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Abstract In branch and bound algorithms in constrained global optimization, a sharp

upper bound on the global optimum is important for the overall efficiency of the branch

and bound process. Software to find local optimizers, using floating point arithmetic,

often computes an approximately feasible point close to an actual global optimizer. Not

mathematically rigorous algorithms can simply evaluate the objective at such points to

obtain approximate upper bounds. However, such points may actually be slightly in-

feasible, and the corresponding objective values may be slightly smaller than the global

optimum. A consequence is that actual optimizers are occasionally missed, while the

algorithm returns an approximate optimum and corresponding approximate optimizer

that is occasionally far away from an actual global optimizer. In mathematically rig-

orous algorithms, objective values are accepted as upper bounds only if the point of

evaluation is proven to be feasible.

Such computational proofs of feasibility have been weak points in mathematically

rigorous algorithms. This paper first reviews previously proposed automatic proofs of

feasibility, then proposes an alternative technique. The alternative technique is tried

on a test set that caused trouble for previous techniques, and is also employed in a

mathematically rigorous branch and bound algorithm on that test set.

Keywords automatic verification, branch and bound algorithms, interval analysis,

global optimization, feasibility

1 Introduction and Notation

Branch and bound algorithms for constrained global optimization benefit from utilizing

iterative constrained local optimization software. Such solvers find an approximately

feasible point x≈ that is near a local optimizer. Thus, objective function evaluations

ϕ(x≈) at such points x≈ are approximate upper bounds ϕ on the global optimum ϕ∗;
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often |ϕ(x≈) − ϕ∗| is also small. Such upper bounds ϕ are then used in branch and

bound algorithms in conjunction with lower bounds on the range of the objective in

the feasible portion of a subregion of the search space: If ϕ(x) > ϕ, where ϕ(x) is

a computed lower bound on the range of the objective ϕ over a subregion x of the

search region, then x is eliminated from further processing in the branch and bound

algorithm.

When points x≈ are taken to be feasible, it is not unusual that ϕ(x≈) < ϕ∗,
although ϕ(x≈) ≈ ϕ∗. In such cases, the branch and bound algorithm typically gives a

good approximation to ϕ∗ and an optimizing point x≈ that is near a global optimizer

x∗. However, there are cases where x≈ is not near any globally optimizing point x∗,
and the exact relationship is not revealed by the computation.

The goal of some branch and bound algorithms is to simply find a good approxi-

mation to ϕ∗, while in others, it is to find all optimizing points (or reveal degeneracy

in the solution). Occasionally in the first case but often in the second case, use of x≈,

rather than a point that is exactly feasible, gives unpredictable results. To avoid such

problems, algorithms rigorously prove that a nearby point xf ≈ x≈ is feasible, then

obtain an upper bound on ϕ(xf) either by evaluating ϕ at xf or over a small box xf,

xf ∈ xf, using interval arithmetic or directed rounding.

Several processes have been proposed for obtaining xf or xf, but their success on

published test sets has been limited. This limited success explains, for many problems,

the poor performance of mathematically rigorous branch and bound algorithms vis à

vis algorithms utilizing values ϕ(x≈) to obtain (only approximate) upper bounds on

the global optimum. This work deals with such methods for obtaining feasibility at

points xf or within boxes xf. Previously proposed methods are briefly reviewed in §2,

along with explanations of why they tend to fail on standard test sets. We propose an

improved technique in §3, and we test the new technique’s ability to prove feasibility

on published test problems over which the other techniques failed in §4.1 and §4.4. The

effectiveness of this improved availability of a sharp rigorous upper bound in a branch

and bound algorithm is illustrated with the experimental results in §4.2. We compare

our scheme to feasibility-restoration computations in penalty-function-free nonlinear

programming packages in §5. We summarize the work in §6.

2 Previous Work and Pitfalls

In a general global optimization problem of the form

minimize ϕ(x)

subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . ,m2,

where ϕ : Rn → R and ci, gi : Rn → R,

(1)

checking feasibility of the inequality constraints g(x) ≤ 0 at a point x̌ in principle

can be done by simply evaluating g(x̌) using directed rounding or interval arithmetic,

while it is impossible with floating point arithmetic to determine feasibility of equality

constraints c(x) at a point. Even in the absence of equality constraints, some of the

inequality constraints are active at optimizing points x∗, and an evaluation using float-

ing point arithmetic (or floating point with directed rounding or interval arithmetic)
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cannot rigorously verify feasibility of a point x̌. Furthermore, the point x̌ may only

be approximately feasible, and thus need be either perturbed to a feasible point or

enclosed in a box that contains feasible points. In this section, we discuss techniques

for

1. rigorously handling only approximately feasible points, and

2. handling equality constraints and active inequality constraints

that have previously been proposed.

2.1 Direct Proof of Feasibility

In [5] and [4, §5.2.4], we assumed there were only m1 ≤ n active constraints, that is,

inactive inequality constraints gi(x̌) < 0 can be proven so with an interval evaluation

at x̌ and ignored, active inequality constraints gi(x̌) ≈ 0 are lumped with the equality

constraints and treated as equality constraints, and the total number m1 of such active

inequality constraints and equality constraints is less than the number of variables n.

Then, examining the gradients of the active constraints, we choose those m1 coordi-

nates {i1, . . . , im1} of x̌ in which the active constraints are most sensitive, and do the

following:

1. Form x̌(m1) = (x̌i1 , . . . , x̌im1
) ∈ Rm1) and define c̃(xi1 , . . . , xim1

) ∈ Rm1) : Rm1 →
Rm1 by fixing the remaining n−m1 parameters xi, i 6∈ {i1, . . . , im1} of c at x̌i.

2. Construct a small box x(m1) ⊂ Rm1 , x̌(m1) ∈ x(m1) large enough likely to contain

a feasible point of c̃ but small enough that all of the inequality constraints inactive

at x̌ remain active at points in Rn corresponding to points in xm1 .

3. Apply an interval Newton method over xm1 to prove existence to a solution of

c̃ = 0 within x(m1).

4. Evaluate ϕ̃(x(m1)) (that is, use interval arithmetic to evaluate ϕ over the possibly

degenerate box whose ij-th coordinate is the corresponding coordinate of x(m1) for

ij ∈ {i1, . . . , im1} and whose remaining coordinates are cooresponding coordinates

of x̌), to obtain a mathematically rigorous upper bound on the global minimum of

ϕ.

In principle, this scheme should work well if m1 ≤ n and the gradients of the active

constraints are linearly independent. However, despite theory to the contrary (such

as the “usual” case for the fundamental theorem of linear programming, for linear

problems), there are many cases within published test sets where there are more than

n approximately active constraints, or where the gradients of the active constraints

are linearly dependent. Thus, we have found this scheme to be unsuccessful for many

problems. We believe the underlying scheme we propose in the present work to be

simpler to implement in a robust way, for general problems.

2.2 Use of the Kuhn–Tucker or Fritz John Conditions

In principle, one may use an interval Newton method to prove existence of a solution

to the system of n+m1 +m2 equations in in the n+m1 +m2 unknowns corresponding

to the Kuhn–Tucker conditions (or the n + m1 + m2 + 1 equations and unknowns

corresponding to the Fritz John conditions). However, our experience is that this often
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fails. Success of an interval Newton method naively applied requires non-singularity

of the Jacobian matrix of the system of equations; it is known, for example, that the

Fritz John system corresponding to common reformulations of minimax problems is ill-

conditioned or singular if the fit is good or perfect, respectively (see [9]). Furthermore,

the Kuhn–Tucker or Fritz John Jacobian matrix necessarily is singular if the matrix

of active constraint gradients is singular, and we have found the active constraint

gradients to be commonly linearly dependent in practice.

2.3 Relaxation and Point Evaluation

To avoid the issue of rigorously proving exact feasibility of equality constraints (and cor-

responding pitfalls of interval Newton methods), some experts in mathematically rigor-

ous branch and bound methods have proposed transforming all equality constraints to

inequality constraints, then relaxing them to obtain a feasible region with non-empty

interior, then simply evaluating the objective ϕ with interval arithmetic at points in

the interior of that region to obtain mathematically rigorous upper bounds ϕ to the

global optimum. That is, we do the following:

1. Replace each ci = 0 by two inequality constraints ci ≤ 0 and −ci ≤ 0.

2. Replace each ci ≤ 0 by ci − εr ≤ 0 and −ci ≤ 0 by −ci − εr ≤ 0, where the

relaxation parameter εr is small in relation to the accuracy of the coefficients in

the problem but large in relation to the domain tolerance passed to the iterative

local optimization software.

For example Messine, Ninin et al have reported substantial success with a novel branch

and bound algorithm that also employs this technique [11].

Step 1 of this process results in an equivalent problem, while step 2 replaces the

problem by a nearby problem whose optimum is lower than the optimum of the original

problem. One may argue that mathematically rigorous solution of a nearby problem

may not say much rigorously about solution of the original problem. However, due to

the inability to obtain sharp yet correct upper bounds ϕ for the original problem, the

nearby problem may be much easier to solve with mathematical certainty. Furthermore,

the meaning of the solution of the nearby problem can be interpreted precisely in terms

of classical backward error analysis (that is, we know exactly what perturbation of the

original problem gives us the solutions we compute), whereas it is uncertain what the

meaning of the solution is when solving the original problem without mathematical

rigor, that is, by only using approximate upper bounds ϕ. We have done some analysis

of the relationship of the solution of nearby problems to the solutions of the original

problem in [7].

We adopt this philosophy, that is, we work with a nearby relaxed problem contain-

ing only inequalities, in the alternative technique we propose.

3 An Alternative Technique

First, we have observed that standard test problems, in addition to having equality

constraints, are sometimes presented in a form in which at least some pairs of inequality

constraints correspond to equality constraints. In such cases, not only should we replace
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each ci = 0 by ci − εr ≤ 0 and −ci − εr ≤ 0, but we should also replace each original

inequality constraint gi ≤ 0 by gi − εr ≤ 0.

A second issue is how to obtain an exactly feasible point xf by perturbing an ap-

proximately feasible point x≈. To develop the scheme presented here in Algorithm 1, we

considered various properties of practical problems as they are commonly formulated.

These properties are as follows:

1. Problems are often formulated with many redundant constraints , resulting in more

approximately active constraints than variables.

2. Only a few constraints are active in some problems.

3. Pairs of constraints corresponding to the two sides of an inequality constraint often

occur.

4. At an approximate optimizing point, some constraints that would be active at the

exact optimizing point can be only approximately active and, while other con-

straints can be approximately active but infeasible.

We would like to perturb an approximately feasible point in a direction in which all

of the infeasible constraint values are decreasing past 0. If the number of constraints

equalled the number of variables, an overrelaxation of the Newton step for the system

obtained by setting the constraint gradients equal to zero would be logical. However, in

many problems, we have Property 1, while in others, we have Property 2; this suggests

replacing an overrelaxation of the Newton step by an overrelaxation of a Gauss–Newton

step. Property 4 suggests we consider subspaces of feasible and infeasible approximately

active constraints, and perform the overrelaxed Gauss–Newton step in the orthogonal

complement of the space spanned by the gradients of the feasible approximately active

constraints. Finally, Property 3 suggests that, in many if not most cases, we may want to

take a full Gauss–Newton step anyway (into the bands represented by relaxed equality

constraints), but we need to carefully balance the amount by which such constraints

has been relaxed, the size of the overrelaxed Gauss–Newton step, and the tolerance of

the approximate optimizer. These considerations logically result in Algorithm 1.

In summary, Algorithm 1 does the following:

1. Over-project into the interior of the feasible region of the violated constraints if

that will not make any approximately active constraints infeasible.

2. If approximately active constraints would be made infeasible by such an over-

projection, take a cautious step to a measured distance from the boundaries of the

approximately active constraints in the direction of the projection to the boundary

of the infeasible constraints, and follow that by a step in the null space of the

approximately active constraints slightly beyond the minimum of sum of squares

of the infeasible constraints within that null space.

3. Using interval arithmetic or appropriately directed rounding, evaluate the con-

straints at the so-perturbed point to rigorously check feasibility.

In Algorithm 1, for succinctness, we use the notation g(x) to denote an interval

evaluation of g at x, used to rigorously determine that the components of g are non-

positive, once this has already been determined with a floating point approximation or

after a perturbation likely to make x feasible.

Algorithm 1 is robust in the sense that it uses the natural scaling of Newton’s

method, and it will tend to work even in the presence linearly dependent constraint

gradients. There are only several heuristic parameters in this algorithm: the factor of

10, used in step 3 in determining which constraints are approximately active, the factor
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Input : An approximately feasible point x≈, an overrelaxation parameter ω, and
the inequality constraints g : Rn → Rm, g(x) ≤ 0.

Output: OK = true and the feasible point xf if a feasible point was found,
OK = false if a feasible point was not found.

Using floating point arithmetic, identify possibly infeasible constraints gi(x
≈) > 0,1

i ∈ I = {ij}mI
j=1 and set MI = maxi∈I{gi(x≈)};

if g(x≈) ≤ 0 then return OK← true and xf ← x≈ else return OK← false;2

/* Using floating point arithmetic, identify approximately active but not
infeasible constraints: */

for = 1 to m, i 6∈ I do if |gi|(x≈) < 10MI then append i to A;3

Form a matrix GI ∈ RmI×n whose rows are the floating point gradients at x≈ of4

the infeasible constraints and a vector gI(x≈) whose components are the values of
the infeasible constraints;
Compute the Gauss–Newton step wfull for gI = 0 by computing (in general) the5

least squares solution of minimum norm to GIwfull = gI ;

/* Compute the maximum multiple of the Gauss--Newton step which will not
make approximately active constraints infeasible: */

T ← mini∈A{−gi(x≈)/(∇gi(x≈)Twfull)};6

if T ≥ ω then /* Take a full overrelaxed Gauss--Newton step */7

T ← min{T, ω}; xf ← x≈ + Twfull;8

if g(xf) ≤ 0 then return OK← true and xf else return OK← false;9

else /* Take a partial Gauss--Newton step then a subspace correction */10

xf ← x≈ + 0.9Twfull;11

Remove from A those i with (∇gi)Twfull < 0, leaving |A| = mA > 0 elements;12

Form the matrix GA whose rows are the gradients (∇gi(x≈))T , i ∈ A;13

Compute a matrix V ∈ Rn×nN whose columns form an orthonormal basis for14

the null set of GA;
Form GI,V = GIV ∈ RmI×nN /* Jacobian matrix of the violated15

constraints with respect to the null space coordinates */;
Compute a Gauss–Newton step restricted to the null space of the16

approximately active constraints by computing the least squares solution of
minimum norm to GI,V p = −gI ;

xf ← xf + ωV p;17

if g(xf) ≤ 0 then return OK← true and xf else return OK← false;18

end19

Algorithm 1: Perturbing an approximate feasible point to feasibility

of 0.9 in step 11 used to determine the maximum amount of movement of the approxi-

mately active constraint values towards infeasibility, and the criterion used to determine

the numerical rank of the matrices in the Gauss–Newton steps and in computing null

spaces. The factor of 10 in step 3 can be replaced, with additional complication, by a

logically computed value depending on the gradients of the constraints, the underrelax-

ation parameter, presently 0.9, in step 11, and the overrelaxation parameter ω. We have

used the singular value decomposition in computing the Gauss–Newton steps and null

spaces, and have deemed a singular value σi to be effectively zero if σi/σ1 < 100εm,

where εm is the machine epsilon.

In Algorithm 1, a single Gauss–Newton step should be adequate in correcting an

output x≈ of a floating point constrained optimizer, since the distance between the

approximate optimizer and an actual critical point is usually small enough that the

constraints can be considered linear.
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Even though floating point arithmetic is used in steps 6 and 12, mA = |A| must

be positive (and not zero) after step 12. This the only way |A| = 0 is if

−gi(x≈)/(∇gi(x≈)Twfull < 0

for each i for which gi(x
≈) < −10MI < 0, which cannot happen if T was computed to

be finite in step 6, and the same floating point values are used in steps 3, 6, and 12.

4 Numerical Experiments

In our recent work [8], we examined those problems from the COCONUT Lib-1 test set

[14,10] whose non-convexities lay in subspaces of dimension 4 or less, to compare our

GlobSol branch and bound software [6] to a simple process in which subdivision of the

domain was determined a priori. GlobSol runs the local solver IPOPT [15] to obtain

an upper bound on the global optimum before the beginning of the branch and bound

process and at various points, including when a box with sufficiently small diameter

is produced during the branch and bound process. In the experiments in [8], GlobSol

attempts to prove feasibility from the return of the local solver first by using the Fritz

John system as in §2.2, and, failing that, attempts to determine feasibility directly as

in §2.1. Of the 77 problems of non-convex dimension 4 or less in the Lib-1 test set,

GlobSol was unable to prove feasibility a single time in 28, and of these 28, GlobSol’s

branch and bound algorithm completed within 2 hours in only 8. However, GlobSol’s

branch and bound algorithm failed to complete in only 6 of the remaining 49 problems

in which feasiblity was rigorously proven, and hence a reasonable upper bound on the

global optimum was obtained. This highlights both the importance of a good upper

bound on the global optimum in the branch and bound process and the difficulty of

obtaining a mathematically rigorous upper bound in general, but also the existence of

other reasons for inefficiencies. We explore this further here.

We took the 28 problems for which proof of feasibility in the aforementioned ex-

periments failed as our test set. In addition, we included three additional problems,

ex5.2.2-case-1, ex5.2.4, and ex9.1.6, since they were similar to problems for which

feasibility verification had failed, and since feasibility verification had failed in earlier

versions of GlobSol.

To prepare the problems for Algorithm 1, we transformed the AMPL files posted

on [10] into Fortran source files with a text editor, and, to assure blunders were not

made, compared results with the posted results on [10]. Following the reasoning in §2.3

and §3, we relaxed both the equality and inequality constraints. Recapitulating:

1. We replaced each equality constraint ci = 0 by two inequality constraints ci−εr ≤ 0

and −ci − εr ≤ 0.

2. We replaced each inequality constraint gi ≤ 0 by gi − εr ≤ 0. (See our observation

in the first paragraph of §3.)

Additionally, several of the variables in problems ex9.1.3, ex9.1.6, ex9.1.7, and

ex9.1.9 were specified to be binary. We ignored these conditions (that is, we relaxed

the problems to continuous problems), since conditions for mixed integer programs

are not presently utilized in GlobSol’s branch and bound algorithm, and since the

feasibility verification deals with the continuous variables.

In all of our experiments, we used εr = 10−4. We included bound constraints as

inequality constraints, and relaxed them, too. We used the midpoints of the starting
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Table 1 Comparison of Algorithm 1 and use of the Fritz John conditions.

Prob. n m x≈ OK? mA mI nN x≈ feas? NC? A. 1 OK? FJ OK?
ex14.1.1 3 8 T 0 4 0 F F T F
ex14.1.8 3 8 T 0 1 0 F F T F
ex14.2.1 5 17 T 0 1 0 F F T F
ex14.2.2 4 13 T 0 1 0 F F T F
ex14.2.4 5 17 T 0 1 0 F F T F
ex14.2.5 4 13 T 0 1 0 F F T F
ex14.2.6 5 17 T 0 1 0 F F T F
ex14.2.8 4 13 T 0 1 0 F F T F
ex14.2.9 4 13 T 0 1 0 F F T F
ex2.1.4 6 15 T 0 6 0 F F T F
5.2.2.1 9 28 T 0 9 0 F F T F
5.2.2.2 9 28 T 0 9 0 F F T F
ex5.2.4 7 21 T 0 7 0 F F T T
ex7.3.3 5 12 T 0 5 0 F F T T
ex7.3.5 13 28 T 0 3 0 F F T F
ex8.1.7 5 16 T 0 3 0 F F T T
ex9.1.2 10 28 T 3 5 7 F T T F
ex9.1.3 29 94 F 0 0 0 F F F F
ex9.1.4 10 36 T 0 8 0 F F T F
ex9.1.6 20 76 F 0 0 0 F F F F
ex9.1.7 23 61 F 0 0 0 F F F F
ex9.1.9 17 44 T 0 3 0 F F T F
ex9.2.4 8 26 T 0 6 0 F F T F
ex9.2.8 6 21 T 0 5 0 F F T F
harker 20 34 T 0 7 0 F F T F
haverly 12 30 T 1 2 1 F T F F
house 8 17 T 0 6 0 F F T F

immun 21 35 T 0 0 0 T F T F
qp5 108 169 T 0 8 0 F F T T

sambal 17 20 T 0 5 0 F F T F
sample 4 10 T 0 2 0 F F T T

Totals 28 1 2 27 5

boxes as initial guess for the local solver, when we were testing the feasibility verification

techniques outside of the branch and bound algorithm.

4.1 Results for Proof of Feasibility

In this set of results, we ran the point solver IPOPT once, noted if the solver returned

without error, then attempted to rigorously prove feasibility. In one set of experiments,

we used Algorithm 1, while in another set, we constructed a small box about x≈

(returned by IPOPT) and attempted to use an interval Newton method to prove a

solution to the Fritz John equations existed within that box; this is the main technique

GlobSol had been using in the past. The results appear in Table 1. In Table 1, the

columns are as follows:

– n is the number of variables.

– m is the number of inequality constraints after relaxation of equality constraints.

– “x≈ OK?” is “T” if the local solver returned without an error signal.

– mA is the number of approximately active constraints at the point x≈ returned by

the local solver.
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– mI is the number of infeasible constraints at x≈.

– nN is the dimension of the null space of the gradients of the approximately active

constraints, as in step 14 of Algorithm 1.

– “x≈ feas?” is “T” if the point x≈ returned by the local solver is feasible without

further processing.

– “NC?” is “T” if the overrelaxed Gauss–Newton step in n-space from step 8 of

Algorithm 1 is not sufficient, and a correction step in the null space of the active

constraints is needed.

– “A. 1 OK?” is “T” if Algorithm 1 succeeded in perturbing x≈ to a point xf at

which the constraints could be rigorously proven to be feasible.

– “FJ OK?” is “T” if an interval Newton applied to the Fritz John system over a

small box about x≈ was able to prove existence of a critical point, as in §2.2.

We observe the following.

• The point solver IPOPT (version 3.10.1) failed for only 3 problems.

• The point solver returned a feasible point in one instance.

• From the 27 problems where x≈ was available but x≈ was not exactly feasible,

Algorithm 1 succeeded in 26 of these. In the remaining one, haverly, a single

constraint remained infeasible, although it had been improved by both the partial

Gauss–Newton step and by the correction in the null space.

• The interval Newton method proved existence of a critical point of the Fritz John

system in only 5 of the 27 instances, and Algorithm 1 was also successful for these

five cases. This is not surprising in view of the fact the Fritz John system is typically

singular or ill-conditioned at solutions, such as in [9].

• Although we did not compare handling the inequality constraints directly as in

§2.1, examination of the results in [8], where direct feasibility verification was tried

if proof of existence of a critical point failed, indicates direct feasibility verification

only occasionally succeeded with problems as formulated in this test set.

• The Gauss–Newton step in the full space, that is, step 8 of Algorithm 1, succeeded

in all but two cases. In those two cases, the correction step in the null space of the

active constraints succeeded in one and failed in the other.

Numerical comparisons with the technique from [5] were skipped. However, pre-

liminary experiments hinted that the technique seldom worked with the formulations

in this test set. Typical difficulties are that mA +mI , the number of equations in the

system for the interval Newton method in [5], is larger than n, and that the gradients

of the active constraints are linearly dependent. Furthermore, a perturbation is still in

general also required for the technique from [5], and the perturbation technique pro-

posed in Algorithm 1 is more general and simpler than that heretofore tried with the

technique from [5]. The technique from §2.1 and [5] is appropriate when there is a small

number of equality constraints (or potentially active constraints) and the set of gradi-

ents of active constraints is known to always be linearly dependent. These conditions

do not hold for the selected test set.

4.2 Results within a Branch and Bound Algorithm

Section 4.1 illustrated the effectiveness of Algorithm 1 at proving that a nearby point

was feasible, given an approximately feasible point returned by the local optimization
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Table 2 Comparison of Alg. 1 and the Fritz John conditions in a branch and bound algorithm.

Problem P? FJ? P F? FJ F? P+ FJ+ P T FJ T P boxes FJ boxes
ex14.1.1 T F T T F F 0.98 15.66 84 1905
ex14.1.8 T T T T F F 0.08 0.64 12 72
ex14.2.1 T F T F T F — — — —
ex14.2.2 T F T T F F 0.54 0.54 88 88
ex14.2.4 T F T T F F 191.56 191.63 16725 16733
ex14.2.5 T F T T F F 0.58 0.58 85 85
ex14.2.6 T F T F T F — — — —
ex14.2.8 T F T F T F — — — —
ex14.2.9 T F T F T F — — — —
ex2.1.4 T F T T F F 0.67 2.46 55 146

ex5.2.2.1 T F F F F F — — — —
ex5.2.2.2 T F F F F F — — — —
ex5.2.4 T T T T F F 251.73 252.31 34715 34631
ex7.3.3 T T T T F F 8.4 10.9 1265 1807
ex7.3.5 T F F F F F — — — —
ex8.1.7 T T T T F F 16.05 21 2579 3285
ex9.1.2 T F F F F F — — — —
ex9.1.3 F F T T F F 0.53 0.52 1 1
ex9.1.4 T F F F F F — — — —
ex9.1.6 F F F F F F — — — —
ex9.1.7 F F F F F F — — — —
ex9.1.9 T F F F F F — — — —
ex9.2.4 T F T T F F 0.43 0.43 32 32
ex9.2.8 T F T T F F 0.05 5710.39 3 743702
harker T F F F F F — — — —
haverly F F F F F F — — — —
house T F F F F F — — — —

immun T F F F F F — — — —
qp5 T T F F F F — — — —

sambal T F F F F F — — — —
sample T T T T F F 1.17 1.19 299 299

Totals 27 6 17 13 4 0 472.77 6208.25 55943 802786
Ratios 8% 7%

software. In this section, numerical results illustrate the consequences of this effective-

ness to the efficiency within an overall branch and bound algorithm.

In particular, we compared Algorithm 1 and verification of a critical point with

an interval Newton method applied to the Fritz John system within GlobSol. The

overall tolerance εd, representing the smallest scaled-diameter box produced during

the branch and bound algorithm, was set to εd = 10−5. The experiments were done

on a Dell Dimension E-310 with a 3GHz Pentium 4 processor and 2GB of memory,

Ubuntu 12.04 with the GNU compiler suite (gfortran, C, and C++) version 4.6 and

optimization level 3. The results appear in Table 2.

The columns of Table 2 are as follows:

– “P?” is true if an only if Algorithm 1 was successful at least one time during the

branch and bound run when Algorithm 1 was used. Note that this can happen

more often than in Table 1, since the local optimizer is run more than once during

the branch and bound process.
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– “FJ?” is true if an only if verification with the Fritz John equations was successful

at least one time during the branch and bound run when the Fritz John equations

were used.

– “P F?” is “T” if an only if the branch and bound run using Algorithm 1 finished

successfully.

– “FJ F?” is “T” if an only if the branch and bound run using verification a solution

to the Fritz John equations finished successfully.

– “P+” is “T” if and only if the Algorithm 1 version finished but the Fritz John

version did not.

– “FJ+” is “T” if and only if the Fritz John version finished but the Algorithm 1

version did not.

– “P T” gives the processor time in seconds for the Algorithm 1 version, in those

cases where both versions finished.

– “FJ T” gives the processor time in seconds for the Algorithm 1 version, in those

cases where both versions finished.

– “P boxes” gives the number of boxes traversed in the Algorithm 1 version, in those

cases where both versions finished.

– “FJ boxes” gives the number of boxes traversed in the Fritz John version, in those

cases where both versions finished.

We make the following observations.

• Algorithm 1 did not verify feasibility for any more problems than those initially

identified with a single approximate feasible point, but verification with the Fritz

John equations succeeded for one more problem, ex14.1.8.

• The branch and bound process utilizing Algorithm 1 succeeded in four problems

in which the branch and bound process utilizing Fritz John system verification did

not, but the Fritz John version did not succeed for any problems for which the

Algorithm 1 did not.

• The branch and bound process finished in only one case, ex9.1.3 in which Algo-

rithm 1 failed, although the branch and bound process finished in 8 cases in which

existence of a critical point could not be verified.

• GlobSol failed to complete for reasons other than availability of a good upper bound

on the global optimum in 10 cases, but the results clearly show availability of a

good upper bound is important.

• Comparing execution times when the branch and bound process completed using

either version of feasibility verification, execution times were comparable when both

verification schemes succeeded, as well as in several cases when Algorithm 1 but

Fritz John system verification failed. However, execution times were much smaller

when Algorithm 1 was used for ex14.1.1 and ex9.2.8; thus, overall, the execution

time when using Algorithm 1 was only 8% of that when using the Fritz John system,

and the total number of boxes considered was only 7% of that when using the Fritz

John system.

Upon closer examination of the cases in which GlobSol failed to complete even

though a sharp rigorously verified upper bound on the global optimum was obtained,

the reasons fell into the following categories.

Existence of curves or hypersurfaces of global optimizers: This happened in ex9.1.2,

ex9.1.4, and house. GlobSol obtained a sharp enclosure for the global optimum

in these cases, and the unfathomed boxes were clustered around the optimizing
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Fig. 1 x6 vs x7 cross-section of the globally optimizing set for ex9.1.2

sets; for example, see Figure 1. Also, in these cases, the total volume of the as-yet-

unfathomed boxes was small.

Other reasons: This occurred for ex5.2.2.1, ex5.2.2.2, harker, ex7.3.5, house,

immun, and qp5 We will more thoroughly investigate the reasons for these failures

in the future. In the case of qp5, apparently the processing time per box is simply

too large, due to the number of variables and constraints; GlobSol’s original design

is for small problems and for study of algorithm details, rather than efficiency on

larger problems. In other cases, it may be due to the inability to obtain sharp lower

bounds on subregions, because the linear relaxations used in GlobSol are not the

best possible.

4.3 On the Accuracy of the Optimum Value

Our “perturb to feasibility” Algorithm 1 requires the problem have only equality con-

straints. For these experiments, we have relaxed each equality constraint slightly (by

an absolute number 10−4), and, because some of the problems in the COCONUT Lib 1

test set [10] have already been reformulated, with equality constraints replaced by pairs

of inequality constraints, we also relaxed inequality constraints by 10−4. Thus, we are

getting rigorous bounds to an approximate problem. The question arises concerning

whether or not using an approximate algorithm, that is, simply using approximately

feasible points returned by the floating point optimizer on the original non-perturbed

problem will give reasonable bounds to the actual global optimum value, and which

bounds are better.

Here, we empirically study use of an approximate optimizer versus our rigorously

verified feasible points. To do this within an otherwise similar environment, we in-

troduced branches in GlobSol at points where the approximate point from the ap-

proximate optimizer are processed to determine feasibility, controlling the flow with an

additional configuration variable. Not trusting the return code from IPOPT to indicate
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an approximate solution, we accepted the point as approximately feasible provided the

constraints were within a tolerance of 10−5 of feasible.

Table 3 Comparison of use of exact and non-rigorous approximate feasible points.

Prob. N. F? P. F? Reported Opt. UB - R NP UB - R P UB-LB NP UB-LB P
ex14.1.1 T T 0 −1.00× 10−8 1.00× 10−9 1.00× 10+4 5.60× 10−3

ex14.1.8 T T 0 −1.00× 10−8 1.00× 10−9 1.81× 10−3 1.21× 10−2

ex14.2.1 F T 0 3.48× 10+3 1.00× 10−9 3.47× 10+3 1.00× 10−5

ex14.2.2 T T 0 6.53× 10+3 1.00× 10−9 1.53× 10+3 1.00× 10−5

ex14.2.4 T T 0 3.48× 10+3 1.00× 10−9 9.75× 10+2 1.00× 10−5

ex14.2.5 T T 0 6.53× 10+3 1.00× 10−9 1.53× 10+3 1.00× 10−5

ex14.2.6 F T 0 3.48× 10+3 1.00× 10−9 3.48× 10+3 1.00× 10−5

ex14.2.8 T T 0 6.53× 10+3 1.00× 10−9 1.53× 10+3 1.00× 10−5

ex14.2.9 T T 0 6.53× 10+3 1.00× 10−9 1.53× 10+3 1.00× 10−5

ex2.1.4 T T −1.10× 10+1 0 0 2.16× 10+0 2.16× 10+0

ex5.2.2.1 T F −4.00× 10+2 0 0 6.00× 10−1 1.99× 10+2

ex5.2.2.2 T F −6.00× 10+2 0 0 2.40× 10+0 4.04× 10+2

ex5.2.4 T T −4.50× 10+2 0 −2.00× 10−1 2.60× 10+0 1.00× 10−1

ex7.3.3 T T 8.18× 10−1 0 0 1.32× 10+0 5.75× 10−2

ex7.3.5 F F 1.20× 10+0 3.40× 10−3 −1.20× 10+0 1.53× 10+0 3.16× 10−2

ex8.1.7 F T 2.93× 10−2 1.00× 10−5 −3.00× 10−5 0 1.53× 10−3

ex9.1.2 F F −1.60× 10+1 0 0 0 0
ex9.1.3 T T −5.80× 10+1 4.01× 10+4 4.01× 10+4 6.00× 10+5 6.00× 10+5

ex9.1.4 F T −3.70× 10+1 0 0 0 3.99× 10+4

ex9.1.6 F F −5.20× 10+1 3.00× 10+0 5.20× 10+1 0 4.90× 10+1

ex9.1.7 F F −5.00× 10+1 0 8.01× 10+4 5.80× 10−1 8.00× 10+4

ex9.1.9 T F 2.00× 10+0 0 0 3.20× 10−2 0
ex9.2.4 T T 5.00× 10−1 0 3.48× 10+0 1.00× 10−3 1.25× 10−1

ex9.2.8 — T 1.50× 10+0 — 0 — 9.90× 10−2

harker F F −9.87× 10+2 1.35× 10−2 1.35× 10−2 3.90× 10+3 5.22× 10+3

haverly T F −4.00× 10+2 0 1.04× 10+4 3.93× 10+1 1.08× 10+4

house T F −4.50× 10+3 2.45× 10+4 0 2.28× 10+4 0
immun F F 0 — 3.64× 10−10 5.58× 1012 3.64× 10−10

qp5 F F 4.32× 10−1 0 −1.90× 10−3 4.32× 10−1 4.30× 10−1

sambal F F 3.97× 10+0 −2.00× 10−4 −2.00× 10−4 9.86× 10−1 1.17× 10+0

sample T T 7.27× 10+2 2.36× 10+2 −4.84× 10+0 7.40× 10+0 2.70× 10+0

Within this context, we reran the 31 selected test problems in Table 2, comparing

the best upper bound on the global optimum using the approximate optimizing point,

the best lower bound obtained using the approximate optimizing point, the best upper

and lower bounds obtained from the exactly feasible point of the nearby problem, and

the global optimum reported in [10].

The results appear in Table 3. The columns of Table 3 are as follows:

– N. F is “T” only if the algorithm using the approximate optimizer finished within

7200 CPU seconds.

– P. F is “T” only if the algorithm using proven feasible points of the perturbed

problem finished within 7200 CPU seconds.

– Reported Opt. Is the optimum value reported on the web site [10].
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– UB - R NP is the difference between the best upper bound and the reported op-

timum when the only approximately feasible points are are used to obtain the

approximate upper bound.

– UB - R N is the difference between the best upper bound of the relaxed problem

and the reported optimum of the original problem when the exactly feasible points

of the relaxed problem are used to obtain the upper bound.

– UB-LB NP Is the difference between the upper bound and the best lower bound

on the optimum, when the algorithm with only approximate feasible points was

applied to the original non-relaxed problem.

– UB-LB P Is the difference between the upper bound and the best lower bound on

the optimum, when the algorithm with exactly feasible points was applied to the

relaxed problem.

In Table 3:

1. The approximate feasible point version failed to complete in 7200 seconds on 12

problems, while the exact feasible point version failed to complete on 13 problems.

However, the correlation between completions is only about 0.4.

2. In the non-relaxed version of problem ex9.2.8, IPOPT apparently diverged to a

point with coordinates on the order of 1014, but nonetheless reported successful

completion. No similar difficulties were observed with the relaxed problem.

3. The difference between the best upper bound and reported global optimum was

relatively small for 25 of the problems using an exact feasible point of the relaxed

problem but only for 19 of the problems when the approximate feasible point of

the non-perturbed problem was used. The correlation between when the difference

was small between the two data sets was about -0.22.

4. The difference between the upper bound and reported optimum was negative for

the algorithm using exactly feasible points of the relaxation for problems ex5.2.4,

ex7.3.5, ex8.1.8, qp3, sambal, and sample. For all of these except ex7.3.5, the dif-

ference from the reported optimum is sufficiently small to be attributed to either

the accuracy to which the reported solution was given or the perturbation re-

sulting from relaxing the problem. In ex7.3.5, there is evidence of some kind of

ill-conditioning, as evidenced in difficulties the solver within GlobSol for linear re-

laxations (C-LP) encountered during its solution process; it is possible that small

problem perturbations could lead to large changes in the global optimum.

5. The difference between the upper bound and reported optimum was negative for

the algorithm using the approximately feasible points of the original problem for

ex14.1.1, ex14.1.8, ex9.2.4, and sambal. Except for ex9.2.8, already discussed, the

differences are sufficiently small to attribute them to using an only approximate

feasible point to compute upper bounds.

We infer from Table 3 that using verified feasible points of the perturbed problems is

somewhat more robust than using approximate feasible points of the original problem;

the perturbations even seem to aid our approximate solver IPOPT. Furthermore, the

perturbations do not greatly affect the accuracy of the optimum values in the problems

in this test set. However, this varies from problem to problem.

We have not attempted to compare the sets of optimizing points returned by the

two schemes.
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4.4 Comparison with the Feasibility Verification Scheme in [5]

Finally, in Table 4, we compare the scheme from [5] (in which we use an interval Newton

method in a subspace) to the scheme in Algorithm 1, as we compare use of the Fritz

John conditions to Algorithm 1 in Table 1. In Table 4, the columns labelled “Prob.”

and “n” are the problem name and number of variables, as in Table 1. In the other

columns:

– “Na” is the number of approximately active constraints at the optimizing point.

– “applic.” is “T” if the number of approximate binding constraints is less than or

equal to the number n of variables. (This is necessary for the scheme from [5] to

make sense.)

– “[5] OK?” is “T” if the scheme from [5] succeeded in verifying feasibility.

Table 4 Comparison of the scheme from [5] and Algorithm 1

Prob. n Na applic.? [5] OK? A. 1 OK?
ex14.1.1 3 0 T F T
ex14.1.8 3 0 T T T
ex14.2.1 5 1 T T T
ex14.2.2 4 1 T T T
ex14.2.4 5 1 T T T
ex14.2.5 4 1 T T T
ex14.2.6 5 1 T T T
ex14.2.8 4 1 T T T
ex14.2.9 4 1 T T T
ex2.1.4 6 0 T F T

ex5.2.2.1 9 4 T F T
ex5.2.2.2 9 4 T F T
ex5.2.4 7 1 T F T
ex7.3.3 5 2 T T T
ex7.3.5 13 1 T F T
ex8.1.7 5 1 T F T
ex9.1.2 10 0 T F T
ex9.1.3 29 0 T F F
ex9.1.4 10 0 T F T
ex9.1.6 20 0 T F F
ex9.1.7 23 0 T F F
ex9.1.9 17 0 T F T
ex9.2.4 8 0 T F T
ex9.2.8 6 7 F F T
harker 20 7 T F T
haverly 12 7 T F F
house 8 0 T F T

immun 21 0 T F T
qp5 108 0 T F T

sambal 17 0 T F T
sample 4 0 T T T
Totals 30 10 27

We see that the number of approximately active constraints exceeded the number

of variables in only one problem (ex9.2.8), but the scheme from [5] only succeeded in

10 of the problems. (In contrast, the scheme from Algorithm 1 succeeded in 27 of the
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28 problems in which the approximate solver returned a high-quality approximately

feasible point.) The scheme from [5] requires use of an interval Newton method with

a Jacobian matrix consisting of some of the columns of the Jacobian matrix of the

approximately active constraints. This scheme is bound to fail if that Jacobian matrix

is singular or even moderately ill-conditioned; we have already noted that, in some

of these test problems, the Jacobian matrix at a must be singular, since some of the

equality constraints are expressed as pairs of inequality constraints in the publicly

posted versions of these problems.

Inferences

We have observed that relaxing the equality and inequality constraints does not lead to

significantly different bounds on the global optimum, vis a vis using only approximate

optimizing points. Furthermore, the relaxation scheme (i.e. perturbing the problem so

the feasible set has an interior) has not only made it possible to state mathematically

rigorous results1 for a near by problem but also apparently makes it easier for the

floating point iterative method (IPOPT in these experiments) to converge to the global

optimum. This was definitely true for ex14.2.1 through ex14.2.9.

Caveats

In this set of experiments, we have merely replaced the mathematically rigorous com-

putation of an upper bound based on an interval evaluation of the objective at a point

that has been proven to be feasible with use of an approximately feasible point instead

of one proven to be feasible, with minimal changes to other parts of the algorithm. One

issue in using an approximately feasible point include use of heuristics to determine if

the point returned by the solver is actually near a feasible point. (This was necessary

for ex9.2.8 and immun, in our experiments.) Furthermore, the remainder of GlobSol in-

volves other checks, such as formulating linear relaxations rigorously and using interval

Newton methods, that can be omitted if only approximate solutions are desired, and

much computation can be avoided if only an approximation to the global optimum and

one (but not all) optimizing points are desired. Finally, many preprocessing steps, such

as identification of linear, quadratic, or convex problems, can lead to fast computation

of approximate solutions. The performance of non-rigorous software that incorporates

all of these will be significantly better than GlobSol. Examples of this include BARON

[13], the techniques of Messine and Ninin [12], [1], or more specialized codes such as is

described in [3] and related work.

5 Relationship to Feasibility Restoration

Algorithm 1 can be viewed as a feasibility restoration process. As such, one wonders

about its relationship with the feasibility restoration phase in penalty-free nonlinear

programming methods, such as those initially described in [2] and in use in the IPOPT

solver employed to obtain an approximately feasible approximate optimal point in the

experiments in this work [16,17]. The “restoration-” like technique in Algorithm 1 in-

volves linearizing the constraints, but the conditions under which it is used are different

1 assuming, of course, there are no programming errors
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than those of the restoration phase of approximate nonlinear program solvers. In par-

ticular, the steps taken in such nonlinear programming solvers are large in relation

to the validity of the linear or quadratic models used, while Algorithm 1 does a tiny

correction step from a solver-provided point thought to be near an exact locally op-

timizing point. Furthermore, requirements in an approximate nonlinear programming

solver are merely that an approximately feasible point be obtained, and only progress

towards this goal is required in a single restoration step, while, in Algorithm 1, ex-

act feasibility is required, and a single small step should be sufficient to achieve this.

Moreover, the correction step in Algorithm 1 is applied to a perturbed problem whose

feasible set is known to have a non-empty interior, whereas some merit-function-free

nonlinear program solvers are applied to problems with only equality constraints. Due

to these conditions, the step length in Algorithm 1 can be chosen rationally, based

on the magnitudes of gradients, whereas the restoration phase in nonlinear program-

ming solvers generally has various heuristically chosen parameters. We do not know

whether or not our paradigm of identifying feasible and infeasible inequality constraints

and using generalized inverses in the subspace orthogonal to the space of feasible but

approximately active equality constraints has been used in the feasibility restoration

phase of local algorithms, but it is possible to do so, with modifications.

6 Summary

We have proposed a general technique for perturbing approximate local optimizing

points to points that can be rigorously verified to be feasible. Depending on working

with a relaxation of equality constraints to inequality constraints with a rational choice

of relaxation parameter, this technique is designed be robust with respect to number

of approximately active constraints and linear dependence of the gradients of the ap-

proximately active constraints. We had previously postulated that inability to prove

approximate optimizing points feasible was one reason for the performance difference

between mathematically rigorous branch and bound algorithms and ones that employ

only approximate feasibility. Experimental results with the new technique show it is

superior, and also show its use makes a significant difference in the branch and bound

algorithm. Remaining performance difficulties in the branch and bound algorithm were

found to be due to the existence of continua of solution sets (since the particular branch

and bound process considered finds enclosures to all global optimizing points, rather

than an enclosure for just one optimizing point and the global optimum) in various

cases, and to other issues in the remaining cases.
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