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Abstract In branch and bound algorithms for constrained global optimization, an
acceleration technique is to construct regions x∗ around local optimizing points x̌,
then delete these regions from further search. The result of the algorithm is then
a list of those small regions in which all globally optimizing points must lie. If the
constructed regions are too small, the algorithm will not be able to easily reject
adjacent regions in the search, while, if the constructed regions are too large, the set
of optimizing points is not known accurately. We briefly review previous methods of
constructing boxes about approximate optimizing points. We then derive a formula
for determining the size of a constructed solution-containing region, depending on
a small radius ε, and of constructing a containing box X∗ ⊃ x∗ such that all points
in X∗ \ x∗ are proven to be infeasible, without the need to actually process them
in the branch and bound algorithm. The construction differs in its motivation and
concept from previous methods of constructing such boxes X∗. It may be possible
to use this technique to reduce the large amount of processing branch and bound
algorithms typically require to fathom regions adjacent to optimizing points, and
to obtain more accurate bounds on solution sets.

Keywords cluster problem, backboxing, epsilon-inflation, complete search,
branch and bound, interval computations

1 Introduction and Notation

Consider the global optimization problem:

minimize ϕ(x)

subject to C(x) = (c1(x), . . . cm1(x)) = 0,

where ϕ : Rn → R and ci : Rn → R, i = 1, . . .m1.
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Problem (1) is not general, since it does not include inequality or bound con-
straints, a generalization we will consider in later work.

Depending on application and context, the minimum value ϕ∗ and a single
optimizing point x∗ are sought, or all globally optimizing points are sought. It
is well-known that the general problem (1) is NP-hard, but application-specific
structure can often be used. Sometimes, such structure allows us to construct
practical algorithms that compute good approximations to globally optimizing
points, while, in other cases, the only practical procedure is to employ heuristics
that yield low values of ϕ that may not be near a global optimum. Examples of
the latter include evolutionary algorithms.

The literature on global optimization has exploded over the past several decades,
in books, application-specific journals, and on the web. This journal is focussed
exclusively on the subject. An extensive web page is at [15].

When usable problem structure is unknown or absent, and especially when an
actual global optimum, not merely a low feasible value for ϕ, is desired, complete
search methods, as defined in [14], are used. Such methods employ a version of the
well-known branch and bound paradigm for continuous global optimization; the
general structure is as in Algorithm 1.

Input : An initial region x(0) (generally a hyper-rectangle, or box), the objective ϕ,
the constraints C, a domain stopping tolerance εd, and a limit M on the
maximum number of boxes to be allowed to be processed.

Output: OK = true and the best upper bound ϕ for the global optimum, and the list C
within which all optimizing points must lie, if the algorithm completed with
less than M boxes, and OK = false if the algorithm could not complete.

1 Initialize the list L of boxes to be processed to consist of the single box x(0);
2 Determine an upper bound ϕ on the global optimum;
3 i← 1;
4 while L 6= ∅ do
5 i← i+ 1;
6 if i > M then return OK = false;
7 ;
8 Remove a box x from L;
9 Determine if x is not infeasible, and if it is not proven to be infeasible, determine a

lower bound ϕ on ϕ over the feasible part of x;

10 if x is infeasible or ϕ > ϕ then return to Step 8;

11 ;
12 Possibly compute a better upper bound ϕ;
13 if a scaled radius diam of x satisfies diam(x) < εd then
14 Store x in C;
15 Return to Step 8;

16 else
17 Split x into two or more boxes;
18 Put each of the sub-boxes into L;
19 Return to Step 8;

20 end

21 end
22 return OK = true, ϕ, and C (possibly empty);

Algorithm 1: General Branch and Bound Structure

A huge amount of literature exists for Algorithm 1 in the context of mixed
integer linear programs, etc. Some general introductions in the context of general
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continuous global optimization, including when mathematically rigorous bounds
on the optimum and optimizer are desired, are [6], [14], and [23]. A few of the
notable software implementations are described in [18], [22], [23], [8, 9], and [19].

Generally, upper bounds ϕ can be computed by evaluating ϕ at carefully com-
puted feasible points, although this can be problematical for constrained problems
when mathematical rigor is sought ([6, §4.2.4], [7], and [12]). Lower bounds ϕ can
be computed with interval arithmetic or by solving relaxations, and may be en-
hanced with constraint propagation techniques. However, if the upper bound ϕ is
inaccurate or corresponds to a non-global local optimum, or perhaps more com-
monly if the lower bounds ϕ are not sufficiently sharp or even if an isolated global
optimizer lies near a corner of the box containing it, adjacent boxes cannot be
rejected in Step 11 of Algorithm 1; this is known as the cluster problem [11], [21],
[20]. The phenomenon is such that, for particular ways of computing ϕ and ϕ, the

number of boxes that cannot be rejected near an isolated global optimizer1 does
not decrease as εd is decreased.

Clustering of non-rejected boxes around isolated global optimizers can be
avoided by constructing a box x∗ with radius2 significantly larger than εd about
a point thought to be an accurate representation of the optimizer, and eliminat-
ing that region from the search3. An important question is how to construct x∗,
specifically, how wide to make it. An early, abstract analysis of this question in
the context of nonlinear systems of equations4 appears in [5]; there, the box x∗

was constructed with radius proportional to
√
εd. Also, in the nonlinear systems of

equations context, there is a history of construction of boxes x∗ about approximate
solutions x̌ in which an interval Newton method N(F ;x∗, x̌) has N(F ;x∗, x̌) ⊂ x∗,
thus proving existence and possibly uniqueness of solutions to the system F (x) = 0
(where F maps a subset of Rn into Rn). In [17], Rump proposes a method to
circumscribe x̌ with a box x∗ of as large a radius as possible, within which an
interval Newton method guarantees uniqueness of a solution to F (x) = 0 , and
within which there is a box x̌∗ ⊆ x∗ such that x̌∗ is as small as possible, subject
to an interval Newton method proving that x̌∗ contains a solution. Mayer surveys
such “ε-inflation” techniques in [13]. Schichl and Neumaier provide an interesting
analysis along these lines, for nonlinear systems of equations, in the context of
branch and bound algorithms, in [21], and in the context of unconstrained global
optimization in [20]. An interesting aspect of the analysis of Schichl and Neumaier
is that it uses higher-order information, so has the potential to handle cases where
the Jacobian matrix of the system is singular.

A more recent work containing a practical procedure successful for verifying
feasibility on an extensive test set is [2]. In contrast to that work, our motivation
here is to construct a box x∗ such that boxes bordering x∗ can be easily eliminated
in a branch-and-bound algorithm, in contrast to constructing a small x∗ within
which a feasible point is known to exist.

1 Non-isolated global optimizers, such as, for example, the optimizers of the unconstrained
problem ϕ(x) = (x2−x2

1)2, pose additional different problems to branch and bound algorithms.
2 in a scaled infinity norm
3 One method of modifying the list L once an x∗ has been constructed appears in [6, §4.3.1].

That method produces at most 2n additional boxes surrounding the optimizer-containing box.
4 This analysis also dealt primarily with the case where solutions happen to lie near a

boundary or vertex.
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In constrained global optimization, interval Newton methods can be used in
various ways to construct exclusion boxes x∗ containing global minimizers. For
example, the Kuhn–Tucker or Fritz John conditions may be used as the system of
equations. However, in many cases of interest, these systems are ill-conditioned or
singular at optimizers, sometimes provably so [12]; this forces the process to either
fail or the boxes x∗ to be too small to avoid the cluster problem. Alternately, a
system of equations may be formed directly from the approximately active con-
straints and a selected subspace of variables as in [6, §5.2.4] and [7], but problems
occurring in practical applications often have linearly dependent constraints, with
more active constraints than variables [10].

In our GlobSol software [8, 9], we avoid ill-conditioning problems with Kuhn–
Tucker or Fritz John equations by constructing x∗ roughly according to the ideas
in [5] with size proportional to

√
εd and scaled according to the partial derivatives

of the objective and constraints, as in [10, Formula (13)]. However, in general,
small boxes x̌∗ ⊂ x∗ cannot be constructed such that x̌∗ is verified to contain a
critical point or local optimizer. Thus, without verification with an interval Newton
method, the list C Algorithm 1 generates is only guaranteed to contain all globally
optimizing points, the individual boxes x∗ ∈ C may not contain optimizing points;
in return, we are freed to adjust the radii of the constructed x∗ to avoid clustering
or otherwise improve the efficiency within the branch and bound process.

This work is within this context of heuristically adjusted box sizes of boxes x∗

to be placed in C. If the radius of x∗ is too small, clustering will occur, resulting
in a large number of boxes in C and possibly in the inability of the algorithm to
complete within M steps. On the other hand, if the radius5 of x∗ is larger than
it needs to be to avoid clustering, the bounds on optimizers will not be tight. In
Section 2, we present a method of constructing a box x∗ and a box X∗ ⊃ x∗ such
that each point in X∗ \ x∗ is infeasible6. The method is motivated by imagining
small boxes of radius ε about x∗, presumably produced by some branch and bound
algorithm. Two illustrative examples are given. We have tried the technique on a
test set from the literature, and report the results in in Section 3, while we draw
conclusions and propose how the analysis can be used in Section 4.

2 Ideas and Algorithms for Setting the Exclusion Region Size

Given an approximate optimizing point x̌, we will construct a box x∗ about x̌ and
a box X∗ containing x∗ such that every point in the shell X∗ \x∗ is known to be
infeasible. As indicated in the introduction, such constructions have a long history,
perhaps beginning with work of Rump, as in [17]. The novelty of our construction
is that, given an ε, we determine the widths of x∗ by imagining X∗ \x∗ to consist
of boxes whose coordinate widths are all ε. Our motivation for this approach is
imagining x∗ to have been deleted from the search space in a branch and bound
algorithm and, absent other acceleration techniques, boxes of width ε adjacent to

5 The radius of an interval is half the width of the interval, while we may take the radius
of a box (where a box is an interval vector) to be the maximum of the radii of its component
intervals.

6 We do not explicitly deal with the objective ϕ in this work or with transforming the
problem and objective into an appropriate form.
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Fig. 1 Analysis of box rejection on a boundary

the solution box would have been produced by the branch and bound algorithm;
with our construction, X∗ would be eliminated without branching and bounding.

We summarize our actual goal and assumptions.

Goal: Given an approximate optimizing point x̌ and an ε > 0, construct a box x∗

and a containing box X∗, x∗ ⊂ X∗, such that some of the coordinates of X∗

extend outward distance ε from x∗ and every point in X∗ \ x∗ is proven to be
infeasible.

Assumptions: The constraints C are continuously differentiable, and mathemat-
ically rigorous bounds on the partial derivatives of the components of c over
any box x are computable.

2.1 Expansion Factors for the Constraints

Refer to Figure 1 in this analysis. As illustrated, we consider the expansion box
x with radius Kε, centered at the approximate global optimizer x̌, we consider a
face of this box in the direction u from x̌, we wish to analyze when a box y of
radius ε at ỹ will be rejected due to an equality constraint c(x) with c : Rn → R,
and we decompose ỹ− x̌ into a component y̌− x̌ of length (K+ 1)ε in the direction
of u and a component ỹ − y̌ in the direction v orthogonal to u, and consider an
arbitrary y ∈ y. We have

c(y) = c(x̌) + [c(y̌)− c(x̌)] + [c(ỹ)− c(y̌)] + [c(y)− c(ỹ)]
= c(x̌) +∇uc(ξ)(K + 1)ε+∇vc(η)(ỹ − y̌) +∇c(ζ)(y − ỹ), (2)

where ∇u is the scalar directional derivative in the direction u, ∇v is the gradient
in the (n−1)-dimensional subspace orthogonal to u, and ∇ is the full n-dimensional
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gradient, ξ is on the line between x̌ and y̌, η is on the line between y̌ and ỹ, and ζ

is on the line between ỹ and y. Now, define µ, M, M , L, and δ such that

µ ≤ mint∈[0,1] |∇uc(x̌+ t(y̌ − x̌))|, M ≥ maxt∈[0,1] ‖∇vc(y̌ + t(ỹ − y̌))‖,

M ≥ max‖y−x̌‖≤
√

(K+2)2+(L+1)2ε
‖∇c(x)‖, L ≥ ‖ỹ − y̌‖/ε, and δ ≥ |c(x̌)|/ε.

(3)
In the computations to follow, all of these norms are taken to be ‖·‖2. Observe the
minimum possible L is proportional to the coordinate widths of x in directions
perpendicular to u. Also, if the constraints were exactly satisfied at x̌, we can
choose δ = 0; it will become apparent we will want δ to be small in relation to the
minimum box radius ε in any case.

Using (3) in (2) gives

|c(y)| ≥ (K + 1)εµ− LεM− εM − εδ. (4)

Thus, (4) implies |c(y)| > 0 for y ∈ y provided we can choose K such that

K >
LM+M + δ − µ

µ
provided µ > 0 and LM+M + δ − µ > 0. (5)

For example, if c is linear and u is in the direction of ∇c, M can be chosen to be
0, M and µ can be chosen to be equal, and any K will do provided δ is sufficiently
small.

If we assume L ≤ γK + a for some constants γ and a and we assume we can
bound µ, M, and M with interval arithmetic, we may solve (5) for K to obtain

K >
aM+M + δ − µ

µ− γM provided µ > γM and aM+M + δ − µ > 0. (6)

These conditions only take account of overestimation when bounding c over y using
interval evaluations if µ, M , and M are bounded using interval computations. In
practice, µ,M, and M can be computed with interval evaluations over a box with
radii based on Kmaxε, where Kmax is the maximum allowable value for K, and the
computed K is rejected if K > Kmax.

We summarize these computations with the following.

Proposition 1 Assume the constraints of (1) are continuously differentiable, assume

that a maximum extent Kmax has been chosen, assume a direction u parallel to a

coordinate direction, say the i-th, has been chosen, assume c is any linear combination

of the component constraints of C and assume µ, M, M , and L satisfy

µ ≤ min‖x−x̌‖∞≤Kmaxε |∇u(x)|, M ≥ max‖x−x̌‖≤Kmaxε ‖∇v(x)‖,
M ≥ max‖x−x̌‖≤Kmax]]ε ‖∇c(x)‖, δ ≥ |c(x̌)|/ε,

where ∇v is the gradient of c with the coordinate parallel to u excluded. and set γ =√
n− 1, a = 3

√
n− 1, and L =

√
n− 1 (Kmax + 3). Assume that a box x∗ centered

at x̌ is constructed such that the widths in each coordinate direction are equal to Kε,

where K is computed either to (5) (with associated condition), or (6) (with associated

condition), and K + 3 < Kmax. Then the box of radius ε in the i − th coordinate

direction ei and radius (K + 3)ε in the other coordinate directions and centered on

x̌+ σ(K + 1)εei, σ = ±1, is infeasible.
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Proof (of Proposition 1) The proposition follows from the definitions (3), the as-
sumptions in the proposition, the derivation of (5) and (6) from the first-order
expansions of c, and Proposition 2 below. ut

We have assumed L = γK + a for some γ and a, but how did we know what
γ and a should be? If each coordinate radius of x∗ is equal7, what can L be for
x∗ ⊂ Rn? Along these lines, it is logical to extend a face at xi = x̌i + σKε, σ = 1
or −1, beyond xj ∈ [x̌j −Kε, x̌j +Kε], j 6= i, to xj ∈ [x̌j − (K + 1)ε, x̌j + (K + 1)ε];
this facilitates construction of a cube x∗ is contained in a cube X∗ such that all
points in X∗ \ x∗ are infeasible; see Figure 2.

x̌

y̌
ỹ

ε

Kε

≤ 3ε≥ 0

Boxes to be eliminated

Fig. 2 Analysis of border elimination

Proposition 2 Suppose we wish to enclose the box x∗ whose i-th coordinate extents

are x∗i = [x̌i −Kε, x̌i +Kε] within a box X∗ constructed by covering each coordinate

face of x∗ with boxes of radii ε and extending outward from each coordinate face one

box in each direction beyond boxes sharing a part of a face of x∗; see Figure 2. Adequate

γ and a for L ≤ γK + a to describe ỹ ∈ X∗ \ x∗ are γ =
√
n− 1 and a = 3

√
n− 1,

i.e. we may take

L =
√
n− 1 (Kmax + 3) .

Proof (of Proposition 2) Refer to Figure 2. X∗ \x∗ consists of 2n hyper-rectangles
with overlapping edges, where each hyperrectangle has an i-th coordinate fixed at
zi = y̌i = x̌i + σ(K + 1)ε for σ = 1 or σ = −1 and other coordinates zj , j 6= i with

zj ⊆ [x̌j − (K + 3)ε, x̌j + (K + 3)ε] = [y̌j − (K + 3)ε, y̌j + (K + 3)ε].

The farthest a small box center ỹ can be from y̌ in such a hyper-rectangle z is
when it is in the center of a box with coordinate radii ε located in a corner of

7 We may modify this later by using scaled distances or by locally scaling the constraints.
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the hyper-rectangle. Each coordinate of such a box center lies at distance at most
(K+3)ε from the corresponding coordinate of y̌. The conclusion of the proposition
therefore follows from the Pythagorean theorem. ut

We now give an example illustrating the value of these techniques, followed by
an example illustrating the techniques’ limitations.

Example 1

minx1

subject to: c(x) = x2
1 − x2

2 − 1 = 0,

(x1, x2) ∈ ([−2, 2], [−2, 2]).

The unique global optimizer for this problem is at x̌ = (−1, 0), at which ϕ(x̌) = −1.
Here ∇c(x̌) = (−2, 0)T , so this constraint may be most useful in eliminating boxes
bordering faces of x perpendicular to the first coordinate direction, that is, a
promising u is u = (±1, 0); let’s do the analysis with u = (1, 0)T . For simplicity,
suppose the box x∗ about x̌ has been constructed to have equal widths in both
coordinate directions, so it is of the form

x∗ = ([−1−Kε,−1 +Kε], [−Kε,Kε]).

(Note that, in this example, this corresponds to Figure 1 and not Figure 2 or
Proposition 2.) As in practice, we compute µ, M, and M with interval arithmetic
over a box with coordinate radii Kmaxε� Kε. In this example, let’s take ε = 10−6.
If we assume x∗ has equal widths in all directions, then we may take γ = 1; also,
we may take a = 0 and δ = 0. If we assume K < 100, we may evaluate ∇uc, ∇vc
and ∇c over the box

([−1− 10−4,−1 + 10−4], [−10−4, 10−4])

to obtain

∇c ∈ ([−2.0002,−1.9997], [−0.0002, 0.0002])T ,

and we may take µ = 1.9997, M = 0.0002, M =
√

2.00022 + 0.00022 ≤ 2.0003.
Since µ = 1.9997 > 0.0002 = γM, we may employ (6) to obtain

K ≥ 2.0003− 1.9997

1.9997− 0.0002
.

Since this fraction is bounded by 0.003, K = 1 will do.
Indeed, with K = 1, the single box with radius ε = 10−6 that covers the face

(−1 + 10−6, [−10−6, 10−6]) of x∗ is

y = ([−1 + 10−6,−1 + 3 · 10−6], [−10−6, 10−6]),

and a naive interval evaluation of c within Intlab (see [16]) gives

c(y) ⊂ [−0.6,−0.199999]× 10−5,

so, indeed, 0 6∈ c(y).
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Example 2 Consider

min(x1 − x2)2

subject to: c(x) = x2 − ex1x2 = 0,

(x1, x2) ∈ ([−2, 2], [−2, 2]).

This problem has a unique global optimizer at x̌ = (0, 1), at which ϕ(x̌) = 1. As
in Example 1, let us construct x∗ with equal coordinate widths as

x∗ = ([−1−Kε,−1 +Kε], [−Kε,+Kε]),

so the minimum possible L has L ≤ K − 1/2 < K. We have ∇c = (−x2e
x1x2 , 1 −

x1e
x1x2)T , both of whose coordinates have equal magnitude at (0, 1). If we choose

u = (0, 1)T , we will be looking to reject boxes lining the face ([−Kε,Kε], 1+Kε) of
x∗. If we assume each box on this face to be rejected has radius in each direction
equal to ε (see Figure 1), the minimum possible L has L ≤ K − 1/2 < K, so we
may take γ = 1 and a = 0. Furthermore, |∇uc| is constantly equal to 1 on the line
between x̌ and y̌, so µ = 1 will do. Also, since we are working in R2, v is the single
direction (1, 0)T (to within algebraic sign), and, along the line between y̌ and ỹ,

∇vc = −x2e
x1x2 ∈ −(1 + (K + 1)ε)e(1+(K+1)ε)[−Kε,Kε],

so

‖∇vc‖ ≤ (1 + (K + 1)ε)e(1+(K+1)ε)Kε ≤ 1.36

if Kε ≤ 0.1 and ε ≤ 0.1, in which case M = 1.36 will do. Finally, if y ∈ y, y will be
inside a box of radius (K+2)ε in each coordinate direction and centered at x̌, and,
if ‖ · ‖ = ‖ · ‖∞, M can be taken as (1 + (K + 2)ε)e((1+(K+2)ε)(K+2)ε ≤ 1.23 = M if
(K+2)ε ≤ 0.1. Combining all of this and using (5) gives K > (1.23K+1.36−1)/1.
There is no such K, and the analysis fails in this case. (Alternatively, using (6),
µ = 1 < γM = 1.23, and the condition cannot be applied.)

The analysis failed for Example 2 because ∇v was not small in relation to ∇u.
In general, if the problem is dominated by the constraints, a particular constraint
would be most effective at eliminating boxes on faces of x∗ most nearly orthogonal
to that constraint, as was illustrated in Example 1. Here,we say that a constraint
c is orthogonal to a face

x∗i = (x∗1, . . . ,x
∗
i−1, x

∗
i ,x
∗
i+1, . . . ,x

∗
n) or x∗i = (x∗1, . . . ,x

∗
i−1, x

∗
i ,x
∗
i+1, . . . ,x

∗
n)

provided ∇c(x̌) (and hence all values of ∇c in a sufficiently small box around x̌)
is approximately a scalar multiple of the i-th coordinate vector.

2.2 Using the Objective Values

There are various possibilities for constructing expansion factors based on the ob-
jective. Different approaches are warranted for problems of different types. How-
ever, if the problem is constraint-dominated, it may be appropriate to convert all
constraints to equality constraints, as in [2], and to similarly replace the objective
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by a single slack variable, so the objective is equal to one of the coordinate vari-
ables, with known lower and upper bounds. This is the approach we adopt in this
work; we will investigate alternative approaches later.

If we have a linear objective equal to one of the coordinate variables, we sim-
ply construct coordinate bounds for that variable with lower bound computed
with constraint propagation and upper bound computed as the best upper bound
on the global optimum. The best upper bound can then be propagated into the
constraints.

2.3 Combining the Constraint Expansion Factors

In this section, we propose handling equality-constrained problems by combining
estimates as in Sections 2.1 and 2.2 to use all constraints to analyze all faces of
x∗.

Example 2 illustrates that, even with problems with a single constraint, it may
not be possible to construct a box around an optimizing point in a way that all
adjacent boxes with radii ε are rejected. This can be due to the way the problem
is posed or to the angles between the null space of the constraint gradients and
the coordinate directions. In some cases, this can be mitigated by taking a linear
combination of the constraints (equivalent to preconditioning the m by n matrix
of constraint gradients) and using the fact that

if, for some {αi}m1

i=1,

m1∑
i=1

αici(x) 6= 0 then ci(x) 6= 0 for at least one i. (7)

We will use (7) in our proposed method for computing the expansion factor K.
We present some definitions to aid our exposition.

Definition 1 Let C(x) = (c1(x), . . . , cm1(x)) represent the equality constraints
in the optimization problem (1). Then the optimal constraint combination at an
optimizing point x̌ corresponding to coordinate direction i is that constraint com-
bination

c̃i =
m1∑
j=1

αjcj(x) which minimizes ‖(∇C(x̌))α− ei‖2

over the parameters α = (α1, . . . , αm1), where ∇C(x̌) is the n by m1 matrix whose
i-th column is the gradient of ci at x̌ and where ei ∈ Rn is the i-th coordinate
vector.

Choosing c̃i according to Definition 1 gives us the linear combination of constraints
such that when u is the i-th coordinate direction, µ is large andM is small, making
the right member of (4) likely to be positive. This brings us to

Definition 2 The expansion factor for the i-th coordinate in direction p ∈ {−1, 1} at
an optimizing point x̌ is defined to be Ki,p, where Ki,p is the constraint expansion
factor for c̃i in the i-th coordinate direction (where c̃i replaces the constraint c
in the development in Section 2.1), computed through (5) and possibly with (6)
if µ > γM, provided the computed Ki,p corresponds to a region in which the
bounds in (3) are valid; if the computed Ki,p would lie outside those bounds, Ki,p
is defined to be ∞.



Some Observations on Exclusion Regions in Branch and Bound Algorithms 11

The bounds in (3) can generally be computed by interval evaluations over a suit-
ably large box, where the size of such a box can be determined if a maximum
practical value of K can be given.

We now consider combining the coordinate expansion factors Ki,p to determine
a K valid for as many coordinate directions as we can.

Definition 3 Suppose a maximum practical constraint expansion factor Kmax has
been determined. The combined constraint expansion factor K is then defined as

K =


max

1≤i≤n,p∈{−1,1}
Ki,p<Kmax

Ki,p if ∃Ki,p < Kmax,

Kmax otherwise.

(8)

In fact, successful computation a combined constraint expansion factor K al-
lows us to remove shells of depth ε bordering x∗ from the search region without
subdividing them with any branch and bound process:

Theorem 1 Suppose we have Problem (1) (that is, the problem is formulated so there

are only equality constraints), suppose x̌ is an optimizing point of this problem, suppose

the combined constraint expansion factor K has been constructed for a given ε according

to Definition 3, and suppose a hypercube x∗ has been constructed with center at x̌ and

equal radius Kε in each coordinate direction. With this x∗, suppose i is any coordinate

index such that Ki,p < Kmax. Then c̃i is infeasible at every point y such that |yj−x̌j | ≤
Kε for j 6= i and Kε ≤ |yi − x̌i| ≤ (K + 1)ε.

In other words, the conclusion of Theorem 1 states that the two shells of depth 2ε
bordering the two i-th faces of x∗ with xi = x̌i ±Kε are infeasible, for each i with
expansion factor for the i-th coordinate less than Kmax.

Proof (of Theorem 1) The conclusion follows directly from the definition of K
(Definition 3) and Formulas 5 or 6. ut

Computation of K and utilization of Theorem 1 with Proposition 2 can in
many cases allow us to eliminate portions of the search space bordering some of
the faces of solution boxes x∗ without actually performing a branch and bound
algorithm and testing a large number of such bordering boxes for infeasibility.
Also, observing the sizes of K and Kmax and the number of faces of x∗ for which
Ki,p <∞ provides a gauge of how difficult the remaining branch and bound search
is likely to be.

For example, suppose n = 10 and K = 32; in that case, it would take 245 ≈
3.5× 1013 boxes of uniform radius ε in all coordinate directions to cover a face of
x∗. Fortunately, many problems are formulated so each constraint depends only on
a small number of variables, so the subdivision may be done in a low-dimensional
subspace. Taking advantage of this may render some otherwise intractable prob-
lems practical to solve.

3 Experimental Results

We programmed computation of K within our GlobSol [9] user environment. We
applied the computation to the problems from [10]8. We coded routines within

8 We used these problems (1) since they represent an independent test set, and (2) since we
had these particular problems in a form we could easily manipulate.
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Table 1 Success statistics for Theorem 1.

Problem n m1 K Nq

ex14.1.1 13 9 0.6 12
ex14.1.8 13 9 0.0 0
ex14.2.1 22 17 0.0 0
ex14.2.2 17 13 0.0 0
ex14.2.4 22 17 0.0 0
ex14.2.5 17 13 0.0 0
ex14.2.6 22 17 0.0 0
ex14.2.8 17 13 0.0 0
ex14.2.9 17 13 0.0 0
ex2.1.4 23 16 0.0 0

ex5.2.2.1 31 25 0.1 6
ex5.2.2.2 31 25 0.1 6
ex5.2.4 28 21 0.2 18
ex7.3.3 13 9 3.6 4
ex8.1.7 21 16 5.0 6
ex9.1.2 22 20 0.0 32
ex9.1.7 66 57 5.3 36
ex9.1.9 51 39 4.0 30
ex9.2.4 21 19 0.2 24
harker 42 28 0.0 0
haverly 30 24 0.1 4
house 19 14 4.3 8

immun 44 29 0.0 4
qp5 219 140 0.0 0

sambal 19 11 0.0 0
sample 16 11 0.0 4

GlobSol to automatically add slack variables and convert the problem’s internal
representation to one in which the objective consists of a slack variable and all
constraints are equality constraints. We used Kmax = 10 and ε = 10−3, and we
recorded K and the number of faces for which Ki,p < Kmax. We used only those
problems for which the approximate optimizer (IPOPT [24]) gave a reasonable
feasible point. We ran the experiments on an Intel i7-3820-based computer with
an up-to-date Ubuntu 14.04 operating system and the gcc compiler suite. The
additional processor time beyond computing the point x̌ within IPOPT was not
significant for these problems, and the processor time to compute x̌ was not sig-
nificant except for problem qp5.

In reporting our results, we use the following term.

Definition 4 A qualified face of a box x∗ constructed according to Theorem 1 is
a face with xi constant upon which Ki,ji < Kmax. All other faces are said to be
unqualified.

The results appear in Table 1. In this table, Nq gives the number of faces that were
found to be qualified. It can be seen from Table 1 that, although not successful
for all problems, the computations underlying Theorem 1 are possibly a valuable
adjunct to branch and bound algorithms to global optimization. For example, for
ex9.1.7, 2/3 of the faces of x∗ were found to be qualified with K = 1.5. This allows
us to eliminate shells of significant volume around x̌ in which it is known there are
no global optimizers, without subdividing in the branch and bound algorithm.
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4 Conclusions and Future Work

We have studied the process of elimination of boxes surrounding optimizer-con-
taining boxes within branch and bound processes. We have proposed a formula
for constructing an optimum-containing box and eliminating shells surrounding
such optimum-containing boxes. This process shows promise for improving branch
and bound algorithms by computing a minimal box around which an adjacent
region can be eliminated. Regarding the actual shells adjacent particular faces of
the optimum-containing box, the method is potentially more powerful than the
“shaving” processes in Numerica [22], [3], and elsewhere, since the term∇c(η)(y−ỹ)
in (2) represents an increment over a small box rather than an entire bordering
shell.

Future work can include the following.

1. Develop and test an algorithm to handle unqualified edges and to eliminate
shells beyond adjacent faces of x̌, working outward from the faces rather than
inward through a branch-and-bound algorithm, and utilizing the structure
gained from Theorem 1.

2. Compare the process to adaptive shaving.
3. Evaluate the process within a branch and bound algorithm.
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