
July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

Optimization Methods and Software
Vol. 00, No. 00, Month 200x, 1–14

Research Article

Assessment of a Non-Adaptive Deterministic Global Optimization

Algorithm for Problems with Low-Dimensional Non-Convex

Subspaces

Ralph Baker Kearfott

Department of Mathematics, University of Louisiana at Lafayette, U.L. Box 4-1010,

Lafayette, LA 70504-1010 USA

Email: rbk@louisiana.edu,

Jessie M. Castille

Department of Mathematics, University of Louisiana at Lafayette,

Email: jmc4491@louisiana.edu,

and

Gaurav Tyagi

Department of Mathematics, University of Louisiana at Lafayette,

Email: gxt3687@louisiana.edu
(Received 00 Month 200x; in final form 00 Month 200x)

The optimum and at least one optimizing point for convex nonlinear programs can be ap-
proximated well by the solution to a linear program (a fact long used in branch and bound
algorithms). In more general problems, we can identify subspaces of “nonconvex variables”
such that, if these variables have sufficiently small ranges, the optimum and at least one
optimizing point can be approximated well by the solution of a single linear program. If
these subspaces are low-dimensional, this suggests subdividing the variables in the subspace a
priori, then producing and solving a fixed, known number of linear programs to obtain an ap-
proximation to the solution. The total amount of computation is much more predictable than
that required to complete a branch and bound algorithm, and the scheme is “embarrassingly
parallel,” with little need for either communication or load balancing.

We compare such a non-adaptive scheme experimentally to our GlobSol branch and bound
implementation, on those problems from the COCONUT project Lib1 test set with non-convex
subspaces of dimension 4 or less, and we discuss potential alterations to both the non-adaptive
scheme and our branch and bound process that might change the scope of applicability.

Keywords: non-convex optimization, branch and bound algorithms, linear relaxations

AMS Subject Classification: 90C26; 49M20.

1. Introduction

During the past several decades, branch and bound algorithms have become a
primary paradigm in deterministic global optimization1. Familiar not only in non-
convex global optimization, but also highly important in mixed integer linear pro-
gramming, branch and bound methods (and variants termed “branch and cut,”
etc.) consist of a careful, adaptive subdivision of the domain of decision variables,
with termination conditions based primarily upon an upper bound for the global
optimum and a lower bound for the objective on the feasible portion of the sub-
domains. Practical branch and bound algorithms and software include numerous

1This does not include statistical or heuristic methods, exemplified by evolutionary algorithms, simulated
annealing, and the like.

ISSN: 1055-6788 print/ISSN 1029-4937 online
c© 200x Taylor & Francis
DOI: 10.1080/03081080xxxxxxxxx
http://www.informaworld.com

rbk@louisiana.edu
jmc4491@louisiana.edu
gxt3687@louisiana.edu


July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

2 R. B. Kearfott et al

special techniques to accelerate the process, and such techniques are currently the
focus of a considerable amount of research. These techniques largely deal with ob-
taining better upper bounds on the global optimum and better lower bounds on
the objective over subdomains2. Salient among these techniques is use of linear
relaxations, as in e.g. [19], or, more generally, convex or structured relaxations, as
in [3, 4], etc..

Actual software, now amazingly effective in view of the inherent exponential na-
ture of subdividing high-dimensional domains, has been built by including those
techniques which have been effective for particular problems of practical interest
or which have proven themselves to increase success and efficiency on-average over
large test sets [18]. Extensive theoretical study has been made of individual ac-
celeration techniques, but theoretical analysis of their effect, combined with other
acceleration techniques, in practical branch and bound software is lacking. (Indeed,
such theoretical analysis may not be possible, in general.)

In fact, despite the effectiveness of current software, its behavior on particular
new problems is not always easily predictable. In contrast, it has generally been
assumed in the software’s design that the optima of the relaxations converge to the
global optimum of the original problem, and that the solutions to the relaxations
become nearer to the solution set of the original problem, as the diameter of the
subdomain tends to zero. Indeed, we have written down some formal reasoning for
this assumption in [9].

It follows from such reasoning that we may obtain an arbitrarily accurate ap-
proximation to the optimum and to at least one optimizing point by subdividing
each independent (i.e. decision) variable into sufficiently small intervals and solv-
ing a linear program on each of the subdomains consisting of cross-products of
these subintervals. Such a scheme has a more predictable time-to-completion than
branch and bound schemes, since the total number of subregions is known a priori,
and since the size and structure of the linear programs, and thus the time required
to solve them, should not vary much over the different subregions. Thus, an an-
swer of some quality will be provided in a known amount of time, or else it can
be determined a priori that is not practical to solve the problem in that manner.
Furthermore, each linear program solution can be considered independently of the
others, so the process can be “embarrassingly parallel1.” This contrasts with branch
and bound processes, where the amount of work to fathom (i.e. to complete pro-
cessing on) a particular node (i.e. a particular subregion) is not easily predictable,
and load balancing may be needed in a multiprocessing context.

On the other hand, while a stopping tolerance is generally input into a branch
and bound scheme, and the branch and bound does not complete until the tolerance
is met, it is not so easy with the non-adaptive scheme to determine a priori how
fine the independent variable subdivision must be for the gap between the upper
and lower bounds on the global optimum to be sufficiently small. Furthermore,
uniformly subdividing sufficiently in each independent variable will usually generate
a prohibitive number of subdivisions for many problems, when the dimension of
the domain is more than just several variables.

Nonetheless, there are problems in which the non-adaptive subdivision may be
effective, or even superior, to branch and bound. For instance, it is possible in some
cases to identify subsets of the independent variables or subsets of the intermediate

2An additional important technique is constraint propagation, while feasibility analyses, analysis of Kuhn–
Tucker criticality, and various methods based on interval analysis also play a role. However, these will not
be the primary focus of this work.
1Assembling the results requires communication, but this involves much less processing than each solution
process. We elaborate later in this work.



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

Non-Adaptive Global Optimization Algorithm Assessment 3

quantities produced during evaluation of the objective and constraints, such that
only these quantities need to be subdivided to assure good approximations by
linear programs [2, 8–10, 13]. The cardinality of this subset can be viewed as the
dimension by which the problem differs from being convex; when the process of
[10] or [13] finds no variables needing to be subdivided (subspace dimension 0),
the problem must be convex, and can be approximated arbitrarily closely by a
single linear program. Even if the problem is non-convex, in some instances a high-
dimensional problem has subspace dimension of 5 or less, a dimension for which it
may be practical to use non-adaptive subdivision.

We first presented the non-adaptive idea, doing some initial experiments to gauge
the potential practicality, in [13]. Here, we present additional algorithm details,
present a careful comparison, give concrete observations and advice on when such
an approach is practical, and elaborate on pitfalls and remedies.

In the remainder of this paper, we compare our proposed non-adaptive algorithm
to traditional branch-and-bound software, GlobSol [12], on those problems from
the COCONUT Lib1 test set [18] whose non-convex subspace dimension is 4 or
less. Underlying notation appears in §2, we describe our algorithms in §3, and we
present the actual experimental results in §4. In §5, we discuss aspects of both our
non-adaptive discretization and GlobSol that, with additional programming effort,
could improve performance with regard to execution time or quality of result. We
summarize in §6.

2. Notation

We denote the general global optimization problem treated by our algorithms as
follows.

minimize ϕ(x)

subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . ,m2,

where ϕ : R
n → R and ci, gi : R

n → R.

(1)

3. Our Algorithms

In the following algorithm, based on Algorithm 3 in [13], we supply important
details.

Algorithm 1 (Creating a mesh, computing an ǫ, and finding ǫ-approximate solu-
tions, details of Algorithm 3 from [13])
Input: The code list and search box x for the problem, as well as the number of
subdivisions M for each non-convex variable, and a special domain tolerance ǫd

Output: A number ǫ indicating constraint satisfaction accuracy at approximate
solutions, a list E of boxes guaranteed to contain all global optimizing points, an
interval [ϕ,ϕ] enclosing the global optimum and an associated objective discrepancy
η.

(1) (Preprocessing)
a) Do the preprocessing as in Step 1 of [13, Algorithm 3], thereby com-

puting a set V of cardinality Nv of variables to be subdivided, so the
total number of subproblems to be handled is MNv .



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

4 R. B. Kearfott et al

b) ǫ← 0.
(2) (Bound solutions to the subproblem for each individual box – details of

Step 2 of [13, Algorithm 3])
For i = 1 to MNv

a) Create the i-th box in the subdivision defined by V and the number
of subdivisions.

b) Narrow the bounds on the i-th sub-box using constraint propagation.
c) Create an approximating linear relaxation.
d) Solve the linear relaxation to obtain a lower bound on the objective

over the i-th box, and consider the solution to be an approximation
to an optimizer.

e) If the solution to the LP relaxation is in the i-th sub-box
Then

Store the solution to the LP relaxation as a candidate solution x∗.
Else

Store the midpoint of the i-th sub-box as a candidate solution x∗.
End If

f) If the LP solver indicates an error return (not including infeasible or
unbounded)
Then

i. Record failure of the LP solver on box i.
ii. Set the lower bound ϕ

i
on the objective over i-th sub-box to

ϕ(xI), the lower bound on the interval evaluation of the objective
over i-th sub-box.

iii.
Else

Use the solution to the linear relaxation and the Neumaier–
Shcherbina computation of [15] to compute a rigorous lower bound
on the global optimizer over the i-th sub box, or to possibly rigor-
ously verify that the problem is infeasible over that sub box.

End If

g) If the i-th subproblem is proven infeasible by the Neumaier–
Shcherbina computation
Then

Mark i-th sub-box as certainly infeasible, and set the lower bound
on the global optimum over i-th sub-box to ∞.

End If

h) If the subproblem defined within the box i-th sub-box is not proven
infeasible
Then

i. (Determine a lower bound on the optimum over the i-th sub-box.)
Take the maximum of the lower bound on the objective obtained
by the Neumaier–Shcherbina computation and the lower bound
obtained by interval evaluation over the box as the lower bound
ϕ

i
.

ii. (Determine an upper bound on the optimum over the i-th sub-
box)
Use a local optimizer with starting point the result of Step (2)e
to compute an approximate optimum to the problem (1), subject
to the parameters being in the i-th sub-box.
If the local optimizer’s return code indicates some kind of con-
vergence



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

Non-Adaptive Global Optimization Algorithm Assessment 5

Then

Determine whether or not the independent variables returned
by the local optimizer are within ǫd of the interior of the box.
If they are, Then

A. Attempt to construct a small box within the i-th sub-box
about the returned x∗ in which it can be proven that a feasible
point exists, according to the scheme in [11] or [7, §5.2.4].

B. If such a box can be constructed
Then

Store the constructed box as a candidate solution x
∗.

Else

Store the entire i-th sub-box as a candidate solution x
∗.

End If

Else

Store the entire i-th sub-box as a candidate solution x
∗.

End If

End If

iii. Evaluate the objective and constraints at the candidate solution
x
∗, using interval arithmetic, to obtain an approximate upper

bound ϕi on the global optimum within the i-th sub-box and
to assess the infeasibility in the constraints.

iv. Distill the gap between the lower and upper bounds and the close-
ness of the constraints to being satisfied at the candidate solution
(i.e. the solution to the LP relaxation) to single numbers:

ǫi = max

{

max
1≤j≤m1

|cj(x
∗)|, max

1≤j≤m2

gj(x
∗)

}

,

ηi = max
{

ϕi − ϕ
i

}

.

End For

(3) (Postprocessing)
a) (Compute an overall upper bound.)

ϕ← min
1≤i≤MNv

i-th sub-box
not marked
infeasible

ϕi.

b) (Compute the approximation accuracy.)

ǫ← max
1≤i≤MNv

i-th sub-box not
marked infeasi-
ble, ϕ

i
≤ ϕ

ǫi, η ← max
1≤i≤MNv

i-th sub-box not
marked infeasi-
ble, ϕ

i
≤ ϕ

ηi.

c) (Identify candidate boxes for actual optimizers.)
For i = 1 to MNv

If ϕ
i
≤ ϕ and the i-th sub-box is not marked infeasible

Then

Store the i-th sub-box on a list of candidate regions for containing
global minimizers.

End If

End For



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

6 R. B. Kearfott et al

End Algorithm 1.

The boxes flagged in Step (3)c must contain all global optimizing points to the
original problem (1).

Here are some additional details of what we did for the experiments we report
in this work:

(1) We effect Step (2)b within our GlobSol environment with the routine
subsit seeded, a modification of the GlobSol constraint propagation rou-
tine that allows the input of tighter bounds than those computed directly
from the independent variables or intermediate variables in the expression
tree for the objective and constraints.

(2) In Step (2)c, we use GlobSol’s routine create lp. This routine supplies a
constraint for each variable in the expression tree, approximating concave
operations with secant lines and adaptively approximating convex opera-
tions to within a given tolerance with sets of tangent lines.

(3) In Step (2)(h)ii, we use the COIN-OR package IPOPT [20].
(4) The constraint propagation in Step (2)b is a modification of GlobSol’s con-

straint propagation1 to allow seeding by particular bounds on intermediate
variables.

(5) Other supporting computations are from the GlobSol package.

We compare Algorithm 1 to the traditional branch-and-bound scheme in Glob-
Sol [12]. The GlobSol algorithm appears as [1, Algorithm 2.2]. However, there have
been incremental improvements to the actual implementation, including bug-fixes
and extension of the process that generates the linear relaxations; these improve-
ments could affect the results presented in [1]. A major improvement is use of
the COIN-OR linear programming simplex method solver C-LP [6] instead of the
old SLATEC [5] routine DSPLP; our careful examination of results using DSPLP
showed us numerous failures to compute solutions to the problems GlobSol posed to
it, whereas C-LP was both more reliable and faster. We have also used an improved
version of IPOPT [20] to compute approximate solution to the original problems
constrained to sub-boxes.

4. The Experiments

We did a preliminary analysis of the problem in the COCONUT Library 1 test set
[14, 18] using the convexity analysis schemes in [10] and [13], where the scheme in
[10] identifies a subset of the independent variables that needs to be subdivided
to assure the linear relaxations are tight, while the scheme in [13] identifies such
a subset of the intermediate variables. As in Step (1) of Algorithm 1, we took
the minimum of the cardinalities of these two subsets, which we term the reduced
space dimension, to identify the set of variables to be used in Algorithm 1, and, for
Algorithm 1 to be practical within the single-processor environment of this initial
exploration, we chose only those problems from the Library 1 test set such that
the reduced space dimension is at most 4. We identified 83 such problems from the
COCONUT Library 1 test set, from which we did our comparisons.

In our experiments, we chose M = 20. Also, in the module that computes un-
derestimators to convex operations, there is a parameter ǫLP that represents the
minimum relative distance between points at which underestimating tangent lines
to the graph of the operation are constructed for the relaxation; the smaller ǫLP,

1in routine matrixop/subsit.f90



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

Non-Adaptive Global Optimization Algorithm Assessment 7

Table 1. Results of Algorithm 1 and GlobSol for reduced space dimension 0 (convex problems).

Name n rd ǫ η DF? VS? S/T GS? CPU-D CPU-G CPU/B r
sambal 17 0 0 6.50× 107 F F 1.00 F 0.07 7200.13 1.04
ex9.1.9 17 0 6.66× 10−16 0 F F 1.00 F 0.02 7200.07 0.48
harker 20 0 0 1.92× 1012 F F 1.00 F 0.10 7200.11 0.46
immun 21 0 0 3.84× 109 F F 1.00 F 0.04 7200.24 0.45
ex9.1.6 20 0 4.07× 10−6 0 F T 1.00 F 0.05 7204.31 0.02
ex9.1.7 23 0 6.66× 10−16 0 F F 1.00 F 0.02 7202.44 0.01
ex9.1.3 29 0 1.71× 10−13 0 F F 1.00 F 0.07 7204.51 0.02

qp4 79 0 0 5.59× 102 F F 1.00 F 1.50 0
qp5 108 0 0 0 F F 1.00 F 2.26 7229.29 0.02

sample 4 0 3.49× 10−2 3.93× 104 F F 1.00 T 0.02 4.92 1.15

the tighter the relaxations of such operations, but the more constraints in the linear
program. In our overall experiments, we chose ǫLP = 10−2.

In both Algorithm 1 and in GlobSol, we chose ǫd = 10−8, and we chose the
initial search boxes to be as posted with the initial experiments with GlobSol
on the COCONUT test sets (such as in [1, 18]), that is, with bounds of −104

or 104 corresponding to bound constraints missing in the original problem. Also,
actual bound constraints were posed as inequality constraints, to avoid problems
with exponential processes in the “peeling” process [7, Algorithm 15, page 191],
and a slight modification to GlobSol was made to allow this. In cases of excessive
computation, we terminated GlobSol’s branch and bound algorithm after 7200
CPU seconds or 500,000 boxes, whichever occurs first. Additional configuration
parameters used in GlobSol’s branch and bound algorithm for these experiments
are available through a URL the first author can communicate.

The experiments were done on a Dell 1737 laptop with a Core 2 Duo chip, 2
processors each running at 2.5Ghz, and 4GB of memory1. The operating system
was Ubuntu 11.04 with corresponding Fortran and C/C++ compilers from the
gcc suite (gcc version 4.5.2). C-LP and IPOPT were compiled with the default
build procedure supplied from COIN-OR, while the GlobSol package, including
Algorithm 1, was compiled with optimization level 0 and with debugging hooks.

In Algorithm 1, the total number of boxes is fixed by M and the reduced space di-
mension, but the size of the linear relaxations (although extremely sparse) depends
linearly on the number of operations and on ǫLP.

Results for reduced space dimension 0 (i.e. convex problems) appear in Table 1,
results for reduced space dimensions 1 and and 2 appear in Table 2, while results
for reduced space dimensions 3 and 4 appear in Table 3. The columns of these
tables are labeled as follows:

• Name is the problem identification as given on the COCONUT web page for
Library-1.

• n is the number of variables in the original problem.

• rd is the reduced space dimension.

• ǫ and η are is as in Algorithm 1.

• DF? is “T” if, for some box, Algorithm 1 failed due to a general failure in the
LP solver (other than an indication of possible infeasibility or unboundedness).

• VS? is “T” if verification of feasibility near the approximate solution succeeded
for at least one box in the discretization.

1Memory was not an issue in GlobSol’s branch and bound algorithm, but was a limiting factor in prelim-
inary experiments with Algorithm 1 with larger reduced space dimensions and M .



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

8 R. B. Kearfott et al

Table 2. Results of Algorithm 1 and GlobSol for reduced space dimensions 1 and 2.

Name n rd ǫ η DF? VS? S/T GS? CPU-D CPU-G CPU/B r
ex4.1.4 1 1 0 1.42× 100 F T 0.25 T 0.18 0.24 4.84
ex4.1.6 1 1 0 3.82× 101 F T 0.20 T 0.21 0.22 5.58
rbrock 2 1 0 2.25× 10−14 F T 0.05 T 0.28 0.02 1.40
ex4.1.8 2 1 2.21× 10−8 2.29× 10−4 F T 0.05 T 0.10 0.01 2.00
circle 3 1 6.02× 10−7 4.53× 100 F T 0.05 T 1.60 0.04 10.00

ex2.1.4 6 1 1.33× 10−15 0 F F 1.00 T 0.16 1.17 0.38
ex4.1.7 1 1 0 9.05× 10−2 F T 0.10 T 0.16 0.04 3.20
ex4.1.3 1 1 0 2.44× 101 F T 0.10 T 0.17 0.09 2.08
ex14.1.9 2 1 7.43× 10−9 1.00× 104 F T 0.40 T 0.40 1.09 1.72
ex4.1.9 2 1 1.43× 10−5 3.82× 100 F T 0.15 T 0.16 0.64 4.38
ex4.1.2 1 1 0 5.91× 101 F T 0.10 T 0.46 0.34 1.22
ex4.1.1 1 1 0 3.93× 101 F T 0.10 T 0.24 0.11 3.60
ex8.1.2 1 1 0 1.60× 100 F T 0.50 T 0.24 0.24 2.50
ex7.3.3 5 1 5.33× 10−15 1.00× 104 F F 1.00 T 0.25 0.16 1.64
haverly 12 1 1.71× 10−13 1.17× 104 F F 1.00 T 6.83 3307.36 14.40
ex8.4.1 22 1 9.54× 10−8 1.53× 10−1 F T 0.05 F 0.20 7200.29 0.03
least 3 1 0 7.40× 105 F T 1.00 T 2.20 754.51 2.80

ex8.1.3 2 1 0 6.75× 1035 F T 0.10 F 3.26 0
ex14.1.5 6 1 3.50× 10−8 1.00× 104 F T 0.10 T 0.28 1.44 1.57
ex8.1.6 2 2 0 1.50× 101 F T 0.00 T 7.96 0.57 1.01
ex8.1.4 2 2 0 3.36× 1011 T T 0.10 T 6.28 0.45 1.95
ex4.1.5 2 2 2.50× 10−8 5.03× 109 T T 0.05 T 6.33 0.47 2.63
ex14.1.4 3 2 1.45× 10−8 1.00× 104 F T 0.12 T 3.36 7.68 2.00
ex5.2.2-3 9 2 5.43× 10−6 4.22× 103 F T 0.02 T 0.62 592.43 0.10
ex5.2.2-2 9 2 3.64× 10−6 9.70× 103 F T 0.09 F 3.10 5189.81 0.75
ex5.2.2-1 9 2 3.64× 10−6 4.38× 103 F T 0.04 T 0.66 970.68 0.17
ex8.1.1 2 2 1.00× 10−8 4.11× 10−2 F T 0.01 T 2.41 0.06 0.80
ex8.1.5 2 2 0 1.12× 1011 T T 0.01 T 6.45 1.59 2.81
ex14.1.3 3 2 7.55× 10−5 1.00× 104 F T 0.10 T 1.09 17.96 0.50
ex7.3.2 4 2 1.25× 10−8 1.00× 104 F T 0.01 T 3.56 0.04 3.78
ex14.1.8 3 2 8.88× 10−16 1.00× 104 F F 1.00 T 7.88 0.58 2.99
ex14.1.1 3 2 2.67× 10−15 1.00× 104 F F 1.00 T 4.70 10.65 2.27
ex8.1.8 6 2 8.01× 10−7 4.02× 10−1 F T 0.07 T 2.99 9.22 0.89
ex7.2.2 6 2 8.01× 10−7 4.02× 10−1 F T 0.07 T 3.40 9 1.04
ex5.2.4 7 2 4.23× 10−6 2.14× 103 F T 0.10 T 4.31 27.8 1.76
ex6.1.2 4 2 1.65× 10−8 7.80× 10−1 F T 0.05 T 0.34 0.49 0.18
ex8.2.4 55 2 0 ∞ T F 0.36 F 601.15 7287.53 0.06

• S/T is the ratio of number of solution boxes returned by the discretization to the
total number of boxes returned; this is a measure of the effectiveness of rejecting
non-solution-containing boxes.

• GS? is “F” if GlobSol’s branch and bound algorithm failed due to exceeding the
limit on CPU or number of nodes1.

• CPU-D is the total processor time spent in Algorithm 1.

• CPU-G is the total processor time spent in GlobSol’s branch and bound algo-
rithm.

• CPU/B r is the ratio of two ratios — the average processor time per box for
Algorithm 1 to the average processor time per box for GlobSol’s branch and
bound algorithm.

We now analyze these results.

1with two exceptions; see the note to follow



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

Non-Adaptive Global Optimization Algorithm Assessment 9

Table 3. Results of Algorithm 1 and GlobSol for reduced space dimensions 3 and 4.

Name n rd ǫ η DF? VS? S/T GS? CPU-D CPU-G CPU/B r
ex7.2.6 3 3 6.49× 10−9 4.24× 101 F T 0.00 T 19.63 0.14 0.81
ex3.1.4 3 3 1.33× 10−15 9.50× 10−1 F T 0.00 T 3.30 4.62 0.06
ex9.2.8 6 3 0 3.00× 100 F F 0.05 T 0.72 18.62 0.05
house 8 3 1.36× 10−12 3.94× 103 F F 0.00 F 0.10 7200.07 0.00

mhw4d 5 3 1.03× 10−7 6.10× 1012 F T 0.00 T 5.16 2.22 0.06
ex8.1.7 5 3 0 4.69× 101 F F 0.00 F 19.83 5527.09 0.22
dispatch 4 3 1.14× 10−6 1.06× 10−2 F T 0.00 T 102.51 0.16 0.88
ex14.2.2 4 3 5.68× 10−14 1.00× 104 F F 0.10 T 7.59 5.6 0.28
ex14.1.2 6 3 2.24× 10−4 1.00× 104 F T 0.12 F 29.21 1694.68 0.27
nemhaus 5 3 5.00× 10−9 1.49× 10−13 F T 1.00 T 14.45 0
ex14.2.5 4 3 1.14× 10−13 1.00× 104 F F 0.10 T 8.40 6.13 0.24
ex14.2.8 4 3 4.26× 10−14 1.00× 104 F F 0.10 T 14.76 1082.66 0.27
ex6.1.4 6 3 1.97× 10−8 1.67× 100 F T 0.01 T 5.92 4.41 0.11
ex14.2.9 4 3 5.68× 10−14 1.00× 104 F F 0.10 T 10.08 503.59 0.17
ex7.3.1 4 3 3.20× 10−2 1.00× 104 F T 0.00 T 3.93 1.57 0.03
ex7.3.5 13 3 7.11× 10−15 1.00× 104 F F 0.01 F 44.30 7200.03 0.16
ex8.4.4 17 3 1.19× 10−7 5.25× 100 F T 0.00 T 48.63 1096.22 0.15
ex6.2.8 3 3 1.50× 10−8 1.31× 101 F T 0.05 T 6.96 34.67 0.12
ex6.2.6 3 3 1.50× 10−8 1.41× 101 F T 0.05 T 7.04 71.55 0.08
ex6.2.11 3 3 1.50× 10−8 6.02× 101 F T 0.04 T 7.80 98.19 0.08
ex9.2.4 8 4 2.27× 10−13 1.99× 104 F F 0.00 F 0.82 7248.23 0.00
ex9.1.2 10 4 0 1.70× 101 F F 0.00 F 2.54 7200.08 0.00
ex9.1.4 10 4 1.71× 10−13 5.90× 101 F F 0.00 F 4.01 7200.25 0.00
ex2.1.3 13 4 3.00× 10−8 1.70× 101 F T 0.00 T 6107.09 2580.4 0.77
ex7.2.7 4 4 8.33× 10−17 6.07× 100 F T 0.00 T 46.63 2.98 0.02
ex3.1.2 5 4 3.90× 10−7 6.27× 102 F T 0.00 T 856.01 0.24 0.54

himmel11 9 4 6.83× 10−7 3.39× 103 F T 0.00 T 1743.99 32.31 0.47
ex14.2.1 5 4 4.26× 10−14 1.00× 104 F F 0.07 F 271.00 5140.6 0.16
ex5.3.2 22 4 1.71× 10−13 6.04× 100 F F 0.00 F 5.38 0
ex14.2.4 5 4 5.68× 10−14 1.00× 104 F F 0.07 T 197.24 2447.16 0.14
ex14.2.6 5 4 5.68× 10−14 1.00× 104 F F 0.07 F 213.60 6766.07 0.10
ex6.1.1 8 4 1.53× 10−8 9.29× 10−1 F T 0.01 T 25.75 347.42 0.01
ex8.4.5 15 4 3.76× 10−8 4.34× 10−3 F T 0.00 T 78.11 1312.81 0.01
ex6.2.12 4 4 1.00× 10−8 6.87× 100 F T 0.01 T 33.19 91.15 0.01
ex6.2.14 4 4 1.00× 10−8 3.70× 100 F T 0.00 T 26.47 35.9 0.01

wall 6 4 0 1.50× 104 F F 0.00 T 0.76 0.66 0.00

4.1. Failure modes

The following have been observed to happen.

(1) The approximate solver (IPOPT in these experiments) can fail to compute
a good approximate optimizer, something we occasionally observed when
we examined particular problems. This results in an overly pessimistic ϕ.

(2) More often than (1), the feasibility verification in Step (2)(h)iiA of Algo-
rithm 1 can fail, leading to an overly pessimistic ϕ. In fact the process did
not succeed in any of the sub-boxes generated by Algorithm 1 for 31 of the
83 problems, and notably only succeeded for one of the convex problems.
(See column “VS?” of Tables 1, 2, and 3.) This is due to the fact that the
verification process requires a non-singular matrix of gradients of active
constraints, something that often is not true. See the note following this
list for a discussion.

(3) When running the GlobSol branch and bound algorithm, we observed ex-



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

10 R. B. Kearfott et al

cessive time (“hanging”) or segmentation faults in C-LP for qp4, ex8.1.3,
and ex5.3.2, and data for these problems are therefore absent for Glob-
Sol’s branch and bound algorithm. The calling sequences, etc., were care-
fully checked in GlobSol’s branch and bound algorithm, such problems did
not occur in Algorithm 1, and such problems did not happen elsewhere in
GlobSol’s branch and bound algorithm.

Regarding failure (2), we examined closely several of the problems on which this
failure occurred, and discovered the solution to the linear relaxations from Step (2)e
and the approximate solution to the original problem obtained in Step (2)(h)ii were
close, and the constraints for the original problem were satisfied, or very nearly sat-
isfied, at the approximate solution from Step (2)(h)ii. Thus, good lower and upper
bounds on ϕ were seemingly obtained, although not provably so with the feasibility
verification scheme from [11]. However, the only alternative we presently know for
which all solutions to a problem are rigorously enclosed is to relax equality and
active inequality constraints, that is, replace Problem (1) by a relaxed problem,
then show that these relaxed constraints are satisfied at the point returned by the
approximate optimizer, e.g., through an interval evaluation at that point. However,
if such a scheme were used to obtain ϕ, the solution boxes would be near optimizing
points of the original problem only if the constraints are continuous and the relax-
ation is sufficiently tight. Furthermore, the relaxation would need to be used not
only in computing ϕ, but also in forming the linear program and in the constraint
propagation. This is because the optimum of the original problem is in general
larger than the optimum of the relaxation, and the constraint propagation or lower
bound computation may result in some or all of the boxes containing solutions to
the relaxation being rejected. In fact, when we implemented relaxed computation
of ϕ but not relaxed constraints in the linear relaxations and constraint propaga-
tion, we observed loss of some or all solutions, both in Algorithm 1 and GlobSol’s
branch and bound algorithm, in a significant number of problems.

Some specific failures and exceptions are:

(1) In ex8.2.4, wide initial ranges (with initial variable bounds absent) and
exponentials of these large variables in the objective and constraints led
both to inability of interval evaluations to compute meaningful interval
evaluations and failure return of C-LP.

(2) The problem nemhaus as posed in the COCONUT Library 1 set was ex-
ceptional, since the initial bounds have all lower bounds equal to upper
bounds; thus every box is optimal, and subdivision was meaningless, and
Algorithm 1 both is successful and makes no progress (other than proving
feasibility).

4.2. Notable Conclusions

(1) As evidenced in the “ǫ” column of Tables 1, 2, and 3, IPOPT was remark-
ably good at finding approximately feasible points, even though verifying
exact feasibility often failed.

(2) As evidenced by η, the choice M = 20 and ǫLP = 10−2 was insufficient
to obtain reasonable bounds on the global optimum in most of the prob-
lems, with η < 0.1 achieved in only 13 of the 83 cases. However, when
we experimented with increasing M and decreasing ǫLP on several particu-
lar problems with large η, we found it practical to reduce η to acceptable
bounds. See the note following this list.

(3) Even when sharp bounds on the global optimum could not be verified,



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

Non-Adaptive Global Optimization Algorithm Assessment 11

Algorithm 1 was effective at eliminating a large portion of the search region.
This is evidenced in the column “S/T,” an upper bound for the proportion
of the original parameter bound space that is rejected1. In fact, more than
3/4 of the region was rejected in 62 of the 73 non-convex problems. This
suggests Algorithm 1 may be used as a preprocessing algorithm for a more
sophisticated branch and bound process.

(4) The GlobSol branch and bound algorithm failed to complete within its given
time and iteration limits in 23 of the 83 cases. Of these 23 GlobSol branch
and bound failures, Algorithm 1 led to at least a 75% reduction in search
region volume in at least 13 cases, and resulted in small η in 5 additional
cases; i.e. Algorithm 1 gave useful results in 18 of the 23 cases in which
the GlobSol branch and bound algorithm failed. This further suggests a
preprocessing or complementary role for Algorithm 1.

(5) There isn’t a clear pattern whether GlobSol’s branch and bound algorithm,
which potentially does a more eclectic mix of processing per box, spends
more time per box than Algorithm 1. Averaged over all 83 problems, Al-
gorithm 1 spends 1.25 times as much per box as the branch and bound
algorithm, but spends less than half as much time per box on 48 of the 83
problems, while the branch and bound algorithm spends less than half as
much time per box in only 16 of the 83 problems. The branch and bound
algorithm may be spending less time because it is able to fathom large
numbers of small boxes with little processing.

(6) With ǫLP = 10−2 and M = 20, the average CPU time for these 83 problems
was much less for Algorithm 1 than that for GlobSol’s branch and bound
algorithm. In fact, in no case did the total time for Algorithm 1 exceed
the limits set for the branch and bound algorithm. Although the time for
Algorithm 1 exceeded that for the branch and bound algorithm in 28 of the
80 cases for which the branch and bound algorithm either ran to completion
or ended due to resource limits reached, the total CPU time for all 83
problems was only about 7.2% of that taken by GlobSol’s branch and bound
algorithm.

Regarding conclusion (2), we observed in cases for which feasibility could not
be verified that the lower bound verified from the linear relaxation and the ap-
proximate upper bound returned from IPOPT were close. For example, in sambal,
feasibility could not be verified, but the coordinates of the lower and approximate
upper bound were within approximately 1% of each other. In cases in which feasi-
bility could be verified, we could adjust ǫLP (for the convex problems), or ǫLP and
M (for non-convex problems) to obtain reasonable η. However, in such cases, we
found boxes which could not be proven infeasible and for which the result returned
by IPOPT could not be verified feasible. For such problems, the bounds on ϕ may
depend on simple interval evaluations, and convergence may be slow. For example,
in ex5.2.2.case3, increasing M from 20 to 800 decreased η from 4.22 × 103 to
1.72 × 103, while the CPU time increased from 0.02 to 1715, and decreasing ǫLP

had little effect.

4.3. Additional Observations

We observed the following from informal experimentation following study of the
formal results in Tables 1, 2, and 3.

1For the convex problems, this ratio is 1, since only one box total was considered.



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

12 R. B. Kearfott et al

(1) While memory usage in GlobSol’s branch and bound algorithm is modest,
memory becomes an issue on a laptop or desktop PC for larger M and
reduced space dimensions.

(2) The solution time for the linear relaxations increases as ǫLP is decreased.
This can be significant for some problems, but numerical problems in the
linear program solver due to ill-conditioning, or removal of constraints dur-
ing preprocessing, may be a more important factor for smaller ǫLP.

4.4. An Overall Conclusion

It is apparent that a major impediment, both in GlobSol’s branch and bound
algorithm and in Algorithm 1, is verification of feasibility, something that may be
removed by relaxing the equality constraints and the binding inequality constraints.
We have left implementation of such a scheme (including also relaxing the original
constraints appropriately in the constraint propagation and linear relaxation) to
future work.

5. Limitations, Alternatives, and Improvements

The following additional work may further the range of applicability of both Glob-
Sol’s branch and bound algorithm and Algorithm 1.

• Fully implement the constraint relaxation within the GlobSol environment: As we
indicated in §4.1 and §4.4, a major obstacle to practicality, both in the branch
and bound algorithm and Algorithm 1, is failure to obtain a mathematically
rigorous upper bound from solutions returned by the approximate optimizer,
despite the fact that these solutions are of high quality. Replacement of problem 1
by relaxing the constraints would allow feasibility verification of the relaxed
problem by simple interval evaluations, but changes need to be made in both
the linear relaxation generation process and the constraint propagation to enable
mathematically rigorous enclosure of all solutions to the relaxed problem.

• Implement a better subdivision process for convex constraints within the linear
relaxation generation process: The process used here in Step (2)c of Algorithm 1
essentially supplies a uniform relative distance between the points at which tan-
gent underestimators are constructed for convex operations. Tighter relaxations
with less underestimators are obtainable if new points are adaptively placed
where bracketing underestimators intersect. Although we had this technique in
the experiments in [10], the implementation utilized a Newton method which
sometimes failed. Making this method robust by combining it with utilization of
the midpoint in cases of failure could improve both GlobSol’s branch and bound
algorithm and Algorithm 1. Furthermore, the third author of this paper is work-
ing on techniques by which a similar subdivision process may be applied to the
non-convex variables, thus also reducing the total number of problems that need
to be solved, for a given approximation accuracy.

• Study parallelization: Depending on practical problems we encounter, running
Algorithm 1 within a massively parallel environment may be effective. Note that
each iteration of Step (2) is totally independent of the others, and almost all work,
especially for larger numbers of parameters, is done in this step. Algorithm 1
could also benefit, with larger M or reduced space dimension, from machines
with a large amount of memory.

• Supply an improved reduced space algorithm in GlobSol’s branch and bound al-
gorithm: Although we did initial experiments in [10], as have Epperly et al in



July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

REFERENCES 13

[2], we hadn’t fully integrated the process into the constraint propagation and
interval Newton methods.

Another alternative, investigated in [16, 17], uses relaxed constraints and a clever
algorithm to efficiently produce tight bounds on the optimum, with small η given
a priori, or a posteriori in the case of limited memory. In contrast to this work,
the linear relaxations, although dense, have a size proportional only to the number
of original variables n and numbers of original constraints m1 and m2, and not to
the total number of operations in evaluating the objective and constraints. They
have shown their approach, based on affine arithmetic, to be highly competitive
for a number of practical problems. However, in addition to solving a relaxation of
Problem 1, the algorithms they describe guarantee enclosure of only one optimizing
point.

6. Summary and Availability

This work has focussed on the effectiveness of approximation of global optimiza-
tion problems by linear relaxations in relative isolation, but in a context of math-
ematically rigorous verification. Doing so, we have explored the possibilities for a
simplified but highly parallelizable algorithm, appropriate for problems that are
“almost convex” in a sense we have defined. We also have been able to study and
draw conclusions concerning power of the linear relaxations and the approximate
solvers within this simplified environment.

Since we are now using publicly re-distributable software from the COIN-OR
project, we hope to package the version of GlobSol used here soon for public distri-
bution, perhaps within COIN-OR; it is presently available through an SVN repos-
itory by contacting the first author of this work, along with our implementation of
Algorithm 1.

References

[1] Ralph Baker Kearfott. Discussion and empirical comparisons of linear relaxations and alternate tech-
niques in validated deterministic global optimization. Optimization Methods and Software, 21:715–
731, October 2006.

[2] T. G. W. Epperly and E. N. Pistikopoulos. A reduced space branch and bound algorithm for global
optimization. J. Global Optim., 11(3):287–311, October 1997.

[3] Christodoulos Floudas. Deterministic Global Optimization: Theory, Methods, and Applications.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

[4] Christodoulos Floudas. Deterministic global optimization: Advances and challenges, June 2009. Ple-
nary Lecture, First World Congress on Global Optimization in Engineering and Sciences, WCGO-
2009.

[5] Kirby Fong, Thomas Jefferson, Tokihiko Suyehiro, and Lee Walton. Guide to the
SLATEC common mathematical library. Technical report, netlib.org, April 1990. See
http://www.netlib.org/slatec/ .

[6] Julian Hall. Homepage of C-LP, 2002. https://projects.coin-or.org/Clp .
[7] R. Baker Kearfott. Rigorous Global Search: Continuous Problems. Number 13 in Nonconvex opti-

mization and its applications. Kluwer Academic Publishers, Norwell, MA, USA, and Dordrecht, The
Netherlands, 1996.

[8] R. Baker Kearfott. Erratum: Validated linear relaxations and preprocessing: Some experiments. SIAM
J. Optim., 2011.

[9] R. Baker Kearfott. Interval computations, rigour and non-rigour in deterministic continuous global
optimization. Optim. Methods Softw., 2011. (to appear).

[10] R. Baker Kearfott and Siriporn Hongthong. Validated linear relaxations and preprocessing: Some
experiments. SIAM J. on Optimization, 16(2):418–433, 2005.

[11] Ralph Baker Kearfott. On proving existence of feasible points in equality constrained optimization
problems. Math. Program., 83(1):89–100, 1998.

[12] Ralph Baker Kearfott. GlobSol user guide. Optimization Methods and Software, 24(4–5):687–708,
August 2009.

[13] Ralph Baker Kearfott, Jessie Castille, and Gaurav Tyagi. A general framework for
convexity analysis and an alternative to branch and bound in deterministic global op-
timization. Journal of Global Optimization, 2011. submitted for a special issue

netlib.org
http://www.netlib.org/slatec/
https://projects.coin-or.org/Clp


July 10, 2011 12:50 Optimization Methods and Software 2011-optimization-by-discretization

14 REFERENCES

in honor of Pierre Hansen, from the 2010 Toulouse Global Optimization Workshop,
http://interval.louisiana.edu/preprints/2010-alternative-GO-paradigm.pdf .

[14] Arnold Neumaier. COCONUT Web page, 2001-2003. http://www.mat.univie.ac.at/~neum/glopt/coconut .
[15] Arnold Neumaier and Oleg Shcherbina. Safe bounds in linear and mixed-integer programming. Math.

Prog., 99(2):283–296, March 2004.
[16] Jordan Ninin. Optimisation Globale Basée sur l’Analyse d’Intervalles: Relaxations Affines et Tech-

niques d’Accélération. Ph.D. dissertation, Université de Toulouse, Toulouse, France, December 2010.
[17] Jordan Ninin and Frédéric Messine. A metaheuristic methodology based on the limitation of the

memory of interval branch and bound algorithms. J. Glob. Optim., February 2010.
[18] O. Shcherbina, A. Neumaier, D. Sam-Haroud, X.-H. Vu, and T.-V. Nguyen. Benchmarking global

optimization and constraint satisfaction codes. In C. Bliek, C. Jermann, and A. Neumaier, editors,
COCOS, volume 2861 of Lecture Notes in Computer Science, pages 211–222. Springer-Verlag, 2003.

[19] Mohit Tawarmalani and Nikolaos V. Sahinidis. Convexification and Global Optimization in Contin-
uous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications.
Kluwer Academic Publishers, Dordrecht, Netherlands, 2002.

[20] A. Wächter. Homepage of IPOPT, 2002. https://projects.coin-or.org/Ipopt .

http://interval.louisiana.edu/preprints/2010-alternative-GO-paradigm.pdf
http://www.mat.univie.ac.at/~neum/glopt/coconut
https://projects.coin-or.org/Ipopt

