (Not-a-Number),
generated through operation exceptions (e.g.
sqrt(-5.0)) and propagated, allowing for non-stop
arithmetic (and cryptic printouts full of NaNs).

I Has “gradual underflow” (use of non-normalized
numbers) to fill in the bothersome gap between the
smallest normalized floating point number and 0.

I Requires logical and comparison operators (<, >, ≤,
.NOT., etc.)

I Specifies operations involving∞ and NaN.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (10 / 26)

Additional features

I Has +∞ and −∞ (generated e.g. through overflow,
etc.), treated as numbers in expressions.

I Has the (sometimes infamous) NaN (Not-a-Number),
generated through operation exceptions (e.g.
sqrt(-5.0)) and propagated, allowing for non-stop
arithmetic (and cryptic printouts full of NaNs).

I Has “gradual underflow” (use of non-normalized
numbers) to fill in the bothersome gap between the
smallest normalized floating point number and 0.

I Requires logical and comparison operators (<, >, ≤,
.NOT., etc.)

I Specifies operations involving∞ and NaN.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (10 / 26)

Additional features

I Has +∞ and −∞ (generated e.g. through overflow,
etc.), treated as numbers in expressions.

I Has the (sometimes infamous) NaN (Not-a-Number),
generated through operation exceptions (e.g.
sqrt(-5.0)) and propagated, allowing for non-stop
arithmetic (and cryptic printouts full of NaNs).

I Has “gradual underflow” (use of non-normalized
numbers) to fill in the bothersome gap between the
smallest normalized floating point number and 0.

I Requires logical and comparison operators (<, >, ≤,
.NOT., etc.)

I Specifies operations involving∞ and NaN.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (10 / 26)

Additional features

I Has +∞ and −∞ (generated e.g. through overflow,
etc.), treated as numbers in expressions.

I Has the (sometimes infamous) NaN (Not-a-Number),
generated through operation exceptions (e.g.
sqrt(-5.0)) and propagated, allowing for non-stop
arithmetic (and cryptic printouts full of NaNs).

I Has “gradual underflow” (use of non-normalized
numbers) to fill in the bothersome gap between the
smallest normalized floating point number and 0.

I Requires logical and comparison operators (<, >, ≤,
.NOT., etc.)

I Specifies operations involving∞ and NaN.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (10 / 26)

Additional features

I Has +∞ and −∞ (generated e.g. through overflow,
etc.), treated as numbers in expressions.

I Has the (sometimes infamous) NaN (Not-a-Number),
generated through operation exceptions (e.g.
sqrt(-5.0)) and propagated, allowing for non-stop
arithmetic (and cryptic printouts full of NaNs).

I Has “gradual underflow” (use of non-normalized
numbers) to fill in the bothersome gap between the
smallest normalized floating point number and 0.

I Requires logical and comparison operators (<, >, ≤,
.NOT., etc.)

I Specifies operations involving∞ and NaN.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (11 / 26)

Five types of operation exceptions

Invalid operation: Operations on a NaN, 0×∞, etc.

Division by zero: (when the dividend is non-zero)
Overflow: Result larger than the largest representable

number.
Underflow: Result non-zero but with absolute value smaller

than the smallest representable positive
number.

Inexact: Result is not exactly representable (more often
true than not).

I (Controversial) The exceptions are logged with static
flags.

I The default is to set the flag and continue execution;
once set, a flag remains set.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (11 / 26)

Five types of operation exceptions

Invalid operation: Operations on a NaN, 0×∞, etc.
Division by zero: (when the dividend is non-zero)

Overflow: Result larger than the largest representable
number.

Underflow: Result non-zero but with absolute value smaller
than the smallest representable positive
number.

Inexact: Result is not exactly representable (more often
true than not).

I (Controversial) The exceptions are logged with static
flags.

I The default is to set the flag and continue execution;
once set, a flag remains set.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (11 / 26)

Five types of operation exceptions

Invalid operation: Operations on a NaN, 0×∞, etc.
Division by zero: (when the dividend is non-zero)

Overflow: Result larger than the largest representable
number.

Underflow: Result non-zero but with absolute value smaller
than the smallest representable positive
number.

Inexact: Result is not exactly representable (more often
true than not).

I (Controversial) The exceptions are logged with static
flags.

I The default is to set the flag and continue execution;
once set, a flag remains set.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (11 / 26)

Five types of operation exceptions

Invalid operation: Operations on a NaN, 0×∞, etc.
Division by zero: (when the dividend is non-zero)

Overflow: Result larger than the largest representable
number.

Underflow: Result non-zero but with absolute value smaller
than the smallest representable positive
number.

Inexact: Result is not exactly representable (more often
true than not).

I (Controversial) The exceptions are logged with static
flags.

I The default is to set the flag and continue execution;
once set, a flag remains set.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (11 / 26)

Five types of operation exceptions

Invalid operation: Operations on a NaN, 0×∞, etc.
Division by zero: (when the dividend is non-zero)

Overflow: Result larger than the largest representable
number.

Underflow: Result non-zero but with absolute value smaller
than the smallest representable positive
number.

Inexact: Result is not exactly representable (more often
true than not).

I (Controversial) The exceptions are logged with static
flags.

I The default is to set the flag and continue execution;
once set, a flag remains set.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (11 / 26)

Five types of operation exceptions

Invalid operation: Operations on a NaN, 0×∞, etc.
Division by zero: (when the dividend is non-zero)

Overflow: Result larger than the largest representable
number.

Underflow: Result non-zero but with absolute value smaller
than the smallest representable positive
number.

Inexact: Result is not exactly representable (more often
true than not).

I (Controversial) The exceptions are logged with static
flags.

I The default is to set the flag and continue execution;
once set, a flag remains set.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Main Features in both 1985 and 2008 (11 / 26)

Five types of operation exceptions

Invalid operation: Operations on a NaN, 0×∞, etc.
Division by zero: (when the dividend is non-zero)

Overflow: Result larger than the largest representable
number.

Underflow: Result non-zero but with absolute value smaller
than the smallest representable positive
number.

Inexact: Result is not exactly representable (more often
true than not).

I (Controversial) The exceptions are logged with static
flags.

I The default is to set the flag and continue execution;
once set, a flag remains set.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

New Features in IEEE 754-2008 (12 / 26)

I Quadruple-precision (128 bit) binary arithmetic.

I Two∗ decimal formats, encoded in 64 bits and 128 bits.
I Which formats are present are language- or

implementation-defined.
I Interchange formats are defined for transferring binary

and decimal data between different implementations.
I There is a large informative section describing four

levels (mathematical reals, floating point numbers,
representations, and bit encodings).

I A larger set of recommended functions is specified.
*The two formats are the result of competing requirements between two

different manufacturers.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

New Features in IEEE 754-2008 (12 / 26)

I Quadruple-precision (128 bit) binary arithmetic.
I Two∗ decimal formats, encoded in 64 bits and 128 bits.

I Which formats are present are language- or
implementation-defined.

I Interchange formats are defined for transferring binary
and decimal data between different implementations.

I There is a large informative section describing four
levels (mathematical reals, floating point numbers,
representations, and bit encodings).

I A larger set of recommended functions is specified.
*The two formats are the result of competing requirements between two

different manufacturers.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

New Features in IEEE 754-2008 (12 / 26)

I Quadruple-precision (128 bit) binary arithmetic.
I Two∗ decimal formats, encoded in 64 bits and 128 bits.

I Which formats are present are language- or
implementation-defined.

I Interchange formats are defined for transferring binary
and decimal data between different implementations.

I There is a large informative section describing four
levels (mathematical reals, floating point numbers,
representations, and bit encodings).

I A larger set of recommended functions is specified.

*The two formats are the result of competing requirements between two

different manufacturers.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

New Features in IEEE 754-2008 (12 / 26)

I Quadruple-precision (128 bit) binary arithmetic.
I Two∗ decimal formats, encoded in 64 bits and 128 bits.
I Which formats are present are language- or

implementation-defined.

I Interchange formats are defined for transferring binary
and decimal data between different implementations.

I There is a large informative section describing four
levels (mathematical reals, floating point numbers,
representations, and bit encodings).

I A larger set of recommended functions is specified.
*The two formats are the result of competing requirements between two

different manufacturers.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

New Features in IEEE 754-2008 (12 / 26)

I Quadruple-precision (128 bit) binary arithmetic.
I Two∗ decimal formats, encoded in 64 bits and 128 bits.
I Which formats are present are language- or

implementation-defined.
I Interchange formats are defined for transferring binary

and decimal data between different implementations.

I There is a large informative section describing four
levels (mathematical reals, floating point numbers,
representations, and bit encodings).

I A larger set of recommended functions is specified.
*The two formats are the result of competing requirements between two

different manufacturers.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

New Features in IEEE 754-2008 (12 / 26)

I Quadruple-precision (128 bit) binary arithmetic.
I Two∗ decimal formats, encoded in 64 bits and 128 bits.
I Which formats are present are language- or

implementation-defined.
I Interchange formats are defined for transferring binary

and decimal data between different implementations.
I There is a large informative section describing four

levels (mathematical reals, floating point numbers,
representations, and bit encodings).

I A larger set of recommended functions is specified.
*The two formats are the result of competing requirements between two

different manufacturers.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

New Features in IEEE 754-2008 (12 / 26)

I Quadruple-precision (128 bit) binary arithmetic.
I Two∗ decimal formats, encoded in 64 bits and 128 bits.
I Which formats are present are language- or

implementation-defined.
I Interchange formats are defined for transferring binary

and decimal data between different implementations.
I There is a large informative section describing four

levels (mathematical reals, floating point numbers,
representations, and bit encodings).

I A larger set of recommended functions is specified.

*The two formats are the result of competing requirements between two

different manufacturers.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Issues (13 / 26)

Inhibition of parallelization, an example:

I The five exception flags are global and static.

I What happens if an exception happens in one thread but
not another?

I What if the exceptions were associated with the datum,
rather than with the overall computation?

I In such a scheme, the exception would be confined to a
particular computational thread.

I Such a scheme has been worked out for the IEEE
1788-2015 standard for interval arithmetic, and can
possibly be adapted to a 754 revision.

I Such a scheme may aid reproducibility.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Issues (13 / 26)

Inhibition of parallelization, an example:

I The five exception flags are global and static.
I What happens if an exception happens in one thread but

not another?

I What if the exceptions were associated with the datum,
rather than with the overall computation?

I In such a scheme, the exception would be confined to a
particular computational thread.

I Such a scheme has been worked out for the IEEE
1788-2015 standard for interval arithmetic, and can
possibly be adapted to a 754 revision.

I Such a scheme may aid reproducibility.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Issues (13 / 26)

Inhibition of parallelization, an example:

I The five exception flags are global and static.
I What happens if an exception happens in one thread but

not another?
I What if the exceptions were associated with the datum,

rather than with the overall computation?

I In such a scheme, the exception would be confined to a
particular computational thread.

I Such a scheme has been worked out for the IEEE
1788-2015 standard for interval arithmetic, and can
possibly be adapted to a 754 revision.

I Such a scheme may aid reproducibility.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Issues (13 / 26)

Inhibition of parallelization, an example:

I The five exception flags are global and static.
I What happens if an exception happens in one thread but

not another?
I What if the exceptions were associated with the datum,

rather than with the overall computation?
I In such a scheme, the exception would be confined to a

particular computational thread.

I Such a scheme has been worked out for the IEEE
1788-2015 standard for interval arithmetic, and can
possibly be adapted to a 754 revision.

I Such a scheme may aid reproducibility.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Issues (13 / 26)

Inhibition of parallelization, an example:

I The five exception flags are global and static.
I What happens if an exception happens in one thread but

not another?
I What if the exceptions were associated with the datum,

rather than with the overall computation?
I In such a scheme, the exception would be confined to a

particular computational thread.
I Such a scheme has been worked out for the IEEE

1788-2015 standard for interval arithmetic, and can
possibly be adapted to a 754 revision.

I Such a scheme may aid reproducibility.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Issues (13 / 26)

Inhibition of parallelization, an example:

I The five exception flags are global and static.
I What happens if an exception happens in one thread but

not another?
I What if the exceptions were associated with the datum,

rather than with the overall computation?
I In such a scheme, the exception would be confined to a

particular computational thread.
I Such a scheme has been worked out for the IEEE

1788-2015 standard for interval arithmetic, and can
possibly be adapted to a 754 revision.

I Such a scheme may aid reproducibility.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of reproducibility (14 / 26)

I Numerical results running the same standard-complying
program with the same input data may not be the same,
even when run more than once on the same machine.

I This problem is due to partially due to the multi-level
nature of memory (main chip memory, processor cache,
computation registers).

I Multiple operating system functions beyond user control
are performed concurrently.

I These system functions may force the user’s
computation out of registers or cache at some times but
not others. (A string of computations done in registers
will be more accurate.)



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of reproducibility (14 / 26)

I Numerical results running the same standard-complying
program with the same input data may not be the same,
even when run more than once on the same machine.

I This problem is due to partially due to the multi-level
nature of memory (main chip memory, processor cache,
computation registers).

I Multiple operating system functions beyond user control
are performed concurrently.

I These system functions may force the user’s
computation out of registers or cache at some times but
not others. (A string of computations done in registers
will be more accurate.)



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of reproducibility (14 / 26)

I Numerical results running the same standard-complying
program with the same input data may not be the same,
even when run more than once on the same machine.

I This problem is due to partially due to the multi-level
nature of memory (main chip memory, processor cache,
computation registers).

I Multiple operating system functions beyond user control
are performed concurrently.

I These system functions may force the user’s
computation out of registers or cache at some times but
not others. (A string of computations done in registers
will be more accurate.)



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of reproducibility (14 / 26)

I Numerical results running the same standard-complying
program with the same input data may not be the same,
even when run more than once on the same machine.

I This problem is due to partially due to the multi-level
nature of memory (main chip memory, processor cache,
computation registers).

I Multiple operating system functions beyond user control
are performed concurrently.

I These system functions may force the user’s
computation out of registers or cache at some times but
not others. (A string of computations done in registers
will be more accurate.)



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of Reproducibility (15 / 26)

Pros and cons

I Reproducibility enables easier debugging of complicated
software.

I Reproducibility enables easier porting of software across
platforms.
However:

I It may be difficult to achieve reproducibility in concurrent
(i.e. parallel) computations without giving up
concurrency or without a major performance sacrifice.

I Do we want exactly the same results on all systems,
even if they are incorrect on all systems?



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of Reproducibility (15 / 26)

Pros and cons

I Reproducibility enables easier debugging of complicated
software.

I Reproducibility enables easier porting of software across
platforms.

However:
I It may be difficult to achieve reproducibility in concurrent

(i.e. parallel) computations without giving up
concurrency or without a major performance sacrifice.

I Do we want exactly the same results on all systems,
even if they are incorrect on all systems?



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of Reproducibility (15 / 26)

Pros and cons

I Reproducibility enables easier debugging of complicated
software.

I Reproducibility enables easier porting of software across
platforms.
However:

I It may be difficult to achieve reproducibility in concurrent
(i.e. parallel) computations without giving up
concurrency or without a major performance sacrifice.

I Do we want exactly the same results on all systems,
even if they are incorrect on all systems?



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of Reproducibility (15 / 26)

Pros and cons

I Reproducibility enables easier debugging of complicated
software.

I Reproducibility enables easier porting of software across
platforms.
However:

I It may be difficult to achieve reproducibility in concurrent
(i.e. parallel) computations without giving up
concurrency or without a major performance sacrifice.

I Do we want exactly the same results on all systems,
even if they are incorrect on all systems?



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of Reproducibility (15 / 26)

Pros and cons

I Reproducibility enables easier debugging of complicated
software.

I Reproducibility enables easier porting of software across
platforms.
However:

I It may be difficult to achieve reproducibility in concurrent
(i.e. parallel) computations without giving up
concurrency or without a major performance sacrifice.

I Do we want exactly the same results on all systems,
even if they are incorrect on all systems?



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of Reproducibility (16 / 26)

The standard

I By recommending, but not mandating, an extended
register format, the standard allows for different register
sizes on different machines.

I The standard does not recommend order of operations.
Note: The Java programming language, meant for web
applications, attempts to achieve complete
reproducibility, at the expense of maximum performance.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of Reproducibility (16 / 26)

The standard

I By recommending, but not mandating, an extended
register format, the standard allows for different register
sizes on different machines.

I The standard does not recommend order of operations.

Note: The Java programming language, meant for web
applications, attempts to achieve complete
reproducibility, at the expense of maximum performance.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of Reproducibility (16 / 26)

The standard

I By recommending, but not mandating, an extended
register format, the standard allows for different register
sizes on different machines.

I The standard does not recommend order of operations.
Note: The Java programming language, meant for web
applications, attempts to achieve complete
reproducibility, at the expense of maximum performance.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Issues (17 / 26)

Incomplete Implementation

Example: Binary to decimal conversion is typically done
when “printing” values in a format specified
within a programming language.

I Although chip hardware implements the basic
operations, the programming language standard does
not require correct rounding upon conversion, and often
does not supply it.

I The values users see are sometimes significantly less
accurate than the actual internal binary representations.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Issues (17 / 26)

Incomplete Implementation

Example: Binary to decimal conversion is typically done
when “printing” values in a format specified
within a programming language.

I Although chip hardware implements the basic
operations, the programming language standard does
not require correct rounding upon conversion, and often
does not supply it.

I The values users see are sometimes significantly less
accurate than the actual internal binary representations.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Issues (17 / 26)

Incomplete Implementation

Example: Binary to decimal conversion is typically done
when “printing” values in a format specified
within a programming language.

I Although chip hardware implements the basic
operations, the programming language standard does
not require correct rounding upon conversion, and often
does not supply it.

I The values users see are sometimes significantly less
accurate than the actual internal binary representations.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Incomplete Implementation (18 / 26)

Recommended functions

I The standard specifies a list of recommended functions,
largely coinciding with many common programming
language function (SIN, EXP, LOG, etc.).

I If these are present, a system is standard-conforming if
the values of these functions are correctly rounded
within specified ranges.

I Programming language implementations often do not
have all of the recommended functions.

I Programming language implementations of IEEE
754-2008 standard functions may not conform to the
standard.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Incomplete Implementation (18 / 26)

Recommended functions

I The standard specifies a list of recommended functions,
largely coinciding with many common programming
language function (SIN, EXP, LOG, etc.).

I If these are present, a system is standard-conforming if
the values of these functions are correctly rounded
within specified ranges.

I Programming language implementations often do not
have all of the recommended functions.

I Programming language implementations of IEEE
754-2008 standard functions may not conform to the
standard.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Incomplete Implementation (18 / 26)

Recommended functions

I The standard specifies a list of recommended functions,
largely coinciding with many common programming
language function (SIN, EXP, LOG, etc.).

I If these are present, a system is standard-conforming if
the values of these functions are correctly rounded
within specified ranges.

I Programming language implementations often do not
have all of the recommended functions.

I Programming language implementations of IEEE
754-2008 standard functions may not conform to the
standard.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Incomplete Implementation (18 / 26)

Recommended functions

I The standard specifies a list of recommended functions,
largely coinciding with many common programming
language function (SIN, EXP, LOG, etc.).

I If these are present, a system is standard-conforming if
the values of these functions are correctly rounded
within specified ranges.

I Programming language implementations often do not
have all of the recommended functions.

I Programming language implementations of IEEE
754-2008 standard functions may not conform to the
standard.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of User Access to Features (19 / 26)

I Intel, AMD, etc. chips widely implement basic IEEE 754
arithmetic.

I However, programming languages need not use or give
access to this.

I For example, Fortran and C (or C++) until recently did
not have syntax to specify or change the rounding mode.

I Matlab generally uses IEEE 754 double precision for
computations, but has not provided documentation to
routines to set the rounding mode.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of User Access to Features (19 / 26)

I Intel, AMD, etc. chips widely implement basic IEEE 754
arithmetic.

I However, programming languages need not use or give
access to this.

I For example, Fortran and C (or C++) until recently did
not have syntax to specify or change the rounding mode.

I Matlab generally uses IEEE 754 double precision for
computations, but has not provided documentation to
routines to set the rounding mode.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of User Access to Features (19 / 26)

I Intel, AMD, etc. chips widely implement basic IEEE 754
arithmetic.

I However, programming languages need not use or give
access to this.

I For example, Fortran and C (or C++) until recently did
not have syntax to specify or change the rounding mode.

I Matlab generally uses IEEE 754 double precision for
computations, but has not provided documentation to
routines to set the rounding mode.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Lack of User Access to Features (19 / 26)

I Intel, AMD, etc. chips widely implement basic IEEE 754
arithmetic.

I However, programming languages need not use or give
access to this.

I For example, Fortran and C (or C++) until recently did
not have syntax to specify or change the rounding mode.

I Matlab generally uses IEEE 754 double precision for
computations, but has not provided documentation to
routines to set the rounding mode.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Abandonment of the Standard (20 / 26)

I A combination of speed and low power consumption is
often the priority (such as in smart phones or graphics
processors).

I Designers sometimes judge compliance with IEEE
754-2008 arithmetic to be too complicated to allow fast
computation without using more power.

I The fastest supercomputers, consisting of many tiny
units such as graphics processors, are presently
constrained by power consumption, and have opted to
forego standard compliance.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Abandonment of the Standard (20 / 26)

I A combination of speed and low power consumption is
often the priority (such as in smart phones or graphics
processors).

I Designers sometimes judge compliance with IEEE
754-2008 arithmetic to be too complicated to allow fast
computation without using more power.

I The fastest supercomputers, consisting of many tiny
units such as graphics processors, are presently
constrained by power consumption, and have opted to
forego standard compliance.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Abandonment of the Standard (20 / 26)

I A combination of speed and low power consumption is
often the priority (such as in smart phones or graphics
processors).

I Designers sometimes judge compliance with IEEE
754-2008 arithmetic to be too complicated to allow fast
computation without using more power.

I The fastest supercomputers, consisting of many tiny
units such as graphics processors, are presently
constrained by power consumption, and have opted to
forego standard compliance.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

An Additional Comment (21 / 26)

I IEEE 754 does specify interchange format at the bit
level, but the internal representation of IEEE numbers
differs from machine to machine (example: big endian
versus small endian).

I Direct transfer of binary data, without interchange
functions, is not possible.

I This can be a good thing. (It allows innovation in design.)



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

An Additional Comment (21 / 26)

I IEEE 754 does specify interchange format at the bit
level, but the internal representation of IEEE numbers
differs from machine to machine (example: big endian
versus small endian).

I Direct transfer of binary data, without interchange
functions, is not possible.

I This can be a good thing. (It allows innovation in design.)



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

An Additional Comment (21 / 26)

I IEEE 754 does specify interchange format at the bit
level, but the internal representation of IEEE numbers
differs from machine to machine (example: big endian
versus small endian).

I Direct transfer of binary data, without interchange
functions, is not possible.

I This can be a good thing. (It allows innovation in design.)



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Current Status (22 / 26)

I The IEEE Standards Association has just authorized the
P-754 working group to review and revise the document.

I The working group’s term ends December, 2018.
I An organizational meeting was held September 22 on

the Berkeley campus, with David Hough presiding.
I There will be a combination of in-person, teleconference,

and email conduct of business.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Current Status (22 / 26)

I The IEEE Standards Association has just authorized the
P-754 working group to review and revise the document.

I The working group’s term ends December, 2018.

I An organizational meeting was held September 22 on
the Berkeley campus, with David Hough presiding.

I There will be a combination of in-person, teleconference,
and email conduct of business.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Current Status (22 / 26)

I The IEEE Standards Association has just authorized the
P-754 working group to review and revise the document.

I The working group’s term ends December, 2018.
I An organizational meeting was held September 22 on

the Berkeley campus, with David Hough presiding.

I There will be a combination of in-person, teleconference,
and email conduct of business.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Current Status (22 / 26)

I The IEEE Standards Association has just authorized the
P-754 working group to review and revise the document.

I The working group’s term ends December, 2018.
I An organizational meeting was held September 22 on

the Berkeley campus, with David Hough presiding.
I There will be a combination of in-person, teleconference,

and email conduct of business.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Prospects (23 / 26)

I $ Billions are invested in systems implementing the
current standard, making radical changes to it more
difficult.

I Sentiment has been expressed to mainly

I correct errors;
I clarify ambiguities.

I Nonetheless, wide participation and discussion is
important.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Prospects (23 / 26)

I $ Billions are invested in systems implementing the
current standard, making radical changes to it more
difficult.

I Sentiment has been expressed to mainly

I correct errors;
I clarify ambiguities.

I Nonetheless, wide participation and discussion is
important.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Prospects (23 / 26)

I $ Billions are invested in systems implementing the
current standard, making radical changes to it more
difficult.

I Sentiment has been expressed to mainly
I correct errors;

I clarify ambiguities.
I Nonetheless, wide participation and discussion is

important.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Prospects (23 / 26)

I $ Billions are invested in systems implementing the
current standard, making radical changes to it more
difficult.

I Sentiment has been expressed to mainly
I correct errors;
I clarify ambiguities.

I Nonetheless, wide participation and discussion is
important.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Prospects (23 / 26)

I $ Billions are invested in systems implementing the
current standard, making radical changes to it more
difficult.

I Sentiment has been expressed to mainly
I correct errors;
I clarify ambiguities.

I Nonetheless, wide participation and discussion is
important.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

How to Participate (24 / 26)

(the working group)

I There is an IEEE-SA sponsored mailing list, open to all,
to contribute to discussion.

I Persons may register with the IEEE-SA through a
web-based system (MyProject) to join the working group.

I Voting privileges are maintained within the working
group by active participation.

I The working group is responsible for formulating the
revision.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

How to Participate (24 / 26)

(the working group)

I There is an IEEE-SA sponsored mailing list, open to all,
to contribute to discussion.

I Persons may register with the IEEE-SA through a
web-based system (MyProject) to join the working group.

I Voting privileges are maintained within the working
group by active participation.

I The working group is responsible for formulating the
revision.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

How to Participate (24 / 26)

(the working group)

I There is an IEEE-SA sponsored mailing list, open to all,
to contribute to discussion.

I Persons may register with the IEEE-SA through a
web-based system (MyProject) to join the working group.

I Voting privileges are maintained within the working
group by active participation.

I The working group is responsible for formulating the
revision.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

How to Participate (24 / 26)

(the working group)

I There is an IEEE-SA sponsored mailing list, open to all,
to contribute to discussion.

I Persons may register with the IEEE-SA through a
web-based system (MyProject) to join the working group.

I Voting privileges are maintained within the working
group by active participation.

I The working group is responsible for formulating the
revision.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

How to Participate (25 / 26)

(Sponsor Ballot)

I When the P-754 working group reaches consensus on
the document, it is submitted for Sponsor Ballot.

I Working group members and others are invited to
become members of the Sponsor Ballot Group.

I Sponsor Ballot members may vote if they either become
members of the IEEE-SA (IEEE Standards Association)
or pay a per-ballot fee.

I When the Sponsor Ballot Group reaches consensus, the
document is submitted for procedural review.

I When the document passes procedural review it
becomes a revised standard.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

How to Participate (25 / 26)

(Sponsor Ballot)

I When the P-754 working group reaches consensus on
the document, it is submitted for Sponsor Ballot.

I Working group members and others are invited to
become members of the Sponsor Ballot Group.

I Sponsor Ballot members may vote if they either become
members of the IEEE-SA (IEEE Standards Association)
or pay a per-ballot fee.

I When the Sponsor Ballot Group reaches consensus, the
document is submitted for procedural review.

I When the document passes procedural review it
becomes a revised standard.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

How to Participate (25 / 26)

(Sponsor Ballot)

I When the P-754 working group reaches consensus on
the document, it is submitted for Sponsor Ballot.

I Working group members and others are invited to
become members of the Sponsor Ballot Group.

I Sponsor Ballot members may vote if they either become
members of the IEEE-SA (IEEE Standards Association)
or pay a per-ballot fee.

I When the Sponsor Ballot Group reaches consensus, the
document is submitted for procedural review.

I When the document passes procedural review it
becomes a revised standard.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

How to Participate (25 / 26)

(Sponsor Ballot)

I When the P-754 working group reaches consensus on
the document, it is submitted for Sponsor Ballot.

I Working group members and others are invited to
become members of the Sponsor Ballot Group.

I Sponsor Ballot members may vote if they either become
members of the IEEE-SA (IEEE Standards Association)
or pay a per-ballot fee.

I When the Sponsor Ballot Group reaches consensus, the
document is submitted for procedural review.

I When the document passes procedural review it
becomes a revised standard.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

How to Participate (25 / 26)

(Sponsor Ballot)

I When the P-754 working group reaches consensus on
the document, it is submitted for Sponsor Ballot.

I Working group members and others are invited to
become members of the Sponsor Ballot Group.

I Sponsor Ballot members may vote if they either become
members of the IEEE-SA (IEEE Standards Association)
or pay a per-ballot fee.

I When the Sponsor Ballot Group reaches consensus, the
document is submitted for procedural review.

I When the document passes procedural review it
becomes a revised standard.



IEEE Interval
Arithmetic
Standard

History

Main Features

Issues

The Pending
Revision

How to
Participate

Additional
Resources

Additional Resources (26 / 26)

I The Microprocessor Standardization Committee web
site is at
http://grouper.ieee.org/groups/msc/

I As chair of the Microprocessor Standardization
Committee (the oversight committee for the P-754
working group), you may ask me (at
rbk@louisiana.edu or in person) about the
organization, parliamentary procedures, whom to
contact, etc.

http://grouper.ieee.org/groups/msc/
rbk@louisiana.edu

	History
	Main Features
	Issues
	The Pending Revision
	How to Participate
	Additional Resources

