
Noname manuscript No.

(will be inserted by the editor)

A General Framework for Convexity Analysis and an

Alternative to Branch and Bound in Deterministic Global

Optimization

Ralph Baker Kearfott · Jessie Castille ·

Gaurav Tyagi

Received: date / Accepted: date

Abstract To date, complete search in deterministic global optimization has been

based on branch and bound techniques, with the bounding often done with linear or

convex relaxations of the original non-convex problem. Here, we present an alternative,

inspired by talks of Ch. Floudas. In this alternative, a set of non-convex variables, cho-

sen from the intermediate variables in the expressions for the objective and constraints,

is first identified. The intervals corresponding to these variables are then subdivided

a priori, and the total number of subregions to be examined is known beforehand.

The algorithm is designed to provide bounds on the global optimum and at least one

global optimizer, with an accuracy determined a posteriori. Advantages include sim-

plicity (less overhead), as well as easy parallelization (since subproblems to be solved

are known beforehand and are independent). Furthermore, the number of non-convex

variables to be subdivided with the new techniques in this paper can be considerably

less than the number identified with schemes from previous work. Identification of the

set of non-convex variables can be considered to be a preprocessing step. This pre-

processing, done in a much smaller amount of time, reveals beforehand the practicality

of using this method to solve a particular problem.

Keywords automatic verification, non-convexity, automatic differentiation, branch

and bound algorithms, interval analysis, complete search

Ralph Baker Kearfott
Department of Mathematics, University of Louisiana at Lafayette, U.L. Box 4-1010, Lafayette,
LA 70504-1010 USA
Tel.: 337-482-5270
Fax: 337-482-5346
E-mail: rbk@louisiana.edu

Jessie Castille
Department of Mathematics, University of Louisiana at Lafayette,
E-mail: jmc4491@louisiana.edu

Gaurav Tyagi
Department of Mathematics, University of Louisiana at Lafayette,
E-mail: gxt3687@louisiana.edu

2

1 Introduction

We examine the general problem of finding the global optimum and one or more op-

timizing points of an objective function subject to both inequality and equality con-

straints. In our notation, we examine the problem

minimize ϕ(x)

subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,

where ϕ : R
n → R and ci, gi : R

n → R.

(1)

Deterministic algorithms for solving this general non-convex problem consist primarily

of branch and bound methods, to exhaustively search a region of R
n. Usually, the

search region is a hyper-rectangle given by bounds x = ([x1, x1], . . . [xn, xn]). These

bounds may or may not correspond to actual bound constraints.

Such branch and bound algorithms have many variants, but the same overall struc-

ture, namely:

1. Establish an upper bound ϕ on the global optimum over the feasible set (defined

by the constraints).

2. (Branching) Subdivide the initial region x into two or more subregions x̃. Place all

but one of these on a list L for further processing.

3. Use various methods to reduce the size of x̃ (possibly producing the empty set).

4. (Bounding) Bound below the range of the objective function over each subregion

x̃, to obtain

ϕ(x̃) ≤ {ϕ(x) | x ∈ x̃, c(x) = 0, g(x) ≤ 0.} .

5. If ϕ > ϕ, (1) is infeasible over x̃, or if x̃ cannot contain a global optimizer for some

other reason,

Then

(Pruning) Discard x̃,

Else If the diameter of x̃ is smaller than a specified tolerance

Then

Put x̃ onto a list of boxes containing possible global optimizers.

Else

Insert x̃ into the list L for further branching and bounding through steps 2

and 4.

End If

End If

Such branch and bound methods differ in various subtle but important ways. These

differences include both items that affect the efficiency (and hence practicality) of the

answer and items that affect the character or quality of the solution. Some items that

affect the quality of the solution are:

(a) Whether or not heuristics are used in step 5 to remove a box x̃ from further

consideration, thus potentially not obtaining the actual global optimum or not

obtaining all optimizing points.

(b) Whether or not boxes that contain additional global optimizing points are ignored

once sufficiently accurate bounds on the global optimum are obtained.

3

(c) Whether or not regions are sought within which the equality constraints can be

shown to hold exactly, or whether points are sought within which the equality (and

inequality) constraints hold only to within a specified tolerance.

(d) Whether or not roundoff error is taken into account during the computation (so

that bounds produced are mathematically rigorous).

(e) Assumptions made during any preprocessing, prior to execution of the branch and

bound method1.

Some items that affect efficiency are

(a) The types of preprocessing done prior to beginning the branch and bound process.

(a) How the upper bound on the global optimum is obtained (such as with use of a

local optimization process).

(b) How the ranges of the objective and constraints are bounded (such as with interval

arithmetic, or with linear or convex relaxations).

(c) What acceleration procedures are used (such as interval Newton methods or a wide

variety of constraint propagation techniques).

Despite such differences, all such branch and bound software consists of adaptive

search of a region. In particular, it is difficult to predict beforehand how much effort

it will take to solve a particular problem, and execution of such algorithms in a multi-

processing environment, although reasonable in principle, may present load-balancing

problems.

In contrast, Ch. Floudas has recently been espousing an alternative point of view:

Many problems require only a preliminary analysis and subdividing with respect to one

variable. Although this view can be considered theoretically to be equivalent to branch

and bound with branching by subdividing with respect to a subset of the variables only

(something investigated in [1] and later in our work [4]), taking this alternative point

of view has implications in how the algorithm is structured and in the algorithm’s

efficiency. In particular, instead of resulting in an adaptive process, a mesh on the

variables to be subdivided can first be determined, in a simple way, before any analysis

of sub-domains x̃. Analysis of any sub-domain x̃ then requires, essentially, the same

amount of computation as that of any other such sub-domain, so the total amount of

computation required is known before most of the computation is actually done. This

allows simple and efficient mapping of the algorithm to multiprocessor systems, as well

as making the algorithm’s execution more predictable.

In this work, we present an algorithm for such a priori subdivision of selected

variables. The algorithm subdivides with respect to certain intermediate variables in

the computational graph for the objective and constraints, chosen using techniques

we have explained in [4,2]. The approximation to the optimum and to optimizing

points is then obtained by computing solutions to linear relaxations over each pre-

generated subregion. The fineness of the non-uniform mesh is determined in the a-

priori subdivision phase using a combination of ideas in Theorem 5.2 and its proof

from [3], along with interval arithmetic. A user-specified tolerance on the optimum

and located optimizing points is achieved with this mesh-determination scheme. There

is little sacrifice in efficiency in taking account of roundoff error, to assure that bounds

on the objective and optimizers are mathematically rigorous.

1 For example, the problem may be identified as linear, and a particular linear programming
solver may be used.

4

Although our goal is to develop such “discretization” algorithms for global opti-

mization, the main focus of this paper is determining the set of variables to subdivide.

The underlying techniques for the preprocessing to determine the set of variables to

be subdivided begin with our previous work [4] and [3], but go beyond it in generality

and flexibility. We will not exhaustively review the techniques from [4]. However, we

illustrate the new ideas with examples in §2, while we formalize some of these in §3. We

present algorithms in §4, We present computational results for the preprocessing and

preliminary results using a prototypical implementation of the overall discretization

algorithm in §5, while we mention theoretical limitations in §6. A synopsis appears in

§7.

2 Simple Illustrative Examples

We illustrate our underlying ideas with the following simple example2.

Example 1
minimize − 2x2

1 − x2
2

subject to x2
1 − x2

2 = 0,

x2
1 + x2

2 − 1 ≤ 0,

x2
1 − x2 ≤ 0,

(x1, x2) ∈ ([0, 1], [0, 1]).

(2)

Following [4], we add constraints corresponding to each operation involved in eval-

uating the original objective and constraints in (2), analyze which of the resulting

equality constraints can be replaced by inequality constraints to result in an equivalent

problem, then determine which of the corresponding operations are convex, resulting

in what we call the equivalent relaxed expanded NLP. The equivalent relaxed expanded

NLP corresponding to Problem 2 is depicted in Table 1 and Figure 1. As part of the

analysis, those intermediate variables are identified for which sufficiently sharp linear

relaxations can be obtained only by subdividing the interval corresponding to those

intermediate variables and solving a different relaxation over each subinterval.

The corresponding computational graph occurs in Figure 1. There, the node num-

bers correspond to variable numbers, and the links are labeled with the corresponding

operations. Variables that are the result of a non-convex operation are labeled with a

“T”, while the leaves are labeled with “L”. We see that only node 3 and node 6 corre-

spond to non-convex operations, while the leaves correspond to node 9 (corresponding

to the constraint x2
1 + x2

2 − 1 = v9 ≤ 0), node 7 (corresponding to the objective

−2x2
1 − x2

2 = v7 ≤ ϕ, where ϕ is a known upper bound on the global optimum), node

11 (corresponding to the constraint x2
1 − x2

2 = v11 ≤ 0), and node 10 (corresponding

to the constraint x2
1 − x2

2 = v10 = 0).

In [4] a subset of the set of independent variables was identified such that, if the

bounds on the variables in that subset are sufficiently narrow, the problem is approx-

imately convex. One alternative way of identifying variables to subdivide is to start

at the top of the computational graph, corresponding to the independent variables x1

and x2, and to search down the computational graph to find the first node labeled

“T”, that is the first node that corresponds to the result of a non-convex operation.

2 This example problem can easily be solved with a variety of methods, but is simple enough
to present complete details.

5

Table 1 Operations and convexity analysis corresponding to Example 1.

♯ Operation Enclosure Constraint Needs
Subdivision?

1 v3 ← x2

1
[0, 1] x2

1
− v3 = 0 yes

2 v4 ← 2v3 [0, 2] 2v3 − v4 ≥ 0 no

3 v5 ← −v4 [−2, 0] −v4 − v5 ≤ 0 no

4 v6 ← x2

2
[0, 1] v2

2
− v6 = 0 yes

5 v7 ← v5 − v6 [−3, 0] v5 − v6 − v7 ≤ 0 no
6 v8 ← v3 + v6 [0, 2] v3 + v6 − v8 ≤ 0 no
7 v9 ← v8 − 1 [−1, 1] v8 − 1− v9 ≤ 0 no

8 v10 ← v3 − v2 [−1, 1] −1− v10 ≤ 0 no
9 v11 ← v3 − v6 [−1, 1] v3 − v6 − v11 = 0 no

1 2

63

8

9

4

5

7

11

10

T

L

L

L

L

T
**2

*2

−1

−

−

−

**2

−

+

Fig. 1 A computational graph corresponding to Example 1

For Example 1, this is node 3. Assuming variable v3 will be subdivided, the operations

whose input arguments include node 3 are then marked: unary operations are marked

as not needing subdivision, while binary operations are marked that subdivision is not

required for the first argument, or marked as subdivision not needed if the second

argument either occurs in a convex way or has already been marked. In the case of

Example 1, there are no non-convex operations whose input arguments include v3, so

no nodes are marked.

After node 3 has been identified and any possible non-convex nodes below it in the

computational graph have been appropriately marked, additional non-marked non-

convex operations are sought below node 3 in the table of operations. The next node

to be encountered is node 6. Search of the table of operations below node 6 reveals no

additional non-convex operations. This, the space in which subdivision occurs is with

respect to v3 and v6.

The proposed algorithm would proceed as follows:

6

1. Form a priori a 2-dimensional mesh in (v3, v6) space, that is subdivide both the

interval [0, 1], v3 ∈ [0, 1], into M subintervals Ik, 1 ≤ k ≤ M , and subdivide the

interval [0, 1], v6 ∈ [0, 1] into N subintervals Jℓ, 1 ≤ ℓ ≤ N ..

2. For a linear relaxation for each of the MN subinterval pairs v3 ∈ Ik, v6 ∈ Jℓ, after

narrowing the values of the other variables as much as possible with constraint

propagation.

3. We see that node 10 (i.e. v10) depends directly on the independent variable x2, and

its interval will not be narrowed by substituting the Ik and Jℓ into the expressions

containing v3 and v6. However, since the operation corresponding to node 10 is

linear, an accurate linear relaxation can be obtained without subdivision of x2

(provided different relaxations are solved for each of the intervals Ik and Jℓ).

4. Solve each of the linear relaxations, obtaining a posteriori bounds on the global

optimum and nearness to feasibility of the original problem using interval analysis,

as well as a set of optimizing points corresponding to the ǫ-approximate solutions

so obtained.

We see that, in the case of Example 1, the number of variables to be subdivided is

the same as the original number of variables. However, in general, there may be far

fewer such variables, and even fewer than the number of variables given through the

analysis in [4]. Furthermore, by directly subdividing the range of the top (highest in

the computational graph) non-convex operations, we avoid some of the complication

of the top-level non-convex operations.

Example 2 Minimize

ϕ(x) = (x1 + x2 − 1)2 −
�
x
2
1 + x

2
2 − 1

�2

for x1 ∈ [−1, 1] and x2 ∈ [−1, 1].

This example first appeared in [4] to illustrate the convexity analysis explained

there. Table 2 gives the resulting equivalent expanded NLP, while Figure 2 gives the

corresponding computational graph.

Table 2 Operations and convexity analysis corresponding to Example 2.

♯ Operation Enclosures Constraints Needs
Subdivision?

1 v3 ← x1 + x2 [−2, 2] x1 + x2 − v3 = 0 no
2 v4 ← v3 − 1 [−3, 1] v3 − 1− v4 = 0 no

3 v5 ← v2

4
[0, 9] v2

4
− v5 ≤ 0 no

4 v6 ← x2

1
[0, 1] v2

1
− v6 = 0 yes

5 v7 ← x2

2
[0, 1] v2

2
− v7 = 0 yes

6 v8 ← v6 + v7 [0, 2] v6 + v7 − v8 = 0 no

7 v9 ← v8 − 1 [−1, 1] v8 − 1− v9 = 0 no

8 v10 ← v2

9
[−1, 0] −v2

9
+ v10 ≤ 0 yes

9 v11 ← v5 − v10 [−1, 9] v5 − v10 − v11 ≤ 0 no

7

4

9

8

5

3

11

10

−1

−1

**2

**2

+

+

+
1

6

2

**2

7

**2

T

L

T T

Fig. 2 A computational graph corresponding to Example 2

For Example 2, v6 is first identified as needing subdivision, and the next variable

in the operations table corresponding to a non-convex operation is v7; since v7 is

independent of v6, it is marked as needing subdivision. All variables below v6 and

v7 that either depend on v6 and v7 or in a convex way on variables above v6 and

v7 are marked as not needing subdivision. In this way, v10 is marked as not needing

subdivision. The variables for the a priori mesh will therefore be v6 and v7.

Note that, for Example 2, it is sufficient to only subdivide v10, posing the relaxations

only in terms of v10 and v5; once the solutions for v5 and v10 are found. This reduces

the mesh to a one-dimensional one, and greatly simplifies the corresponding linear

relaxations, but results in more work in the process to subsequently determine the

values of the original variables. Moreover, the level of the nodes to use for subdivision

in the computational graph for a minimal amount of work is probably highly problem-

dependent.

Example 3 Minimize

ϕ(x) = (x1x2 − 1)2

for x1 ∈ [−2, 2] and x2 ∈ [−2, 2].

Table 3 gives the resulting equivalent expanded NLP, while Figure 3 gives the

corresponding computational graph.

Table 3 Operations and convexity analysis corresponding to Example 3.

♯ Operation Enclosures Constraints Needs
Subdivision?

1 v3 ← x1x2 [−4, 4] x1x2 − v3 = 0 yes
2 v4 ← v3 − 1 [−5, 3] v3 − 1− v4 = 0 no

3 v5 ← v2

4
[0, 25] v2

4
− v5 ≤ 0 no

8

4

5

3

−1

**2

*

T

1 2

L

Fig. 3 A computational graph corresponding to Example 3

Here, there is only one node corresponding to a variable, v3 whose interval needs

to be subdivided. Now suppose, for example, we subdivide [−4, 4], v3 ∈ [−4, 4] into 8

subintervals I1 = [−4,−3], I2 = [−3,−2], . . ., I8 = [3, 4], and furthermore approximate

the convex operation v5 ← v2
4 with a sufficient number of tangent lines for each of the

8 linear relaxations to get a good approximate value for the optimum of v5 over each

subinterval. Let v∗3,k be the optimizer over Ik and v∗5,k = ϕ∗

k = ϕ̃(v∗3,k). We then have

the following table.

k v∗3,k ϕ̃(v∗3,k)

1 ≈ −3 ≈ 16

2 ≈ −2 ≈ 9

3 ≈ −1 ≈ 4

4 ≈ 0 ≈ 1

5 ≈ 1 ≈ 0

6 ≈ 2 ≈ 1

7 ≈ 3 ≈ 4

8 ≈ 4 ≈ 9

Thus, ϕ̃(v∗3,k) ≈ 0 would correspond to the global optimum of the original problem,

and v∗3,k ≈ 1 would correspond to the actual unique optimizing point when the original

problem is reparametrized in terms of v3. However, when we attempt to use constraint

propagation to then determine the values of x1 and x2, we have only x1x2 ≈ 1, along

with x1 ∈ [−2, 2] and x2 ∈ [−2, 2]. Nonetheless, this is not a failure of the method, since

the entire portion of the curve x1x2 = 1 within the box ([−2, 2], [−2, 2]) actually is the

solution set for this problem, no more and no less. Such singular solution techniques

sometimes are identified incidentally with this technique. Once such singularities have

been identified, they may be presented in terms of the defining relations, or they may

be followed using techniques in [9]. A complete search branch and bound algorithm,

such as GlobSol [5], designed to find all optimizing points, will work inefficiently, since

it must cover the entire solution set with small boxes, and since the Hessian, Kuhn–

Tucker, or Fritz John matrix is singular at points on such solution sets3.

3 In fact, the current version of GlobSol, running on a 2.4GHz machine and compiled with
the Gnu compiler suite, fails to complete after processing 50,000 boxes, using 560 CPU seconds,
but a graph of the uncompleted boxes reveals a close approximation of the intersection of the
two branches of xy = 1 with the box ([−2, 2], [−2, 2]).

9

3 Some Definitions

It will help to formally clarify the concepts illustrated in the preceding examples.

Definition 1 A non-convex variable is an intermediate variable in the computational

graph of the function that has been identified to be the result of a non-convex operation,

according to the analysis in [4, §5]4. Variables that are not non-convex are called convex

variables.

In the tables in the preceding section, the non-convex variables are those marked as

“needs subdivision.” For instance, in Table 1, variables 3 and 6, corresponding to rows

1 and 4, are non-convex variables. Non-convex variables correspond to operations and

constraint senses (≥, ≤ or =) for which tight relaxations can be obtained only by using

different relaxations on multiple sub-intervals.

Definition 2 A complete set of non-convex variables is a set of non-convex variables

such that every backwards (i.e. upwards) trace from leaves (corresponding to the objec-

tive and constraint values) in the computational graph either only encounters convex

variables or eventually encounters an element of the set.

Thus, if we subdivide the elements of a complete set, forward substitution in the

computational graph (using interval computation) will result in narrow bounds on

every other non-convex variable.

Definition 3 A minimal complete set of non-convex variables is a complete set such

that no set formed by removing any element is also a complete set.

We desire complete sets to be minimal to keep the dimension of the space in which we

must form the mesh small. The idea is that we will subdivide intervals corresponding

to the complete set.

The examples and discussion in the preceding section illustrate advantages and dis-

advantages of choosing a complete set from elements high or low in the computational

graph. The following two definitions single out sets that are high in the computational

graph and low in the computational graph.

Definition 4 A dependent minimal complete set is a minimal complete set such that

every forward (i.e. downward) trace towards leaves (corresponding to the objective and

constraint values) in the computational graph encounters only elements of the set or

convex variables.

Dependent minimal complete sets lead to particularly simple linear programs. In

fact, the problem becomes convex when the elements of the dependent minimal com-

plete set are viewed as independent variables, and variables preceding the elements of

the minimal complete set are ignored. For example, {v6, v7} is a minimal complete set

in Example 2, whereas {v10} is a dependent minimal complete set for that problem. If

we reparametrize the problem as

min v10 + v5,

4 This analysis is done in the GlobSol routine subspace_analysis/identify_subproblems.

f90.

10

its linear relaxation is much simpler (and, indeed, is equal to the problem itself, in this

case). One procedure is to subdivide v10 only, then solve linear relaxations associated

with each of the subintervals of v10 to find a lower bound on the global optimum. After

the approximate global optimum is found, constraint propagation or branch and bound

can be used to find the solution in terms of the original variables. Note that bounds

on the global optimum can possibly5 be obtained inexpensively in this manner, before

bounds on optimal solutions in terms of the original variables are obtained.

Proposition 1 The dependent minimal complete set is unique. Furthermore, if the

dependent minimal complete set is empty, the problem is convex.

Proof If we start any backward trace in the computational graph, the first variable

resulting from a non-convex operation must be in the set. Since the first such variable

along a particular trace is well defined and since each separate backwards trace is well

defined, the set of all first such variables is unique. Furthermore, by the definitions,

this set is a complete set, and must be minimal. This proves that the set so constructed

is the unique dependent minimal complete set.

If the dependent minimal complete set is empty, that means that each leaf, that is,

the objective and each constraint, are computed only with convex operations. There-

fore, the entire optimization problem is convex. ⊓⊔

In some contexts, it may be important to obtain optimal solutions in terms of the

original parameters, but the problem of solving for the original parameters from the

solution in terms of a dependent minimal complete set may be difficult. In such cases,

it may be advantageous to choose for subdivision non-convex variables higher in the

computational graph. The following defines a minimal complete set that is as high as

possible without including the original independent variables.

Definition 5 An independent minimal complete set of non-convex variables is a min-

imal complete set of non-convex variables such that no non-convex variable can be

encountered by tracing backward in the computational graph from elements of the set.

In fact, an independent minimal complete set may not exist. To illustrate, consider the

following variant of Example 3

Example 4 (non-existence of an independent minimal complete set)

min(x1x2x3x4x5 − 1)2.

The computational graph for Example 4 is in Figure 4. This example does not have an

independent minimal complete set, while the only minimal complete set is a dependent

minimal complete set. In fact, for this illustrative example, the solution to the original

problem cannot be given more precisely than through the relation

x1x2x3x4x5 = 1,

a relation that is found by solving the problem constructed in terms of the dependent

minimal complete set, namely, “min(x9 − 1)2.”

Finally, we give formal notation for the tables of operations.

5 depending on the cardinality of the dependent minimal complete set

11

2 3 41 5

6

7

8

9

T

T

T

T

*

*

*

*

10

11L

−1

**2

Fig. 4 A computational graph corresponding to Example 4

Definition 6 A non-convexity code list corresponding to an instance of an optimiza-

tion problem of the form (1) is an array of row numbers ℓ, 1 ≤ ℓ ≤ Nops (where Nops

is the total number of operations), corresponding result variable index pℓ, argument

indices qℓ and rℓ, operation code ωℓ, the binary variable νℓ, where νℓ is “true” if and

only if pℓ is a non-convex variable, and a set F of indices ℓ corresponding to leaves (i.e.

corresponding to objective and constraints) of the computational graph.

The variable indices in a non-convexity code list that do not appear as operands qℓ or

rℓ correspond to leaves in the corresponding computational graph, and also correspond

to the objective and constraints.

We use the terms “table” and “code list,” while closely related terms in the litera-

ture are “tape” and “directed acyclic graph,” or “DAG”. Also, our tables contain only

unary and binary operations6. Much work has been done concerning relaxations based

on operations with larger numbers of arguments (such as triple products w = xyz);

the methods introduced here can generalize to such schemes.

Our final definition will help us to make precise what we mean when we say we

have rigorously verified solutions.

Definition 7 An ǫ-approximate solution to (1) is a point x̌ such that:

1. |ci(x̌)| ≤ ǫ, 1 ≤ i ≤ m1,

2. gi(x̌) ≤ ǫ, 1 ≤ i ≤ m2,

3. ϕ(x̌) ≤ ϕ, where ϕ is an upper bound on ϕ from among all points satisfying 1 and 2,

and ϕ− ϕ∗ ≤ ǫ, where ϕ∗ is the global optimum of ϕ.

Bounds on ǫ-approximate solutions are easier to mathematically rigorously verify

than bounds on solutions that exactly satisfy the original constraints, particularly

equality constraints or active inequality constraints7.

6 consistent with the current implementation in GlobSol
7 GlobSol works with exact solutions, rather than ǫ-approximate solutions.

12

4 Algorithms

The following algorithm finds a complete set high in the computational graph that is

a candidate for an independent minimal complete set.

Algorithm 1 (Finding a complete set high in the computational graph)

Input: The non-convexity code list corresponding to the problem.

Output: A list I of indices corresponding a complete set high in the computational

graph that is possibly an independent minimal complete set.

1. (Initialization)

(a) Set µℓ,i ← “false”, ℓ = 1, 2, 1 ≤ i ≤ Nops. (µ will be used to identify those

non-convex variables that do not need subdivision because all variables above

them are subject to subdivision.)

(b) I ← ∅.
(c) S ← ∅ and S̃ ← ∅. (S and S̃ are temporary lists of nodes used to determine

nodes ℓ whose variable ranges will be narrow when variables whose node indices

are already stored in I are narrow.)

2. For ℓ = 1 to Nops

If
�
νℓ and not

�
µ1,ℓ and (µ2,ℓ or ωℓ is univariate)

�	
Then

(a) Append ℓ to I.
(b) For j = ℓ + 1 to Nops

i. If qj = pℓ Then µ1,j ← “true”.

ii. If rj = pℓ or ωj is univariate Then µ2,j ← “true”.

iii. If both µ1,j and (µ2,j or ωj is univariate) Then

A. Insert j into S.
B. Do While (S 6= ∅)
(1) For k ∈ S

For i = k + 1 to Nops.

(α) If qi = pk Then µ1,i ← “true”.

(β) If ri = pk or ωi is univariate Then µ2,i ← “true”.

(γ) If both µ1,i and µ2,i Then Insert i into S̃.
End For

End For

(2) S ← S̃.
(3) S̃ ← ∅.

End Do

End For

End If

End For

End Algorithm 1.

One can think of Algorithm 1 as identifying a reduced problem associated with the

portion of the computational graph below the identified independent minimal complete

set. The reduced problem corresponding to Example 2 is

Example 5
minimize v11(v6, v7)

(v6, v7) ∈ (Ik, Jℓ, [0, 9]), ∪Ik = [0, 2], ∪Jℓ = [−1, 1].
(3)

13

Note that v11, the objective, also depends on variable 5, not descended only from

variables 6 and 7. However, necessarily, variables such as v5 are convex and must be

descended from variables that are descended only from convex variables and variables

in the complete set identified by the algorithm.

The following algorithm finds the dependent minimal complete set, that is, a min-

imal complete set low in the computational graph.

Algorithm 2 (Finding the dependent minimal complete set)

Input: The non-convexity code list corresponding to the problem.

Output: A list D of indices corresponding to the dependent minimal complete set.

1. Mark every operation as not yet fathomed: fathomedi ← false, i = 1 to the number

of operations in the code list.

2. For ℓ = 1 to the number of leaves in the computational graph.

(a) Push the index of leaf ℓ onto the stack R of indices to be analyzed.

(b) (This is a complete depth-first traversal of the tree that is the portion of the

computational graph above leaf ℓ, with edges of reverse sense to those of the

original computational graph.)

Do While the stack R is non-empty.

i. Pop an index ρ from R.

ii. If ρ does not correspond to an independent variable or a constant8 and

fathomedρ = false

Then

If ρ is non-convex Then

A. fathomedρ ← true.

B. Store the variable index ρ in D.

Else

Push the variable index of the variable (for univariate operations) of

both variables (for binary operations) that are arguments to the oper-

ation leading to the ρ variable onto R.

End If(operation is convex or not)

End If(not independent or constant and not fathomed)

End Do (traversal of tree corresponding to leaf ℓ)

End For (loop on all leaves ℓ)

End Algorithm 2.

Unfortunately, it can occur that there are more variables in an identified depen-

dent minimal complete set than in the set of non-convex variables identified with the

techniques of [4], or even more than the number of independent variables. This can

happen if there are many constraints with non-convex terms that aren’t related, as in

the following.

Example 6

minimize x2
1 + x2

2

subject to − 2x3
1 + 2− x2 ≤ 0,

− x2
1 + 1− x2 ≤ 0,

√
x1 − x2 ≤ 0,

(x1, x2) ∈ ([0, 1], [0, 1]).

(4)

14

3
+

5

12

−

L

1314

15

6

7

8

9

10

−

−

**3

*2

T

T

T

L

L

L

1

11

−

+1

−

+2

4

2**2 **2

**0.5

Fig. 5 A computational graph corresponding to Example 6

The computational graph for Example 6 is in Figure 5. We see that the function in

each of the three inequality constraints is non-convex, and there necessarily are three

non-convex variables in the only minimal complete set. However, the analysis from [4]

shows that only one independent variable, x1, need be subdivided to make all non-

convex variables small. In such instances, we might favor the independent variables or

the subset of independent variables some of whose progeny are non-convex.

In any case, problems reformulated in terms of a dependent minimal complete set

are necessarily convex over each subregion. Therefore, any convex solver can be used

to find an approximate solution, and once the approximate solution is found, it can be

verified using local methods. The approximate solutions from the separate subregions

can then be combined to obtain the overall global solution.

Once a set of variables has been selected and the problem has possibly been refor-

mulated in terms of the identified set, the following algorithm will find bounds on the

optimum and ǫ-approximate solutions.

Algorithm 3 (Creating a mesh, computing an ǫ, and finding ǫ-approximate solutions)

Input: The code list and search box x for the problem, as well as the number of

subdivisions M for each non-convex variable.

Output: A number ǫ for ǫ-approximate solutions, as well as a list E of boxes guaranteed

to contain ǫ-approximate solutions (but not necessarily all such solutions).

1. (Do initial preprocessing)

(a) Compute interval bounds v on all of the intermediate variables in the code list

by evaluating them over the box x.

8 that is, if the corresponding operation is not setting the variable to a constant

15

(b) Using Algorithm 1, Algorithm 2, the scheme in [4], a combination of these, or

related alternative scheme compute a set V to be used as the new independent

variables in the re-parametrized problem.

(c) Based on the cardinality Nv of the set V from step 1b, determine whether or

not it is practical to proceed with this algorithm. (Otherwise stop here.)

(d) If Nv = 0, mark the entire problem as convex, and set M to 1.

(e) Subdivide each interval vi, i ∈ V into M subintervals, in preparation for gen-

erating MN
v subproblems to be solved approximately.

2. (Bound solutions to the subproblem for each individual box)

For i = 1 to MNv

(a) Create the i-th box vi in the space defined by V, v, and the number of subdivi-

sions.

(b) Approximately solve the created subproblem9.

(c) Compute verified lower and upper bounds on the global optimum over the sub-

box, or else prove that the box is infeasible with respect to the original con-

straints10.

(d) If the subproblem corresponding to vi is feasible

Then

i. Mark feasibility, and store lower and upper bounds.

ii. Compute (e.g. with interval arithmetic) bounds on the ranges of the objec-

tive and constraints at the approximate solution, to compute and store an

ǫi corresponding to the computed approximate solution.

iii. Store the approximate solution.

End If

End For

3. (Postprocessing)

(a) Compute a smallest upper bound on the global optimum to the ǫ-approximate

problem by taking the minimum of the upper bounds for each of the subproblems

marked as feasible.

(b) Based on the results of step 3a, store in E those approximately feasible boxes

whose objective lower bounds are sufficiently small.

(c) Compute an ǫ for the entire problem by taking the maximum of the ǫi over each

of the MN
v sub-problems corresponding to E.

End Algorithm 3.

Many important implementation details are left out of our description of Algo-

rithm 3. For instance, constraint propagation may be used at many points in this algo-

rithm. Constraint propagation may cause additional unpredictability in the amount of

time each individual subproblem will take, but could be important if sets other than

dependent minimal complete sets are used, or if expressions in terms of the original

variables are used during the process11.

Important aspects of Algorithm 3 are:

9 e.g. by forming linear relaxations, or, if starting with a dependent minimal complete set,
by using a solver for convex problems
10 If using linear relaxations, this may be done with the simple and inexpensive technique in

[6]. If using a solver for convex problems, this can possibly be done with an astutely imple-
mented interval Newton method applied over a small box constructed about the approximate
solution.
11 not recommended, but easier to implement

16

1. In contrast to a branch and bound algorithm, the total number MNv of nodes to

be traversed is determined a priori, while this number of nodes determines the ǫ

in the ǫ-approximations to the solution. This ǫ is known only after completion of

the algorithm. Thus, a much better estimate for the total computational effort is

known beforehand, in exchange for an approximate solution whose accuracy is not

pre-determined.

2. Each iteration of the main loop (Step 2) requires much more nearly the same

amount of computational effort (in comparison with the computational efforts of

two branches in a branch and bound process), and each such iteration is inde-

pendent of the other iterations. Thus, load balancing should not be needed, and

mapping the algorithm to systems with a large number of processors should be

easier.

3. The algorithm produces mathematically rigorous lower and upper bounds to the

optimum of original problem, but possibly doesn’t output enclosures to all opti-

mizing points.

4. The algorithm is limited by the dimension Nv, the number of subdivisions M , and

the total number of processors available. However, it is known beforehand whether

or not a run of the algorithm will be practical, and the result of a run always gives

some information.

5 Numerical Results

To get a preliminary idea of the usefulness of the analysis, we tried the analysis on the

175 problems from the COCONUT Lib-1 test set [10] with the smallest code lists12. In

considering the cardinality of the selected set of variables, we compared Algorithm 1

and Algorithm 2 to the selection process from [4], where the selection process from [4]

gives a subset of the set of independent variables such that, when those variable ranges

are sufficiently small, the problem is approximately convex. Table 4 summarizes the

results. In Table 4, the columns and rows are as follows:

Table 4 Summary of four parametrization schemes on 175 standard test problems.

Scheme # better than original # best # ≤ 4

Original indepen-
dent variables

— — 41

Independent com-
plete set

70 0 46

Dependent minimal
complete set

135 97 124

Scheme from [4] 131 26 83

“# better than original” is the number of problems for which the number of identified

variables was smaller than the original number of independent variables.

12 We limited these because of a temporary, surmountable efficiency issue in programming
removal of redundant operations in GlobSol; our selected code lists are those that consume
less than roughly 2MB of disk space.

17

“# best” is the number of problems for which the number of identified variables is

strictly less than the number of identified variables for any of the other three

schemes.

“# ≤ 4” is the number of problems for which the scheme produced a set with 4 or less

variables13.

“Independent complete set” refers to the scheme in Algorithm 1.

“Dependent minimal complete set” refers to the scheme in Algorithm 2.

From this summary, we conclude that no one scheme shows a definite superiority,

except that the independent complete set defined by Algorithm 1 does not generally

give a smaller number of variables than the other schemes. A practical algorithm might

combine all of these schemes and other schemes based on the general techniques in this

work.

We also tried the solution-by-discretization algorithm, Algorithm 3, on the 84 of

the 175 analyzed problems for which either the scheme from [4] or Algorithm 1 gave

a dimension of 4 or less. In these, the number of independent variables in the original

problems ranges from 1 to 108. We used 20 equally spaced subdivisions in each variable,

although 10 problems were identified as convex, and therefore required solution of only

one relaxation. In our algorithm, we chose for parametrization the variable set from the

original set of independent variables, the scheme from [4], and the dependent minimal

complete set which gave the smallest number of variables. The purpose of this initial

check was to get an idea of the practicality of the overall procedure, and the implemen-

tation was somewhat crude. In particular, absent up-to-date licenses and installation,

we used the outdated SLATEC routine DSPLP14. We also used the full linear program

generated by the GlobSol module LP operations, without trying to formulate the sim-

pler problems such as those defined by the dependent minimal complete set: We input

a particular sub-box into the values in the code list and used constraint propagation in

various places to narrow the other values. This easy implementation should give good

bounds on the objective and constraints, especially when the dependent minimal set

is used, but may not give good values on the independent variables or make the corre-

sponding linear relaxations optimally easy to solve efficiently. Nonetheless, we should

get a preliminary idea of how practical or applicable the scheme is.

We ran our problem set within the GlobSol environment on a core-2-duo laptop

with clock speed 2.5GHz and 4GB of memory, running Ubuntu 10.10 and the latest

supported version of the Gnu compiler suite. Of the 84 problems, DSPLP failed to

compute a solution, detect infeasibility, or detect unboundedness in 26 problems15.

However, the technique was shown to be practical, with only one problem taking 805

seconds, with a median of 0.312 seconds, and with an average of 46.8 seconds. The

number of epsilon-approximate solution boxes returned averaged approximately 149,

with a median of 1, and with only one problem returning 8000 boxes16. The bound on

ǫ in the ǫ-approximate solutions was small in many cases, although this aspect of our

algorithm needs to be refined.

13 This is a measure of whether or not the scheme leads to a parametrization for which
Algorithm 3 is practical.
14 This routine is apparently not robust with respect to ill-conditioning in the constraint ma-

trix, something that happens when convex constraints are approximated closely with numerous
tangent lines.
15 This will undoubtedly be improved with a better implementation and a better LP solver.
16 Note that, for n = 4, 204 = 160, 000 boxes are considered.

18

The GlobSol environment, along with programs for replicating these results, is

available upon request from the first author, by access to a version control system.

6 Limitations

The examples and computational tests have illustrated that there are problems for

which each of the particular schemes presented is best suited, and problems for which

any particular scheme will fail. Furthermore, the discretization procedure embodied in

Algorithm 3 is applicable only when the number of variables identified for subdivision is

sufficiently small, the number of subdivisions required to approximate a convex problem

well is small, or the number of available processors is sufficiently large. However, this

can be determined relatively easily before the main discretization algorithm is actually

tried.

Situations such as in Example 4 illustrate that the set of optimizers for the original

problem may be a continuum, and hence not easily enclosed with branch and bound

algorithms. In such instances, techniques such as those in [9] can be used in some

cases to trace solutions. Otherwise, such dependencies can sometimes be identified

with the techniques we have explained, with various possibilities for further analysis

and presentation.

It must be pointed out that, although rigorous bounds on the global optimum are

obtained with the techniques we have explained, use of relaxations, even if implemented

with rigorous bounding of roundoff error, does not necessarily lead to bounding of all

optimizers.

In cases where an adequately small dimension cannot be found with the techniques

in this paper and a general branch and bound algorithm does not give results in a

predictable amount of time, the limited memory algorithm in [7, Chapter 4] or [8] has

a good chance of giving useful bounds on the global optimum in a more predictable

amount of time and memory than other general branch and bound algorithms.

7 Summary and Future Work

We have presented an alternative way of viewing solution of global optimization prob-

lems, in terms of discretization of selected variables, rather than in as an adaptive

search. This leads to a simpler algorithm that is more easily parallelizable. An under-

lying idea in this scheme is redefining the problem in terms of a set of variables which,

if of sufficiently small widths, guarantee that the problem is approximately convex. A

methodology for determining a particular such set of variables, one that has a minimal

cardinality over sets of nodes high in the computational graph, has been presented.

Choosing the set high in the computational graph makes the constraint propagation

to compute optimal solutions in terms of the original variables easier. However, more

exploration into different choices of this set could yield better results for particular

problems. For example, one might choose the set as low in the computational graph as

possible: The resulting subproblems would then be convex, but the constraint propa-

gation to determine optimal solutions in terms of the original variables would be more

difficult. Alternatively, one might choose the set with nodes at varying levels in the

computational graph, to try to minimize its cardinality; this may reduce the dimen-

sion of the space to be subdivided. The overall structure of the solution algorithm is

19

such that the total amount of work is more predictable than in traditional branch and

bound algorithms, and issues of load balancing in a multiprocessing environment are

less onerous.

Choosing parameters in the middle of the computational graph amounts to splitting

solution of a particular subproblem into two parts: a part that is approximately convex

and a part that is amenable to constraint propagation or that reveals singularity in the

problem.

The implementation can be kept simple to facilitate parallelization. One use of

this simple technique could be to generate starting boxes for a more sophisticated

branch and bound algorithm. However, although the global minimum can be rigorously

bounded with these techniques, the ǫ-approximate solution-containing boxes returned

cannot be guaranteed to contain all possible optimizing points.

Acknowledgements

Above all, the first author wishes to thank Frédéric Messine at the Ecole Nationale

Supérieure d’Electrotechnique, d’Electronique, d’Informatique, d’Hydraulique et des

Télécommunications for hospitality during his visit in December 2010. It was also a

pleasure to interact face-to-face with Jordan Ninin, Pierre Hansen, Leo Liberti, Sonia

Cafieri et al. Although the primary purpose of his visit was to serve on Jordan Ninin’s

Ph.D. jury, the entire week, full of talks, meetings, and discussions, was inspiring and

intellectually stimulating.

References

1. T. G. W. Epperly and E. N. Pistikopoulos. A reduced space branch and bound algorithm
for global optimization. J. Global Optim., 11(3):287–311, October 1997.

2. R. Baker Kearfott. Erratum: Validated linear relaxations and preprocessing: Some exper-
iments. SIAM J. Optim., 2011.

3. R. Baker Kearfott. Interval computations, rigour and non-rigour in deterministic contin-
uous global optimization. Optim. Methods Softw., 2011. (to appear).

4. R. Baker Kearfott and Siriporn Hongthong. Validated linear relaxations and preprocessing:
Some experiments. SIAM J. Optim., 16(2):418–433, 2005.

5. Ralph Baker Kearfott. GlobSol user guide. Optimization Methods and Software, 24(4-
5):687–708, August 2009.

6. Arnold Neumaier and Oleg Shcherbina. Safe bounds in linear and mixed-integer program-
ming. Math. Prog., 99(2):283–296, March 2004.

7. Jordan Ninin. Optimisation Globale Basée sur l’Analyse d’Intervalles: Relaxations Affines

et Techniques d’Accélération. Ph.D. dissertation, Université de Toulouse, Toulouse, France,
December 2010.

8. Jordan Ninin and Frédéric Messine. A metaheuristic methodology based on the limitation
of the memory of interval branch and bound algorithms. J. Glob. Optim., February 2010.

9. Julie Roy. Singularities in Deterministic Global Optimization. Ph.D. dissertation, De-
partment of Mathematics, University of Louisiana, Lafayette, LA, USA, May 2010.

10. O. Shcherbina, A. Neumaier, D. Sam-Haroud, X.-H. Vu, and T.-V. Nguyen. Benchmark-
ing global optimization and constraint satisfaction codes. In C. Bliek, C. Jermann, and
A. Neumaier, editors, COCOS, volume 2861 of Lecture Notes in Computer Science, pages
211–222. Springer-Verlag, 2003.

