
Noname manuscript No.
(will be inserted by the editor)

On Smooth Reformulations and Direct Non-Smooth
Computations for Minimax Problems

Ralph Baker Kearfott, Sowmya Muniswamy,

Yi Wang, Xinyu Li and Qian Wang

Received: date / Accepted: date

Abstract Minimax problems can be approached by reformulating them into smooth

problems with constraints or by dealing with the non-smooth objective directly. We

focus on verified enclosures of all globally optimal points of such problems. In smooth

problems in branch and bound algorithms, interval Newton methods can be used to

verify existence and uniqueness of solutions, to be used in eliminating regions con-

taining such solutions, and point Newton methods can be used to obtain approximate

solutions for good upper bounds on the global optimum. We analyze smooth refor-

mulation approaches, show weaknesses in them, and compare reformulation to solving

the non-smooth problem directly. In addition to analysis and illustrative problems, we

exhibit the results of numerical computations on various test problems.

Keywords minimax, verified computations, Fritz John equations

1 Introduction

The nonlinear discrete minimax problem can be stated as

min
x

max
1≤i≤m

|fi(x)|, x ∈ Rn, m ≥ n, (1)

or, more generally, as

min
x

max
1≤i≤m

fi(x), x ∈ Rn, m ≥ n, (2)

Ralph Baker Kearfott
Department of Mathematics, University of Louisiana at Lafayette, U.L. Box 4-1010, Lafayette,
LA 70504-1010 USA
Tel.: 337-482-5270
Fax: 337-482-5346
E-mail: rbk@louisiana.edu

Sowmya Muniswamye
Department of Mathematics, University of Louisiana at Lafayette

Xinyu Li
Department of Mathematics, University of Louisiana at Lafayette

Qian Wang
Department of Mathematics, University of Louisiana at Lafayette

2

where the functions fi are, in general, smooth but nonlinear. This problem is of interest

in data fitting, providing an `∞ fit, as an alternative to least squares (`2 fits) or

least absolute value (`1 fits). Also important, the problem has been well-studied in an

operations research setting, as a model to minimize the worst possible outcome, in the

presence of uncertainty in uncontrollable aspects of the problem.

Various numerical methods have been proposed for finding points x̌ that approx-

imate solutions x∗ to this problem. For a review of these in a broader context see

[20].

As with most traditional algorithms in nonlinear optimization and for the solution

of nonlinear systems, there is no guarantee that the point x̌ that such algorithms output

is close to an actual solution x∗. This leads to the following problem, whose solution

can be useful in branch and bound algorithms for global optimization.

Given x̌ ∈ Rn, rigorously verify:

There is a small box

x = ([x1, x1], [x2, x2], . . . , [xn, xn]),

x̌ ∈ x, such that there is a unique solution x∗ ∈ x to the

minimax problem (1).

(3)

Interval Newton methods can be used for verification if the problem can be posed

as a nonlinear system

Find x ∈ Rn such that G(x) = 0, where x ∈ Rn, (4)

where G has continuous first derivatives, or at least has first derivatives with bounded

interval extensions; see [16, Theorem 1.5.7] and [7, §1.5.2 and §6.2.2] or [3]. In particular,

verification of solutions to the Fritz John equations can be used to verify existence of

critical points of nonlinear, possibly constrained optimization problems within given

bounds ([7, pp. 195–197] or [3, §10.2]). However, the objective in the minimax problem

(1) is non-smooth, and the second derivatives, entering as first derivatives in the Fritz

John equations, are therefore unbounded. Nonetheless, as Lemaréchal [13] and others

have proposed, and as is now common practice, the minimax problem (1) can be re-

posed as one of the following two constrained optimization problems:

min(x,v)∈Rn×R v

such that

{
fi(x) ≤ v

−fi(x) ≤ v

}
, 1 ≤ i ≤ m. (5)

or
min(x,v)∈Rn×R v

2

such that f2i (x) ≤ v2, 1 ≤ i ≤ m.
(6)

For the more general case (2), the reformulation can be simply

min(x,v)∈Rn×R v

such that fi(x) ≤ v, 1 ≤ i ≤ m.
(7)

In §2, we analyze the structure of the Fritz John equations (and also the Kuhn–

Tucker equations) in (5) and formulation (6), and we point out that the corresponding

3

Jacobian matrices are singular at solutions for which the minimum is a perfect fit (i.e.

for which the minimum is 0). In these cases interval Newton technology cannot be used

in a straightforward way to provide rigorously verified bounds on solutions x, although

appropriate variants, as well as point Newton methods, might be used in branch and

bound algorithms acceleration devices. An alternative is direct reformulation, which

can be, in theory, accelerated with the aid of linear relaxations. We present some

techniques for this in §3. We also point out a very simple and effective alternative for

constructing feasible points in that section. We present numerical results affected by

the phenomena we brought to light in previous sections in §4. We summarize in §5.

Some previous work in using branch and bound algorithms or constraint propa-

gation specifically to obtain mathematically rigorous bounds on solutions to minimax

problems includes (but is not limited to) [17], [5].

2 Structure of the Fritz John Equations

We first work with the re-formulation (5). We express the Fritz John equations in terms

of inequality constraints of the form

g(x, v) ≤ 0.

To describe (5) in that form, we adopt the notation

g−i = −fi(x)− v, g+i = fi(x)− v, 1 ≤ i ≤ m,

with corresponding multipliers u−i and u+i . With that, the Fritz John system of equa-

tions becomes

G(x, v, u) =

u0(0, . . . , 0, 1)T +

m∑
i=1

{
u−i ∇g

−
i (x, v) + u+i ∇g

+
i (x, v)

}
u−1 g

−
1 (x, v)
...

u−mg
−
m(x, v)

u+1 g
+
1 (x, v)
...

u+mg
+
m(x, v)

N(u)

= 0,

(8)

where N(u) = 0 is a normalization equation for the multipliers u0, u−i , and u+i , 1 ≤
i ≤ m.

In the following examples and analysis, we will have

F (x) = (f1(x), · · · , fm(x))T = Ax− b, A ∈ Rm×n, b ∈ Rn, (9)

we will be looking at minimizing ‖F‖∞, we will denote the minimum by v∗, and we will

denote an arbitrary minimizing point by x∗. This avoids the extra notation for second-

order terms but still gives insight into many nonlinear problems. In this context, the

Jacobian matrix in (8) has a structure as in Figure 1, to within a permutation of its

rows. In many cases when m ≥ n, the Jacobian matrix in Figure 1 is non-singular.

4

x v u0 u−
i u+

i

n︷ ︸︸ ︷ 1︷︸︸︷ 1︷︸︸︷ m︷ ︸︸ ︷ m︷ ︸︸ ︷
G1:n n

0 · · · 0

.

.

.

.
.
.

.

.

.
0 · · · 0

0

.

.

.
0

0

.

.

.
0

−(∇f1, · · · ,∇fm) (∇f1, · · · ,∇fm)

Gn+1 1

{
(0, · · · , 0) 0 1 (−1, · · · , −1) (−1, · · · , −1)

u−
i g−i m

−u
−
1 (∇f1)T

.

.

.

−u−m(∇fm)T

−u
−
1

.

.

.

−u−m

0

.

.

.
0

 diag(g−1 , · · · , g−m)

0 · · · 0

.

.

.

.
.
.

.

.

.
0 · · · 0

u+
i g+i m

u
+
1 (∇f1)T

.

.

.

u+
m(∇fm)T

−u

+
1

.

.

.

−u+
m

0

.

.

.
0

0 · · · 0

.

.

.

.
.
.

.

.

.
0 · · · 0

 diag(g+1 , · · · g+m)

N(u) 1

{
(0, · · · , 0) 0 ∗ (∗, · · · , ∗) (∗, · · · , ∗)

Fig. 1 The structure of the Jacobian matrix for the Fritz John system (8).

Example 1 Suppose

A =

1 0

0 1

1 1

−1 1

 and b =

1

2

3

4

 .

Then the solution is

x∗ = [0, 3]T with Ax∗ − b = [−1, 1, 0,−1]T .

Thus, since the optimal v is v∗ = 1, the complementarity conditions u−i g
−
i = 0,

u+i g
+
i = 0, 1 ≤ i ≤ 4 indicate the only possibly non-zero multipliers are u−1 , u−4 ,

and u+2 , and the remaining 5 multipliers necessarily must equal zero. Solving with

our GlobSol system [9], we obtain u0 = 1
2 and u−1 = u−4 = u+2 = 1

6 , if we use the

normalization condition

N(u) = u0 +

m∑
i=1

u−i +

m∑
i=1

u+i − 1 = 0.

5

The Jacobian matrix of the Fritz John system corresponding to (5) at the solution

x∗ = [0, 3]T is thus of the form

G′ =

x1 x2 v u0 u
−
1 u−2 u−3 u−4 u+1 u+2 u+3 u+4

0 0 0 0 −1 0 −1 1 1 0 1 −1

0 0 0 0 0 −1 −1 −1 0 1 1 1

0 0 0 1 −1 −1 −1 −1 −1 −1 −1 −1

− 1
6 0 − 1

6 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −2 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0
1
6 −

1
6 −

1
6 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −2 0 0 0

0 1
6 −

1
6 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 −2

0 0 0 1 1 1 1 1 1 1 1 1

.

In fact, G′ is non-singular, with `2 condition number slightly larger than 25.

The Fritz John system corresponding to (6) is

G(x, v, u) =

u0(0, . . . , 0, 2v)T +

m∑
i=1

{ui∇gi(x, v)}

u1g1(x, v)
...

umgm(x, v)

N(u)

= 0, (10)

where gi(x, v) = f2i (x)− v2, and its Jacobian matrix is as in Figure 2.

x v u0 ui

n︷ ︸︸ ︷ 1︷ ︸︸ ︷ 1︷ ︸︸ ︷ m︷ ︸︸ ︷
G1:n n

 ∑m
i=1 2ui∇fi(∇fi)

T

0

.

.

.
0

0

.

.

.
0

 2 (f1∇f1, · · · , fm∇fm)

Gn+1 1

{
(0, · · · , 0) 2u0 − 2

∑m
i=1 ui 2v −2v(1, · · · , 1)

uigi m

2u1f1(∇f1)T

.

.

.

2umfm(∇fm)T

−2u1v

.

.

.
−2umv

0

.

.

.
0

 diag(g1, · · · , gm)

N(u) 1
{

(0, · · · , 0) 0 ∗ (∗, · · · , ∗)

Fig. 2 The structure for the Jacobian matrix for the Fritz John system corresponding to
reformulation (6).

6

Example 2 If the system is as in Example 1, then the solution x∗ = (0, 3)T with

v∗ = ±1 has u0 = 1
2 , u3 = 0, and u1 = u2 = u4 = 1

6 ; the Jacobian matrix of the Fritz

John system corresponding to (6) at this solution is

G′(x) =

x1 x2 v u0 u1 u2 u3 u4
2
3 −

1
3 0 0 −2 0 0 2

− 1
3

2
3 0 0 0 2 0 −2

0 0 0 2 −2 −2 −2 −2

− 1
3 0 − 1

3 0 0 0 0 0

0 1
3 −

1
3 0 0 0 0 0

0 0 0 0 0 0 −1 0
1
3 −

1
3 −

1
3 0 0 0 0 0

0 0 0 1 1 1 1 1

.

This matrix is non-singular, with condition number slightly greater than 14.

For both (1) and (2), the Jacobian matrix of the Fritz John system must be singular

if the solution set is not isolated, as the following example of (2) illustrates.

Example 3 Suppose

A =

(
1 0 0 0

0 1 0 0

)
and b =

(
1

2

)
.

In this example, the minimax problem reduces to solution of an underdetermined linear

system, and the set of solutions is described by x1 = 1, x2 = 2, and x3 and x4 free.

Since the solution set is not isolated, it is clear that the corresponding Fritz John

matrices must be singular at such solutions. Indeed, the third and fourth rows of the

Jacobian matrix in Figure 1 and the third and fourth rows of the Jacobian matrix in

Figure 2 consist entirely of zeros.

A more “general” (although not necessarily more common in applications) situa-

tion, assuming the fi are linear, is m ≥ n, and the gradients of the fi form a Haar

system (that is, every set of n such gradients is linearly independent). In that situ-

ation, the minimax solution must be unique, so there it is reasonable to expect that

the Jacobian matrices for the Fritz John system corresponding to (5) and (6) will be

non-singular. However, this is often not the case: a surprising situation is when m ≥ n
and the gradients form a Haar system, but the fit is very good, that is ‖F (x∗)‖∞ = 0.

In that case, the Jacobian matrices corresponding to both (5) and (6) must be singular

at x∗. The following theorem formalizes this fact.

Theorem 1 Suppose m > n, and minx ‖F (x)‖∞ with F as in (9) has solution x∗ with
‖F (x∗)‖∞ = 0. Then the Jacobian matrices corresponding to both (5) and (6) must be

singular at x∗.

Proof We will first consider the Jacobian matrix for (5), as in Figure 1. Observe that

v = 0, so each of g−i and g+i must equal zero, 1 ≤ i ≤ m. Now we will analyze

the determinant of the matrix in Figure 1 by adding and subtracting a column from

other columns and adding and subtracting a row from other rows, then expanding by

minors. First add the u0 column to the last 2m columns to obtain a 0 in the Gn+1

7

row corresponding to those columns, so the only nonzero in the Gn+1 row is in the u0
column. Now add the u−i column to the u+i column, 1 ≤ i ≤ m to obtain zeros in the

last m columns and the Gi rows, 1 ≤ i ≤ m. At this point the only non-zeros in the

last m columns are in the N(u) row. Since m > n, there are at least two such columns;

if one of them indeed has a nonzero in the N(u) row, we can subtract an appropriate

multiple of that column from the other columns, leaving m − 1 ≥ 1 columns entirely

of zeros. Thus, the determinant must equal zero, and the matrix must be singular.

Now we consider the Jacobian matrix for (6). Recalling that v = 0 and each fi is

zero for 1 ≤ i ≤ m, each gi must also equal zero, so the m rows corresponding to the

uigi must consist entirely of zeros, thus proving that the Jacobian matrix is singular.

Note that this argument is valid even if the fi are nonlinear, since the second-order

derivatives of the fi only appear in the upper n by n block of the Jacobian matrix

corresponding to (5) (Figure 1) or (10) (Figure 2), and this block does not play a role

in the singularity analysis. Also note that the theorem is also true for the more general

problem (2) in the case that all of the fi are equal to zero at a solution.

Example 4 We generate the following exact tabular data from y(t) = 2t+ 1.

i ti yi
1 0 1

2 1 3

3 2 5

4 3 7

Thus, the problem is minx ‖F (x)‖∞, where F (x) = Ax− b, where

A =

t1 1

t2 1

t3 1

t4 1

 =

0 1

1 1

2 1

3 1

 and b =

1

3

5

7

 .

The unique solution is, of course, x∗ = (2, 1)T , with v = ‖F (x∗)‖∞ = 0. Using the

normalization

N(u) =
m∑
i=0

ui − 1,

8

the Jacobian matrix corresponding to (5) and Figure 1 is thus of the form

G′ =

x1 x2 v u0 u
−
1 u−2 u−3 u−4 u+1 u+2 u+3 u+4

0 0 0 0 0 −1 −2 −3 0 1 2 3

0 0 0 0 −1 −1 −1 −1 1 1 1 1

0 0 0 1 −1 −1 −1 −1 −1 −1 −1 −1

∗ ∗ ∗ 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1

,

where the “∗’s” depend on the multipliers; this matrix is clearly singular, as can be

seen by adding the fourth column to each of the columns to its right, then adding u−i
column to the u+i column, i = 1, 2, 3, 4. Similarly, using the same normalization, the

Jacobian matrix corresponding to (6) and Figure 2 is of the form

G′ =

x1 x2 v u0 u1 u2 u3 u4
∗ ∗ 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0

0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

.

The Jacobian matrices corresponding to the Kuhn–Tucker conditions should have

similar properties: the column corresponding to u0 and the row corresponding to N(u)

are merely absent, and the proofs of singularity are similar. Furthermore, one would

expect the matrices to be ill-conditioned when ‖F (x∗)‖∞ is small, but not exactly

singular, and one would expect the rows of the m by n Jacobian matrix of F to be

approximately linearly dependent (thus leading to approximate singularity of the Fritz

John Jacobian matrices) when fitting simple models to data with a large number of

data points (that is, with n relatively small and m� n).

3 Alternatives

The fact that the Jacobian matrices of the Fritz John or Kuhn Tucker systems are sin-

gular or ill-conditioned at solutions of problems of interest suggests that alternatives

9

to Newton-like methods, and, in particular, to interval Newton methods, in global op-

timization and other contexts may be worthwhile. In our experience, state-of-the-art

algorithms such as IPOPT [18] for finding approximate local optima and optimizers

can handle the reformulations well. However, interval-Newton-based verification of fea-

sibility cannot proceed in the presence of general singularities. On the other hand, such

verification of feasibility is important in finding a good but mathematically rigorous

upper bound on the global optimum in constrained optimization problems. We suggest

two alternatives here.

3.1 Approach the Non-Smoothness Directly

A possibility is to try to handle the non-smoothness directly, without reformulation. In

principle, Newton-like methods could be used in conjunction with generalized gradients,

or interval slopes. (The two concepts are related; see [12]). Computational existence

and uniqueness results can sometimes even be obtained with interval Newton methods,

but convergence in iterative processes is generally only linear; see [7, Chapter 6].)

Another possibility, within the context of branch and bound algorithms for global

optimization, is to provide linear relaxations for max · and | · |. The general framework

for our version of linear relaxations (along with further references) appears in [8], while

empirical results with that scheme appear in [1]; we briefly discuss our techniques in the

context of other relaxation techniques in [10, §3.1]. Essentially, we parse the expressions

comprising the objective and constraints into sequences of individual operations, and an

inequality or equality constraint is associated with each individual operation to result

in an optimization problem equivalent to the original one. Each such simple constraint

is then replaced by a set of linear constraints that together form a relaxation of the

original constraint. Basic techniques are used to form relaxations for max, min, and

| · |. For example, suppose the constraint corresponding to an individual operation is

|x| ≤ v,

where x is assumed to lie in the interval [x, x]. The constraint is then simply replaced

by the two linear constraints

x ≤ v and − x ≤ v.

If the constraint is

|x| ≥ v,

we use the following scheme.

if x ≥ 0 then
Replace |x| ≥ v by x ≥ v.

else if x ≤ 0 then
Replace |x| ≥ v by −x ≥ v.

else /* Use a secant line between the ends of the graph. */

Replace |x| ≥ v by
x + x

x− x
x−

[
x + x

x− x
x + 1

]
x.

For constrains |x| = v, it is sufficient to replace |x| = v by −x = v if x ≤ 0, by

x = v if x ≥ 0, and by the two constraints x ≤ v and −x ≤ v in all other cases.

10

Constraints max{x, y} ≤ v, max{x, y} ≥ v, and max{x, y} = v are derived simi-

larly, and have been programmed in GlobSol.

We incorporate these techniques in our numerical experiments in §4.

3.2 A Simple “Peg to Feasibility” Approach

Local floating point optimization software will often find approximately feasible points

x̌. However, for general constrained optimization problems, verifying that such points

are near an exactly feasible point (or, more precisely, constructing a small box about

x̌ in which a feasible point can be proven to exist) is in general problematical. Interval

Newton methods cannot be used if the Fritz–John or Kuhn–Tucker system is singular,

and the technique proposed in [7, 5.2.4] for equality and active inequality constraints

often fails. This problem is not present with unconstrained problems, because all points

are then feasible, without verification.

On the other hand, examining reformulations (5) and (6), suggests the following

procedure for unconstrained minimax problems.

1. Use a local approximate optimizer to find an approximately feasible solution (x̌, v̌)

to either reformulation (5) or reformulation (6).

2. Replace v̌ by ṽ = max1≤i≤m |fi(x̌)|.

Note that (x̌, v̌) must be feasible for both (5) and (6), and a mathematically rigorous

feasible point can be found by evaluating the fi at x̌ with interval arithmetic. Fur-

thermore, if (x̌, v̌) is near a globally optimal point, ṽ, representing either an upper

bound on the global optimum or, in the case of (6), a bound on the square root of

the global optimum, is within the accuracy of the approximate solver of the actual

global optimum. Thus, this technique is essentially as good as evaluation at a point in

smooth unconstrained optimization. In fact, it is equivalent (to within roundoff errors)

to evaluating the original unconstrained non-smooth objective at x̌ to compute upper

bounds on the optimum, but using the reformulation elsewhere, such as in constraint

propagation.

Also note that, even in cases where the Jacobian matrix is singular at a solution,

traditional point Newton methods may still converge, but perhaps somewhat more

slowly. Also, although interval Newton methods cannot be naively used to verify ex-

istence of a solution when the Jacobian matrix at the solution is singular, they may

still be effective as acceleration procedures in branch and bound methods, especially if

preconditioners such as described in [7, §3.2] or [4] are used.

4 Computational Results

We illustrate the behavior of our GlobSol [9] software on the simple examples we have

presented, then study the behavior on the minimax test problem collection of [14]. The

source code for the version of GlobSol we are using is available by request from the first

author. It includes a branch and bound algorithm as indicated in [9], which processes

a box first by constraint propagation, then by computing linear relaxations, then by

attempting an interval Newton method. We implemented linear relaxations of MAX and

ABS, as well as generalized derivative enclosures. In addition to the linear relaxations,

a local optimizer is used to obtain good upper bounds on the global optimum and to

11

refine optimizing points obtained through the linear relaxations. If the local solver fails

for constrained problems, a simple steepest descent and a generalized Newton method

are used to find feasible points; if the local solver fails on an unconstrained problem

(e.g. when handling the problem directly as a non-smooth problem), a combination of

steepest descent and the classical Minpack 1 routine HYBRJ1 [15] are used to try to find

a local minimum. IPOPT [18] was used as the local optimizer, and C-LP [2] was the

linear program solver used to solve the relaxations.

The experiments were all done on a laptop running Ubuntu 11.10 with a Core

2 Duo T9400 processor (2 cores at 2.5GHz), and 4GB memory; the gnu compiler

suite was used with gfortran 4.6.1 and gcc/g++ 4.6.1 to compile IPOPT and C-LP.

(The Fortran 2003 standard intrinsic module ISO C BINDING was used to interface the

Fortran and C/C++ codes.) Optimization level 3 was used in the compilations. Note

that the CPU times may not be definitive, since the processors use speed-stepping

technology, and the room’s environmental temperature was not strictly controlled.

Although the execution times will vary on different machines and possibly under

different conditions, the total number of boxes processed should usually be the same,

given the same tolerances and same version of GlobSol. However, the total number of

boxes could be different, even with standard arithmetic, when bisection occurs near

boundaries, due to differences in word length of various levels of cache.

The output in all of these experiments consists of a set of boxes in which all possible

global optimizers must lie, as well as mathematically rigorous bounds on any possi-

ble global optimum. We do not attempt to rigorously prove existence or uniqueness

of optimizing points within particular boxes. A natural way of proving uniqueness for

constrained problems is to use the Kuhn–Tucker conditions, and a natural way for

smooth unconstrained problems is to set the gradient equal to zero. To prove unique-

ness, the Kuhn–Tucker Jacobian matrix applied directly in an interval Newton method

must be non-singular, or, more generally, sufficiently well-conditioned, but Theorem 1

gives negative results concerning non-singularity of these matrices. Although interval

Newton methods can sometimes be used directly to non-smooth objectives to prove

existence and uniqueness, they are effective in such cases only if certain non-trivial

conditions hold; see [7, Chapter 6].

4.1 Illustrative Examples

We try

1. “peg to feasibility” in conjunction with reformulation (5),

2. “peg to feasibility” in conjunction with reformulation (6), and

3. approaching the non-smoothness directly.

4.1.1 Results for Example 1

For each scheme, we used

(x,v) = ([−10, 10], [−10, 10], [0, 10])

as initial search region. (Note that 0 is a natural lower bound on v.) For this prob-

lem, for both Reformulation (5), and Reformulation (6), the local solver obtained the

12

unique optimum immediately, GlobSol removed a box around this approximate opti-

mum through the complementation process of [7, §4.3.1], and constraint propagation

immediately eliminated the five complementary boxes so generated. Handling the prob-

lem directly as a non-smooth problem, the local solver failed, but Minpack’s HYBRJ1

succeeded. Furthermore, the same point was also found with the linear relaxation.

These results are sumarized in the following table. In this table (and in the other

tables in this section), the columns are as follows:

1. “Scheme” identifies Reformulation (5), Reformulation (6), or direct handling as an

unconstrained non-smooth problem (“Direct”).

2. “CPU” denotes the CPU time in seconds,

3. “Boxes” denotes the total number of nodes processed in the branch and bound

process,

4. “IN” denotes the number of times the interval Newton method succeeded in nar-

rowing a coordinate bound or rejecting a box,

5. “LP” denotes the number of times a new upper bound on the optimum was obtained

or a node was rejected due to the linear relaxation,

6. “CP” denotes the number of times constraint propagation succeeded in narrowing

a coordinate bound or rejecting a box, and

7. “AS” denotes the number of times the local (approximate) solver succeeded in find-

ing a feasible point. This includes both successes from the local optimizer (IPOPT),

and successes from the generalized Newton method, used to project onto the feasi-

ble set in cases IPOPT failed.

Scheme CPU Boxes IN LP CP AS

Re. (5) 0.008 5 0 0 0 1

Re. (6) 0.02 5 0 0 0 1

Direct 0.14 9 0 1 4 1

4.1.2 Results for Example 4

Recall that this is a very simple problem in which the Jacobian matrix is singular at

the solution because the fit is good. Results from GlobSol are in the following table.

Scheme CPU Boxes IN LP CP AS

Re. (5) 0.012 4 0 0 4 1

Re. (6) 0.032 4 0 0 4 1

Direct 0.18 50 0 1 0 1

For the “Direct” method, a good approximation to the global optimum is obtained

through the linear relaxation, but the only mechanism for fathoming boxes or reducing

coordinate widths after that appears to be through large lower bounds on the global

optimum.

4.2 Results from a Test Problem Set in the Literature

The collection we have found is in the technical report [14]. This set consists of an

interesting collection of data fitting problems, discretization of continuous minimax

problems, and practical problems from the literature, many from [19]. The posted

13

material includes a technical report and a Fortran code T06.FOR for setting initial

guesses and for computing values for the fi. The 25 problems include both `∞ problems

(i.e. of the form (1)) and the general problem (2). After separating the problem set

into these two types, we elected, rather than modifying TI06.FOR, to reprogram the

individual functions for GlobSol, directly from the descriptions in the technical report.

Doing so, we found several inconsistencies between the function evaluation instructions

in TI06.FOR and the descriptions in the technical report, including actual differences

in the definition of the fi and differences between the reported optimum value given

in Table 2.1 of [14] and the actual global optimum. With the exception of the Watson

problem, where we took the definition from TI06.FOR, we used the definitions from the

technical report. We also eliminated the function GAMMS (problem 2.13), since we

have not yet implemented the gamma function in GlobSol.

GlobSol also allows input of an initial point guess for the local optimizer. We used

the point guesses from [14].

A complication is that one problem (Watson) as in TI06.FOR has a 2-dimensional

parabola-shaped solution set, and GlobSol seeks to enclose all globally optimizing so-

lutions in bounding boxes in a mathematically rigorous way. Similarly, the “Bard”

problem has a one-dimensional line of solutions in x2-x3-space. (To our knowledge,

such properties of these problems have not been recognized before in the literature.)

Although such solution sets present convergence problems separate from the issues

with non-smooth minimax problems, we elected to keep these problem in the set. An-

other complication is the effectiveness of certain implementation details. For example,

efficient set arithmetic, such as explained in [5], has not been used, and linear relax-

ations of division and the trigonometric functions are not yet optimal in GlobSol. We

nonetheless elected to keep those problems involving these functions in our test set.

Our resulting test problem set is as follows.

4.2.1 Test Problems Corresponding to (1)

Bard (problem 2.8 in [14]): The initial search region was x = [10−4, 104]×3, v =

[0, 104], where [10−4, 104]×3 is interpreted to mean [10−4, 104], [10−4, 104],

[10−4, 104]). The smallest scaled box diameter εd for GlobSol was set to 10−6, and

singular expansion factor σ = 5. (Boxes that are fathomed due to their scaled di-

ameter are expanded in each coordinate about their center points so their scaled

diameters are σ
√
εd, and the resulting regions are removed from the search region

through the complementation process of [7, §4.3.1]. This limits unnecessary compu-

tation due to the clustering phenomenon of [11].) The optimum is about 5× 10−2;

the results are as follows.

Scheme CPU Boxes IN LP CP AS

Re. (5) 72.62 11750 90702 3 255 1252

Re. (6) 190.1 32812 485216 3 2338 3641

Direct 148.6 21966 0 1 20566 213

Figure 3 shows the enclosures GlobSol gives for the one-dimensional set of global

optimizing points.

Davidon 2 (problem 2.10 in [14]): The initial search region was x = [−104, 104]×4,

v = [0, 106], εd = 10−4, and σ = 5. GlobSol found the solution reported in [19] to

14

0.4 0.6 0.8 1 1.2 1.4 1.6

2

2.2

2.4

2.6

2.8

3

3.2

Bard
11

x
2

x 3

Fig. 3 GlobSol output boxes for the Bard problem, scheme (5)

be unique within the search region. The optimum is about 1.16 × 102; the results

are as follows.

Scheme CPU Boxes IN LP CP AS

Re. (5) 0.304 23 166 0 22 7

Re. (6) 1.084 34 292 1 33 9

Direct 5.492 147 13 1 60 5

EVD61 (problem 2.16 in [14]): Observe that, if x4 spans more than π, this generates

multiple solutions with x1; however, starting with an initial guess x4 = 0 leads our

local optimizer to a negative x4, so we include negative values of x4. We obtained

some, but not totally satisfactory resolution of the global minimum with x =

([0, 10], [0, 10], [3.14, 9.4], [−3.15, 0.01], [−10, 10], [0, 5]), v = [0, 5], εd = 2 × 10−4,

and σ = 3. The lower bound obtained on the global optimum was about 10%

larger than the reported optimum of 0.035 in [14]. This problem was difficult for

GlobSol. Because of this, we do not report results here.

Filter (problem 2.18 in [14]): Satisfactory results were not obtained for this problem.

Kowalik-Osborne (problem 2.9 in [14]): The initial search region was x = [0, 10]×4,

v = [0, 0.2], v̌ = 0.1, with σ = 2, εd = 10−4. The optimim is roughly 8× 10−3; the

results are as follows.

Scheme CPU Boxes IN LP CP AS

Re. (5) 794.3 100146 619486 2 1721 9

Re. (6) 1866. 144164 517773 17 21451 3118

Direct 75.25 19971 0 8 12715 17

OET5 (problem 2.11 in [14]): We used x = [−10, 10]×3, v = [0, 0.5], εd = 4 × 10−3,

and σ = 3. Note that the minimizer (x1, x2, x3, x4) is paired with a second min-

imizer (−x1,−x2,−x3, x4). Furthermore, although the optimal objective value is

0.00263597 (to six digits), there is a parabola-shaped region of approximate so-

lutions (with objective value at most 0.0733467), as illustrated in Figure 4. The

15

−3 −2 −1 0 1 2 3
1

2

3

4

5

6

7

8

9

10
OET5

m
m

11

x
3

x 4

Fig. 4 GlobSol output boxes (x4 against x3) for the OET5 problem, scheme (5)

optimum is roughly 2.6× 10−3; we obtained the following results.

Scheme CPU Boxes IN LP CP AS

Re. (5) 1386 57419 986 7 38234 1

Re. (6) 4725 178173 0 12 32011 34217

Direct ≥ 7134 > 400000 ≥ 2853 ≥ 1 ≥ 0 ≥ 14

Here, the algorithm using the unconstrained non-smooth objective (“direct”) could

not finish in 75600 seconds, and the statistics appearing represent the quantities

at the point the algorithm detected the time had been exceeded; at that time,

there were still 124,161 boxes remaining to be processed. Also note that, in the

“Direct” case, the best attained upper bound on the global optimum was 0.00283071

(rounded), contrasting with the more accurate bound 0.00263597 (rounded); an

inability to obtain a good upper bound significantly affects performance.

OET6 (problem 2.12 in [14]): We used x = [−10, 10]×4, v = [0, 106], εd = 10−4,

σ = 10. The optimum reported in [14] was roughly 2×10−3, but GlobSol computed

a rigorous upper bound on the optimum of about 2.6 × 10−12, so something may

be wrong in the statement of or implementation of this problem. We obtained the

following results with the problem as stated in [14].

Scheme CPU Boxes IN LP CP AS

Re. (5) > 57600 ≥ 48558 ≥ 0 ≥ 0 ≥ 20558 ≥ 25410

Re. (6) 16980 246869 0 12 38070 87765

Direct ≥ 12490 > 400000 ≥ 15 ≥ 33 ≥ 0 ≥ 10

Osborne2 (problem 2.25 in [14]): Although the approximate optimizer successfully

completes, properties of this problem pose difficulties to the GlobSol algorithm

unrelated to the issue of singularity in minimax reformulations. In particular, the

symmetries between (x2, x6, x9), (x3, x7, x10) and (x4, x8, x12) reveal many solu-

tions, and this combines with the large nonlinearities in the exponentials. Such sym-

metries and nonlinearities would be best treated by appending symmetry-breaking

16

constraints and reformulating the exponentials in terms of other variables. We thus

do not report results for this problem here.

PBC1 (problem 2.15 in [14]): We used x = [−100, 100]×4, v = [0, 106], εd = 10−4,

σ = 10, with initial guess as in [14] and initial v equal to 1. (The approximate solver

failed to converge with initial v equal to 0.) The optimum is roughly 2× 10−2, and

we obtained the following results:

Scheme CPU Boxes IN LP CP AS

Re. (5) 4691.9 115204 1348396 0 11513 253

Re. (6) 10765.3 205263 1233096 0 1450 14184

Direct 4047.0 196322 170 0 30754 18

4.2.2 An Overall Comment

An initial computation in GlobSol is to run the approximate optimizer (in our case,

IPOPT) before starting the branch and bound process; if the approximate optimizer is

successful, GlobSol attempts to construct a small box about the point the approximate

optimizer returns, within which it is rigorously verified that a feasible point exists. In

turn, the objective is evaluated with interval arithmetic over this small box to obtain an

upper bound on the global optimum. (In the case of unconstrained problems, including

unconstrained minimax, all that need be done is evaluate the objective, using interval

arithmetic, at the point the approximate optimizer returns.) This process often gives

a very good upper bound on the global optimum, that the branch and bound process

uses effectively to complete its exhaustive search for optimizers quickly. When the

problem is formulated in GlobSol directly as a non-smooth problem, IPOPT generally

cannot handle the non-smoothness, and returned in failure mode for all of the examples

reported in in this work. In contrast, IPOPT failed in this initial computation only with

“Filter,” and it failed both with reformulation (5) and reformulation (6).

A more sophisticated implementation might be to use a reformulation in the ap-

proximate optimizer, but to use “direct” computations in the interval arithmetic-based

part of the branch and bound algorithm.

4.3 An Additional Application from the Literature

For comparison of the overall algorithm, we tried GlobSol on the application in [5,

Section 5], using reformulation (5), the most successful of the reformulations, overall,

from the test problem set. GlobSol completed successfully in a reasonable amount of

time. However, GlobSol’s total processing time and number of boxes considered were

each larger than the results reported in [5]. Nonetheless, although the output reported

in [5] was with 44 boxes, GlobSol returns only two boxes, each with very narrow bounds,

as well as the narrow bounds of [0.06561, 0.06566] on the global optimum. Abridged

GlobSol output is as follows.

17

Table 1 Number of boxes versus optimum value

Problem Optimum Boxes (5) Boxes (6) Boxes, direct
Bard 0.05 11750 32812 21966

Davidon2 115.7 23 34 147
Kowalik-Osborne 0.008 100146 144164 19971

OET5 0.0026 97087 178173 > 400000
PBC1 0.02 115204 205263 196322

correlation coefficients (boxes ver-
sus optimum value)

-0.666 -0.690 -0.415

Output from FIND_GLOBAL_MIN on 09/23/2012 at 10:57:06.
Initial box:

[-60.00 , 60.00], [-1.000 , 0.000]
[-60.00 , 60.00], [-1.000 , 0.000]

[0.000 , 120.0]
LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:
Box no.: 1
Box coordinates:

[21.08 , 21.12], [-0.7775 , -0.7755]
[-10.94 , -10.92], [-0.2119 , -0.2099]
[0.6466E-01, 0.6666E-01]
Box contains the following approximate root:

21.10 , -0.7765 , -10.93 , -0.2109 , 0.6566E-01
OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT: [0.6566E-01, 0.6566E-01]

Box no.: 2
Box coordinates:

[-10.94 , -10.92], [-0.2119 , -0.2099]
[21.08 , 21.12], [-0.7775 , -0.7755]
[0.6466E-01, 0.6666E-01]
Box contains the following approximate root:
-10.93 , -0.2109 , 21.10 , -0.7765 , 0.6566E-01

OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT: [0.6566E-01, 0.6566E-01]

BEST_ESTIMATE: 0.6566E-01
BEST_LOWER_BOUND: 0.6561E-01
Number of bisections: 501
Total number of boxes processed in loop: 736
Overall CPU time: 10.88

Improvements can probably be made by combining the techniques in [5] with those in

this work and in GlobSol.

4.3.1 Relationship to Theorem 1

Here, we examine the correlation between the amount of work required to complete the

branch and bound process and how good the `∞ fit is (that is, how close the optimum

value is to 0). Table 1 compares the total number of boxes produced during the branch

and bound process to the optimum value, while Table 2 compares the total execution

time to the optimum value.

We see through the negative correlations that near-singularity due to a good fit

does affect the overall branch and bound processes. The less pronounced correlation

with CPU time than with number of boxes may be due to the algorithm favoring the

less computationally intensive constraint propagation to the interval Newton method

in cases where the optimum is near zero.

18

Table 2 CPU time versus optimum value

Problem Optimum CPU (5) CPU (6) CPU, direct
Bard 0.05 72.62 190.1 148.6

Davidon2 115.7 0.30 1.08 5.1
Kowalik-Osborne 0.008 794.3 4725. 75.25

OET5 0.0026 4943. 16980. ≥7134.
PBC1 0.02 1386. 10765.3 4047.

correlation coefficients (CPU versus
optimum value)

-0.395 -0.500 -0.396

4.4 Test Problems Corresponding to (2)

For comparison, we examined the test problems from [14] corresponding to (2): In

general, unless these problems consist of explicit reformulations corresponding to (1),

difficulties with singularities when the fit is good may not appear so frequently.

CB2 (problem 2.1 in [14]): We used x = [−10, 10]×2, εd = 10−8, σ = 10, with the

following results. (The optimum value is about 1.95.)

Scheme CPU Boxes IN LP CP AS

Re. (7) 0.028 5 8 0 5 3

Direct 27.802 10035 11 1 10035 42

EVD52 (problem 2.4 in [14]): We used x = [−10, 10]×2, εd = 10−8, σ = 10, with the

following results. (The optimum value is about 3.60.)

Scheme CPU Boxes IN LP CP AS

Re. (7) 0.064 7 222 0 7 5

Direct 77.061 29988 0 1 25976 148

EXP (problem 2.14 in [14]): We eliminated this problem, since it is unbounded as

stated in [14]: To see this, take x2 = x3 = x4 = x5 = 0, and let x1 be negative

with |x1| arbitrarily large.

Polak2 (problem 2.22 in [14]): We used x = [−10, 10]×10, v = [−106, 106], εd = 10−8,

σ = 10, with the following results. (The optimum is about 54.5.)

Scheme CPU Boxes IN LP CP AS

Re. (7) 0.184 21 0 0 21 1

Direct 1.648 18 0 0 18 1

Polak3 (problem 2.23 in [14]): The optimum of 261.08 reported in [14] does not corre-

spond to the actual optimum of problem 2.23 given in [14]. To see this, note that

setting each xi equal to zero gives that each fi is bounded below by 0 and above

by

10∑
j=0

1

1 + j
e1 ≤ 3.02e < 8.21.

For this reason and other difficulties, we have not reported results on this problem.

19

Polak6 (problem 2.6 in [14]): We used x = [−10, 10]×4, v = [−106, 106], εd = 10−4,

σ = 10, v = [1, 11], with the midpoints of these coordinates used for the first initial

guess for the approximate solver, with the following results. (The optimum is about

-44.)

Scheme CPU Boxes IN LP CP AS

Re. (7) 570.5 8218 29812 1 7091 3500

Direct 50089.9 992091 90312 0 315858 23

Rosen–Suzuki (problem 2.5 in [14]): We used x = [−10, 10]×4, v = [−106, 106], εd =

10−4, σ = 10, with x = (0, 0, 0, 0) and v = 1 used for the first initial guess for the

approximate solver. (The optimum is about -44.)

Scheme CPU Boxes IN LP CP AS

Re. (7) 10.72 810 5487 1 595 426

Direct > 57600.40 ≥ 1052029 ≥ 71965 ≥ 0 ≥ 0 ≥ 27

(A time limit of 57600 seconds was exceeded.)

SPIRAL (problem 2.3 in [14]): We used x = [−1000, 1000]×2, v = [−106, 106], εd =

10−8, σ = 10, with initial initial guess as in [14], that is,

x = (1.41831,−4.79462), and v = 1 used for the first initial guess for the approxi-

mate solver. (The optimum is near 0.)

Scheme CPU Boxes IN LP CP AS

Re. (7) 0.04 4 0 0 0 1

Direct 0.05 1 0 0 0 1

WF (problem 2.2 in [14]): We used x = [0, 10]×2, v = [−106, 106], εd = 10−8, σ = 10,

with initial initial guess as in [14], that is, x = (3, 1), and v = 1 used for the first

initial guess for the approximate solver. (The optimum is near 0.)

Scheme CPU Boxes IN LP CP AS

Re. (7) 0.10 38 337 0 11 0

Direct 11.61 36 0 0 17 2

Wong1 (problem 2.19 in [14]): We used x = [−10, 10]×7, v = [−106, 106], εd = 10−8,

σ = 10, with initial initial guess as in [14] , that is, x = (1, 2, 0, 4, 0, 1, 1), and v = 1

used for the first initial guess for the approximate solver. Note: The best lower

bound on the global optimum obtained (about 691.7) was about 1.6% larger than

the optimum reported in [14] (about 680.6).

Scheme CPU Boxes IN LP CP AS

Re. (7) 99.40 2388 10193 0 2196 1364

Direct > 57600 ≥ 980455 ≥ 192042 ≥ 0 ≥ 42196 ≥ 449350

Wong2 (problem 2.20 in [14]): We used x = [−100, 100]×10, v = [−106, 106], εd =

10−8, σ = 10, with initial initial guess as in [14], that is,

x = (2, 3, 5, 5, 1, 2, 7, 3, 6, 10) , and v = 1 used for the first initial guess for the

approximate solver. Note: The best lower bound on the global optimum obtained

was about 33.5, whereas the optimum reported in [14] was about 24.3.

20

Scheme CPU Boxes IN LP CP AS

Re. (7) 290.68 13129 118122 5 68894 12958

Direct > 57600 ≥ 958437 ≥ 2849 ≥ 0 ≥ 78561 ≥ 2087

4.5 Advice

Based on both the theory and our practical experience, we formulate the following

advice.

1. Reformulation (5) seems to usually be better in practice, despite the fact it involves

twice as many constraints.

2. In choosing an initial guess for a general point iterative method for constrained

optimization problems, it is better to choose v � 0 rather than v = 0.

3. Although, in theory, use of intervals instead of gradients (theoretically equivalent

to using the set of subgradients) allows solution of minimax problems without

continuous reformulations, in practice this is rarely advisable. This is likely due to

the approximate solver not able to obtain optimizing points when the problem is

non-smooth. Nontheless, the technique may still have its place in specific parts of

a branch and bound algorithm.

4. In general, time to complete the algorithm varies substantially from problem to

problem, depending on problem characteristics. For particular problems, search

boxes x and tolerances εd and σ may need to be adjusted to solve the problem in

a practical way.

5. An important feature of complete search algorithms is the “end game,” that is,

how the leaves of the search tree are handled. GlobSol uses the expansion process

first described in [6] to expand such small boxes and eliminate from consideration

adjacent small boxes, without losing the verified enclosure property. Controlled by

σ and εd, exactly how this process is carried out, and how it interacts with non-

isolated sets of optimizers, greatly affects the overall performance of the algorithm.

5 Conclusion and Discussion

Even though the Jacobian matrix for the Fritz John system is singular, that does

not completely rule out use of the reformulations (5) and (6) in global optimization

algorithms; it merely rules out use of traditional interval Newton methods based on

the Fritz John system for verification, or it indicates that traditional iterative methods

based on the Fritz John system may not work well. In fact, we discovered the singularity

while experimenting with the reformulations (6) with problems from [14] within our

GlobSol system [9]. Even so, we found that properly preconditioned interval Newton

methods could make progress in reducing coordinate widths of the search region, even

though they could not be used with the Fritz John system to verify existence and

uniqueness of critical points1.

1 Most of the time the interval Newton made progress in this context, the preconditioner was
a permutation of the identity matrix. This may be due to unbounded entries in the Jacobian
matrix.

21

It is to be expected that, in data fitting with a large amount of data, adjacent

rows in the matrix A (or corresponding Jacobian matrix, in the nonlinear case) are

approximately linearly dependent, leading to approximate singularity of the Fritz John

system.

Although we have discussed the Fritz John systems, similar ideas are valid for the

Kuhn Tucker system.

In addition to revealing information about branch and bound algorithms for mini-

max problems, this study has also revealed weaknesses in the implementation of linear

relaxations in GlobSol. Future improvements in the sharpness of the linear relaxations

may change the results reported here slightly, but probably will not change the overall

conclusions.

Acknowledgments

The authors wish to thank the referees for their careful reading and helpful suggestions.

References

1. Ralph Baker Kearfott. Discussion and empirical comparisons of linear relaxations and
alternate techniques in validated deterministic global optimization. Optimization Methods
and Software, 21:715–731, October 2006.

2. Julian Hall. Homepage of C-LP, 2002. https://projects.coin-or.org/Clp.
3. E. R. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, Inc., New

York, 1992.
4. C. Hu. Optimal Preconditioners for the Interval Newton Method. PhD thesis, University

of Southwestern Louisiana, 1990.
5. L. Jaulin. Reliable minimax parameter estimation. Reliable Computing, 7(3):231–246,

2001.
6. Baker Kearfott. A proof of convergence and an error bound for the method of bisection

in Rn. Math. Comp., 32(144):1147–1153, October 1978.
7. R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, Nether-

lands, 1996.
8. R. Baker Kearfott and Siriporn Hongthong. Validated linear relaxations and preprocessing:

Some experiments. SIAM J. on Optimization, 16(2):418–433, 2005.
9. Ralph Baker Kearfott. GlobSol user guide. Optimization Methods and Software, 24(4-

5):687–708, August 2009.
10. Ralph Baker Kearfott. Interval computations, rigour and non-rigour in deterministic con-

tinuous global optimization. Optim. Methods Softw., 26(2):259–279, April 2011.
11. Ralph Baker Kearfott and Kaisheng Du. The cluster problem in multivariate global opti-

mization. Journal of Global Optimization, 5:253–265, 1994.
12. R.B. Kearfott and Humberto Muñoz. Slope interval, generalized gradient, semigradient,

and slant derivative. Reliable Computing, 10(3):163–193, June 2004.
13. C. Lemaréchal. Nondifferentiable optimization. In Nonlinear Optimization 1981, pages

85–89, New York, 1982. Academic Press.
14. L. Lukšan and J. Vlček. Test problems for nonsmooth unconstrained and linearly con-

strained optimization. Technical Report 798, Institute of Computer Science, 2000.
15. J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User guide for MINPACK-1. Technical

Report ANL-80-74, Argonne National Laboratories, 1980.
16. A. Neumaier. Interval Methods for Systems of Equations. Cambridge UniverCsity Press,

Cambridge, England, 1990.
17. Z. Shen, A. Neumaier, and M. C. Eiermann. Solving minimax problems by interval meth-

ods. BIT, 30:742–751, 1990.
18. A. Wächter. Homepage of IPOPT, 2002. https://projects.coin-or.org/Ipopt.
19. G. A. Watson. The minimax solution of an overdetermined system of non-linear equations.

Journal of the Institute of Mathematics and its Applications, 23(2):167–180, 1979.
20. G. A. Watson. Approximation in normed linear spaces (a historical survey of numerical

methods). Journal of Comput. Appl. Math., 121:1–36, 2000.

