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Global Optimization
General Context and Notation

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,

where the objective function ϕ(x) : x → R and the
constraints ci , gi : x → R are possibly nonlinear, and
where x ∈ R

n is the box where xi ∈ [x i , x i ] for
i = 1, . . . , n defines the search region in a branch and
bound algorithm.

◮ Our interest is in computing rigorous enclosures of
all the optimizing points.
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Singularities in Global Optimization

◮ For both linear and nonlinear global optimization
problems, it often occurs that there are feasible (or
approximately feasible) lines, planes, hyperplanes,
or hypersurfaces that have approximately optimal
objective function values.
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when solving singular global optimization problems
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1. The algorithm only finds one optimal point and
does not indicate that other solutions exist.

4 / 30



Depiction of Singular
Solution Sets

Introduction
Illustrative Example

Main Ideas

Detecting Singularities
Approx. Singular Solution Sets

New Coordinates

Containing Singular
Solution Sets
Approximate Solution Boxes

Containing the Solution Sets

Illustrative Examples

Use for More Efficient
Branch and Bound
Rejection Regions

Preliminary Results

Singularities in Global Optimization

◮ For both linear and nonlinear global optimization
problems, it often occurs that there are feasible (or
approximately feasible) lines, planes, hyperplanes,
or hypersurfaces that have approximately optimal
objective function values.

◮ There are two common problems encountered
when solving singular global optimization problems
using software with deterministic algorithms:

1. The algorithm only finds one optimal point and
does not indicate that other solutions exist.

2. The algorithm does not complete within a
reasonable amount of time.
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Illustrative Example

The minimum value for the objective function over the
feasible region is -8, and this value is attained at any point
(x1, x2) on the line segment from (4/3, 8/3) to (2, 0).
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Main Ideas

◮ In problems with singular (or approximately
singular) solution sets, the singularity is first
detected. Then, directions from an optimal point
are found in which the objective function value
remains approximately optimal and the points are
still approximately feasible.
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Main Ideas

◮ In problems with singular (or approximately
singular) solution sets, the singularity is first
detected. Then, directions from an optimal point
are found in which the objective function value
remains approximately optimal and the points are
still approximately feasible.

◮ To visualize a singular solution set, one can
construct a skewed box or boxes that contain
points that are exact global optima and points that
are within ǫϕ of ϕ and within ǫc or ǫg of feasible.
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Main Ideas

◮ In problems with singular (or approximately
singular) solution sets, the singularity is first
detected. Then, directions from an optimal point
are found in which the objective function value
remains approximately optimal and the points are
still approximately feasible.

◮ To visualize a singular solution set, one can
construct a skewed box or boxes that contain
points that are exact global optima and points that
are within ǫϕ of ϕ and within ǫc or ǫg of feasible.

◮ These methods may be incorporated into a branch
and bound process algorithm for global
optimization to improve its efficiency.
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Skewed Boxes
Definition
Let V be a square matrix whose columns are
orthonormal vectors in R

n representing the axes in a
coordinate system. A skewed box is an interval vector
α ∈ IR

n centered at a point x̌ ∈ R
n in the coordinate

system defined by V .

Example
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Approximate Singular Solution Sets

Definition
Let x̌ be a feasible point such that ϕ(x̌) is approximately
optimal. That is, ϕ(x) ≤ ϕ + ǫϕ for some tolerance ǫϕ. If
there are directions from x̌ in a coordinate system V in
which the objective function ϕ(x) remains
approximately optimal and x remains approximately
feasible, then an approximate singular solution set is a
skewed box α about x̌ such that for all x ∈ α:

1. ϕ(x) ≤ ϕ + ǫϕ,

2. |ci (x)| ≤ ǫc for i = 1, . . . , m1, and

3. gj(x) ≤ ǫg for j = 1, . . . , m2.
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Finding Directions Preserving Feasibility
and Optimality

◮ Define the matrix G be by

G =





























∇T ϕ(x̌)

∇T c1(x̌)
...

∇T cm1(x̌)

∇T g1(x̌)
...

∇T gna(x̌)

∇2ϕ(x̌)





























.
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◮ The null space of G contains directions in which
points remain approximately optimal.
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...

∇T gna(x̌)
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.

◮ The null space of G contains directions in which
points remain approximately optimal.

◮ The coordinate system consists of an orthonormal
basis for the null space of G and its orthogonal
complement.
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Sufficient Conditions for a Skewed Box to
be an Approximate Solution Box

◮ Initial approximate solution box coordinate widths,
|αi | (i = 1, . . . , n), can be chosen such that

n
∑

i=1

|αi ||Dvi ϕ(x̌)| +
1
2

n
∑

i=1

n
∑

j=1

|αi ||αj ||Dvi ,vj ϕ(x (B))| ≤ ǫϕ,

n
∑

i=1

|αi ||Dvi ck (x (B))| ≤ ǫc , k = 1, . . . , m1, and

n
∑

i=1

|αi ||Dvi gℓ(x (B))| ≤ ǫg , ℓ = 1, . . . , na.

where x (B) is a small box whose center is x̌ .

15 / 30



Depiction of Singular
Solution Sets

Introduction
Illustrative Example

Main Ideas

Detecting Singularities
Approx. Singular Solution Sets

New Coordinates

Containing Singular
Solution Sets
Approximate Solution Boxes

Containing the Solution Sets

Illustrative Examples

Use for More Efficient
Branch and Bound
Rejection Regions

Preliminary Results

Sufficient Conditions for a Skewed Box to
be an Approximate Solution Box

◮ Initial approximate solution box coordinate widths,
|αi | (i = 1, . . . , n), can be chosen such that

n
∑
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|αi ||Dvi ϕ(x̌)| +
1
2

n
∑

i=1

n
∑

j=1

|αi ||αj ||Dvi ,vj ϕ(x (B))| ≤ ǫϕ,

n
∑

i=1

|αi ||Dvi ck (x (B))| ≤ ǫc , k = 1, . . . , m1, and

n
∑

i=1

|αi ||Dvi gℓ(x (B))| ≤ ǫg , ℓ = 1, . . . , na.

where x (B) is a small box whose center is x̌ .
◮ In this heuristic, we evaluate the first and second

order directional derivatives Dvi ,vj ϕ(x (B)),
Dvi ck (x (B)), and Dvi gℓ(x (B)) with interval
arithmetic.
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On Interval Evaluation of the Directional
Derivatives

◮ If we evaluate the gradients and Hessian matrix
with respect to the original coordinates first, and
take dot products with the directions, this results in
severe overestimation of the ranges of the
directional derivatives.
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◮ Instead, we compute the directional derivatives
directly using automatic differentiation, we get
usable bounds on their ranges.
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On Interval Evaluation of the Directional
Derivatives

◮ If we evaluate the gradients and Hessian matrix
with respect to the original coordinates first, and
take dot products with the directions, this results in
severe overestimation of the ranges of the
directional derivatives.

◮ Instead, we compute the directional derivatives
directly using automatic differentiation, we get
usable bounds on their ranges.

◮ Julie is presently polishing this second-order
automatic differentiation code, written as MATLAB

“m” files, for publication and release.
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Expanding an Approximate Solution Box in
the Optimal Directions

◮ Once an approximate solution box α is
constructed, it is expanded outward from the sides
of α in the directions in which the objective
function values or constraint values are not
changing much. This can be done using an
epsilon-inflation type process.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5
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Nonlinear Solution Sets
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◮ For problems with nonlinear solution sets, a “chain”
or “surface” of skewed boxes in different coordinate
systems can be constructed to contain
approximately optimal points.
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Minimize ϕ(x) = (sin(x1) − x2)
2

◮ The global minimum is 0, and all points on the curve
x2 = sin(x1) are exact solutions. A portion of a chain of
approximate solution boxes (computed with ǫϕ = 0.1
and x̌ ≈ (6.283185, 0)T ) is given in the figure.

0 1 2 3 4 5 6
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blue curve - the exact solution set
red asterisks - approximately optimal points
green boxes - approximate solution boxes
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Minimize ϕ(x) = (x2
1 + x2

2 − x2
3 )2

Subject to xi ≥ 0, i = 1, 2, 3
◮ The global minimum is 0, and the exact solution set for

this problem is the lateral surface of a cone. A portion of
a surface of approximate solution boxes is shown below.

−2
−1

0
1

2

−2

−1

0

1

2
0

0.5

1

1.5

2

2.5

x
1

 

x
2

x 3

red asterisks - approximately optimal points
green boxes - approximate solution boxes
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this problem is the lateral surface of a cone. A portion of
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Incorporation into a Branch and Bound
Algorithm

◮ When branch and bound algorithms are applied to
singular problems, large number of small boxes
with sides parallel to the coordinate axes are
produced.
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Incorporation into a Branch and Bound
Algorithm

◮ When branch and bound algorithms are applied to
singular problems, large number of small boxes
with sides parallel to the coordinate axes are
produced.

◮ In contrast, the singular solution set can be
enclosed in a much smaller number of skewed
boxes.

◮ We can construct a surface or chain of
approximate solution boxes for a global
optimization problem, then exclude all boxes within
the branch and bound process that lie completely
within a rejection region.
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Rejection Regions
◮ The rejection region consists of approximate

solution boxes and adjacent boxes. The adjacent
boxes are constructed so that either at least one of
the constraints is guaranteed to be infeasible or ϕ
is guaranteed to be greater than ϕ + ǫ.
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◮ More specifically, an adjacent box α
adj. to a skewed

box α can be eliminated from the branch and
bound search region if

1. the objective function value for all of the points in
α

adj. is larger than ϕ (i.e., inf ϕ(αadj.) > ϕ), or

2. the points in α
adj. are all exactly infeasible (i.e.,

mig cj(α
adj.) > 0 for at least one of j = 1, . . . , m1 or

inf gj(α
adj.) > 0 for at least one of j = 1, . . . , m2).
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◮ More specifically, an adjacent box α
adj. to a skewed

box α can be eliminated from the branch and
bound search region if

1. the objective function value for all of the points in
α

adj. is larger than ϕ (i.e., inf ϕ(αadj.) > ϕ), or

2. the points in α
adj. are all exactly infeasible (i.e.,

mig cj(α
adj.) > 0 for at least one of j = 1, . . . , m1 or

inf gj(α
adj.) > 0 for at least one of j = 1, . . . , m2).

◮ The union of the adjacent skewed boxes with an
approximate solution box α is a large rejection
region that can be eliminated from the search
region in a branch and bound process.

◮ Boxes constructed using the original coordinates in
the branch and bound process can be rejected if
they lie completely within the large rejection region.
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◮ Julie programmed a simple branch and bound
algorithm in MATLAB.
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◮ Julie programmed a simple branch and bound
algorithm in MATLAB.

◮ She tried the algorithm on several illustrative
problems.

◮ On one, incorporation of the skewed rejection
regions reduced the number of boxes considered
from 15,565 to 4,414 and the time from 7.68 hours
(interpretive, in MATLAB) to 43.58 minutes.
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algorithm in MATLAB.

◮ She tried the algorithm on several illustrative
problems.

◮ On one, incorporation of the skewed rejection
regions reduced the number of boxes considered
from 15,565 to 4,414 and the time from 7.68 hours
(interpretive, in MATLAB) to 43.58 minutes.

◮ On another, when GlobSol (a sophisticated
compiled package) took many hours, inclusion of
the rejection boxes took minutes in MATLAB.

29 / 30



Depiction of Singular
Solution Sets

Introduction
Illustrative Example

Main Ideas

Detecting Singularities
Approx. Singular Solution Sets

New Coordinates

Containing Singular
Solution Sets
Approximate Solution Boxes

Containing the Solution Sets

Illustrative Examples

Use for More Efficient
Branch and Bound
Rejection Regions

Preliminary Results

Preliminary Results

◮ Julie programmed a simple branch and bound
algorithm in MATLAB.

◮ She tried the algorithm on several illustrative
problems.

◮ On one, incorporation of the skewed rejection
regions reduced the number of boxes considered
from 15,565 to 4,414 and the time from 7.68 hours
(interpretive, in MATLAB) to 43.58 minutes.

◮ On another, when GlobSol (a sophisticated
compiled package) took many hours, inclusion of
the rejection boxes took minutes in MATLAB.

◮ We emphasize that this is preliminary work.
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