
January 18, 2010 13:46 Optimization Methods and Software 2009-verified-vs-non-verified

Optimization Methods and Software
Vol. 00, No. 00, Month 200x, 1–22

REVIEW

Interval Computations, Rigor and Non-Rigor in Deterministic

Continuous Global Optimization

Ralph Baker Kearfott, Department of Mathematics, University of Louisiana, U.L. Box

4-1010, Lafayette, Louisiana, 70504-1010, USA (rbk@louisiana.edu).
(Received 00 Month 200x; in final form 00 Month 200x)

Deterministic branch and bound methods for the solution of general nonlinear programs
have become increasingly popular during the last decade or two, with increasing computer
speed, algorithmic improvements, and multiprocessors. There are presently several commercial
packages. Although such packages are based on exhaustive search, not all of them rigorously
take account of roundoff error, singularities, and other possibilities. Popular non-rigorous
packages have much in common with mathematically rigorous packages, including overall
structure and basic techniques. Nonetheless, it is not trivial to make non-rigorous packages
rigorous. We

(1) Define different kinds of answers that global optimization software can claim to provide.
(2) Explain where rigor might be needed and where it is not practical.
(3) Briefly review salient techniques common to deterministic branch and bound methods.
(4) Illustrate pitfalls in non-rigorous branch and bound methods.
(5) Outline some of the techniques to make non-rigorous software rigorous, and provide guidance for

research into and implementation of these techniques.
(6) Provide some theoretical backing, with examples, for convergence of common relaxation tech-

niques.

Keywords: deterministic global optimization, mathematical rigor, relaxations, branch and
bound, interval computations

1. Introduction

Global optimization as a field has advanced considerably during the past several
decades, and, in particular, during the past ten years. This is evidenced by an
exponential increase in the number of publications, commercial success of general
software packages, and, especially during the past ten years, success at resolving
practical problems that other methods could not. The developments have been both
theoretical (analysis of optimality conditions, classes of problems, and complexity
analysis) and practical (algorithmic development, solution of important problems).

From the 1950’s to the 1970’s, due to the speed of computing equipment and need
for better understanding of algorithms, global optimization was largely impractical.
When an optimum value, subject to constraints or not, was required, globality was
out of reach except in certain cases, such as when convexity could be proven. During
this era, efficient algorithms for finding a local optimum (such as are described in
[7] or [16]) were developed.

Serious attempts to find global, as opposed to local, optimizers and optima began
in the 1970’s. Important benchmarks in this endeavor are [8] and [9] However, until
relatively recently, the most common techniques in global optimization have been
of a statistical nature, such as the tunneling method [35], or, more commonly
genetic algorithms such as described in [2, 17], or simulated annealing introduced
in [31, 32] and as described in [15, 46]. Such algorithms are not guaranteed to find
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global optima, but, under certain assumptions, will do so with a high probability.
Although there is no guarantee that the answer will be near an actual optimizer
or optimum, such statistically-based algorithms can be tuned to complete in a
reasonable amount of time, and will supply parameter values corresponding to a
feasible point with a relatively low objective value.

In general software for global optimization, alternatives to statistical techniques
that are guaranteed to complete with a good approximation to a global optimum
(often termed deterministic global optimization methods) have been impractical
for all but the simplest problems until the past decade. Such alternatives involve
very careful relaxation of the problem, a systematic search of the domain (some-
times termed complete search), or a combination of the two. However, during the
past decade, software based on these techniques has become more common. A com-
parison of complete search techniques for global optimization appears in [40]. (A
reference that reviews techniques for relaxations is [14]).

Much software based on complete search (branch and bound) algorithms is the-
oretically guaranteed to find the global optimum and, depending on the algorithm,
all optimizing points, in the absence of roundoff error and error in certain approx-
imations. Nonetheless, there are cases in practice where such algorithms complete
with an answer that is not near a global optimizing point, or in which such software
completes without finding all optimizing points or with any indication that this is
so. However, it is possible to design branch and bound software in which all sources
of error are taken into account, so that, when such software delivers bounds on the
optimum and bounds on the global optimizers, that constitutes a mathematical
proof that the optimum and all such optimizers lie within those bounds. Unfor-
tunately, such software, with exceptions, has not been competitive with similar
branch and bound software that does not attempt to be mathematically rigorous.

In summary, we have the following overall hierarchy of algorithms and software
for global optimizations. We list these in increasing order of difficulty and in de-
creasing scope of application.

(1) Procedures to find an approximate local optimizing point
(2) Procedures that use statistical methods or heuristics to find points that are

possibly globally optimal.
(3) Procedures that use structure, search, or both, to systematically find global

optima, assuming converging iterations have converged and the computer
arithmetic is exact.

(4) Procedures that provide mathematically rigorous bounds on the global op-
timum and optimizing points.

In [40] and elsewhere, the salient non-rigorous global optimization software (and
BARON [45] in particular) apparently could solve more problems more efficiently
than software designed to be mathematically rigorous (and, in particular, our
GlobSol [26, 30] software). Even so, the basic structure and most, if not all, of
the underlying techniques in the non-rigorous branch and bound methods are sim-
ilar or identical to those used in mathematically rigorous branch and bound meth-
ods. This review analyzes these techniques and contrasts rigorous and non-rigorous
branch and bound methods for constrained global optimization problems. We re-
view how these techniques can be made rigorous, and present guidelines for future
development and study.

In §2, we introduce notation and discuss different practical situations in which
different kinds of answers (e.g. local or global) are admissible. In §3, we outline tech-
niques in branch and bound methods, contrasting these techniques when used in
non-rigorous versus rigorous branch and bound methods. In §4, we present consid-
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erations in implementing these techniques in a rigorous way. In §5, we do a general
analysis of convergence of solutions of relaxations to solutions of the original prob-
lem, and we give examples of how to apply this theory. We draw conclusions and
outline next steps in §6.

2. Types of Answers: What is practical?

The performance of an algorithm depends on the type of problem it is trying to
solve, and different optimization software solves, essentially, different kinds of prob-
lems. Furthermore, if software claims to be mathematically rigorous, the problem
for which it claims to give mathematically rigorous bounds should be clearly de-
fined. Finally, the minimum requirements of a solution differ from application to
application. The purpose of this section is to clarify these concepts.

We begin with our notation for the most general problem instance.

2.1. The General Global Optimization Problem

All problems we will consider will be of the form

minimize ϕ(x)

subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . ,m2,

where
ϕ : Dϕ ⊆ R

n → R, ci : Dci
⊆ R

n → R,
and gi : Dgi

⊆ R
n → R.

(1)

Often, bounds on the search region are given by

x = ([x1, x1], . . . [xn, xn])T ;

the region defined by such bounds x is called a box. Depending on the algorithm, the
bounds x can be considered either as hard bound constraints (that is, as inequality
constraints gi of a special form), or as artificially imposed limits to tell the branch
and bound algorithm where to look.

2.2. Differing Requirements

The following scenarios, although somewhat simplified here, occur in practice.

(1) ϕ is the cost of running a (nominally) $50,000,000 per month plant.
In this scenario, the plant manager would like the smallest possible op-

erating cost, but would be happy with a 5% lower cost than before.
(2) ϕ represents the potential energy of a particular conformation of a molecule.

In this scenario, the globally lowest value for ϕ gives the most information,
but local minima give some information, and finding the global minimum
may not be practical.

(3) A mathematician has reduced a proof to showing that ϕ ≥ 1 everywhere
In this scenario, the global minimum must not only be found, but also

must be rigorously proven to be so. However, only a mathematically rigor-
ous lower bound on the global optimum is needed, whereas bounds on all
global optimizers are not.
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(4) A portfolio manager has estimated the expected rate of return and a risk
measure for various stocks, and has a particular amount to invest among
the stocks. The portfolio manager would like to allocate the investment to
minimize the total risk, subject to a lower bound on the total rate of return.

If the global optimizer is not unique, the portfolio manager would like
to know that, since he may have other criteria for choosing stocks that
weren’t included in the original model. In particular, a useful description
of any parametrized set of solutions would be helpful.

In scenario (1), a few iterations of a steepest descent method, or of a derivative-
free method such as described in [7] or [16] will suffice. This is fortunate, since
evaluation of the objective in such a problem might be the result of a lengthy
“black box” simulation, output from a set of computer programs that solve large
systems of partial differential equations. However, additional developments may
lead to the ability to compute parameters (i.e. approximate optimizers) that are
more nearly globally optimal, leading to even more cost savings.

In scenario (2), the set of global optimizers (rather than just the optimum value)
is of primary interest. Furthermore, the entire set (not just one or two optimizers)
is of interest, not only just one or two points, and local optimizers whose objective
value is small (but perhaps not globally optimal) are of interest1. It would be nice
to have a mathematical proof that all such local minimizers have been found, but
this, so far, has been beyond the capabilities of branch and bound and relaxations,
with current models. See perhaps [13] for overviews of modeling and optimization
of this problem.

Scenario (4), in which not only all global minimizers are required, but in which
the problem may exhibit singularities (e.g. non-isolated sets of global minimizers) is
in principle the most difficult. This is particularly so if mathematical guarantees are
required. This type of problem benefits greatly from special techniques to handle
the singularities, yet the subset of this set of problems that can be treated with
mathematical rigor is limited. In contrast, scenario (3) is significantly easier in
practice for mathematically rigorous methods2. A type of problem intermediate in
difficulty between (3) and (4) is one in which all global minimizers are desired,
but in which there are no singularities, that is, in which the global minimizers are
isolated and associated derivative matrices are non-singular.

Of course, the actual difficulty of a problem arising from a particular application
depends on the structure of the problem, as much as on the kind of answer that
is needed. Also, applications of global optimization are wide-ranging, and it is not
possible to list here the numerous variations of these scenarios and algorithms. Our
intent is to delineate some principles determining the practicality of our hierarchy
of algorithms.

2.3. Epsilon-approximate Solutions

Another type of answer that is sometimes easier than other types of answers for
automatically verified software is a guarantees that a point in the parameter space
corresponds to an approximate solution. For example, solution to a decision prob-
lem derived from a relaxation of the original problem may be sufficient, where a

1In fact, certain diseases, such as mad cow disease, are linked to molecular conformations corresponding
to potential energy minimizers other than the usual one. Furthermore, in actual populations of molecules,
various conformations corresponding to various local minima have been observed.
2This is borne out in experiments. One reason is that the search may stop once tight bounds on the
optimum are known, whereas the search must subdivide the entire region if bounds on all optimizers are
needed.
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relaxation is defined as follows.

Definition 2.1 A relaxation of an optimization problem of the form (1) is an
optimization problem whose feasible set contains the feasible set of the original
problem and whose objective function is less than or equal to the objective function
of the original problem.

Thus, the global optimum of a relaxation is no greater than the global optimum of
the original problem.

Relaxations are typically obtained by increasing the size of the feasible set e.g. by
replacing the gi by smaller ones or by replacing the objective function by a smaller
one. If we replace the constraints to make the feasible region larger, we speak of
relaxing the constraints.

Consider the following decision problem obtained by relaxing the constraints of
our general problem (1), and seeking any point satisfying the relaxed constraints
and whose objective is within a tolerance of the optimum of the original problem.

Find points x such that
ϕ(x)− ϕ < ǫϕ,

where ϕ is the solution to (1), and such
that

|ci(x)| ≤ ǫc, i = 1, . . . ,m1, and

gi(x) ≤ ǫg, i = 1, . . . ,m2.

(2)

Finding a set of bounds x such that every point within the bounds is proven to
satisfy (2) is usually easier than finding a set of bounds x̂ such that a point in x̂

that satisfies (1) is proven to exist.
A complementary problem, important for eliminating regions in branch and

bound algorithms, is

Given a box x, show that at least one of
the following is true for all x ∈ x.

• ϕ(x) − ϕ > ǫϕ, where ϕ is the solution
to (2), or

• |ci(x)| > ǫc for at least one i between 1
and m1, or

• gi(x) > ǫg for at least one i between 1
and m2.

(3)

Generally, in a branch and bound algorithm, boxes satisfying (2) can be con-
structed. Adjacent boxes can then be eliminated using (3), where ǫϕ, ǫc, and ǫg

are chosen significantly smaller than ǫϕ, ǫc, and ǫg, respectively. Such algorithms
can be significantly more practical than algorithms that complete with a list of
boxes such that all solutions x to (1) are proven to be in one of the boxes. This is
particularly true for singular problems; for examples, see [43] and [42].

2.4. Impact on Current Software

The type of solution provided by current software packages is not necessarily well
documented. In [43], we present a simple example that contains a parametrized line
of global optimizers, but for which different packages give different approximate
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optimizers, without any indication of singularities. Comparisons would be easier
if design goals (with regard to types of solutions) were clearly and prominently
stated.

3. A Toolbox of Techniques

In this section, we examine components of deterministic global optimization al-
gorithms with an eye towards how practical it is to make them mathematically
rigorous.

3.1. Decomposition and Relaxations

A popular and flexible type of relaxation is a linear relaxation.

3.1.1. Linear Relaxations

Suppose we replace ϕ by a linear function ℓϕ such that ℓϕ(x) ≤ ϕ(x) for x ∈ x,
and we replace each constraint gi ≤ 0 by one or more linear constraints ℓgi

≤ 0
with ℓgi

(x) ≤ gi(x) for x ∈ x and i between 1 and m2. If we similarly replace
each ci = 0 by ℓci

≤ 0 and ℓ−ci
≤ 0, we will have replaced the problem (1) by

a linear program, or linear relaxation. In fact, if ϕ and the gi are convex and the
ci are linear1, problem (1) can be approximated arbitrarily closely in this way.
The result, when the original problem (1) represents a convex program, is that the
corresponding linear relaxation (2) can be formed and solved in polynomial time,
if it were exact, its solution ϕ

ℓ
would be a lower bound on the global optimum

ϕ∗ of (1), ϕ
ℓ
≤ ϕ∗ and ϕ

ℓ
is as close to ϕ∗ as desired. The process of forming

the linear relaxation and finding ϕ
ℓ

can efficiently be made rigorous, so ϕ
ℓ
< ϕ∗ is

mathematically guaranteed; see §4.1 in this paper. However, relating an optimizing
point x∗

ℓ of the linear relaxation to an optimizing point x∗ of the original problem
is trickier; see §5 of this paper.

Descriptions of how linear relaxations are formed occur in various works. We
have written up an analysis of one type of process by which linear relaxations can
be formed and have provided additional references in [27].

3.1.2. Other Relaxations

There are various ways of forming linear relaxations. For instance, in the process
we analyzed in [27], evaluation of the objective and constraints is decomposed into
individual operations (e.g. “+”, “−”, “×”, and “÷”), slack variables and corre-
sponding constraints are added corresponding to each such operation, and linear
underestimators are supplied for each such operation. This type of linear relaxation
is easy to automate2, but can lead to very large linear programs, and may not be
the most efficient way. An alternative is to identify larger sub-expressions of the
objective and constraints that are appropriate to approximate linearly.

Along these lines, the approximation of a subexpression does not even need to
be linear, but can be convex. The Floudas et al team has put forward noteworthy
developments along these lines, as explained in [14]. The decomposition is based
on decomposition of a function f , where f can correspond to an objective ϕ or a
constraint gi ≤ 0, ci ≤ 0 or −ci ≤ 0, as follows.3

1that is, for a convex program
2e.g. with operator overloading, as opposed to development of a special parsing program
3Prof. Floudas has presented this composition explicitly in talks such as [11].
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f(x) = fL(x) + fC(x) +
∑nb

k=1 akxi1,k,b
xi2,k,b

↑
linear

↑
convex

↑
bilinear

+

nt
∑

k=1

bkxi1,k,t
xi2,k,t

xi3,k,t
+

nf
∑

k=1

ck

xi1,k,f

xi2,k,f

+

nft
∑

k=1

dk

xi1,k,ft

xi2,k,ft

↑
trilinear

↑
fractional

↑

fractional

trilinear

+

ns
∑

k=1

fk,s +

nuc
∑

k=1

fk,uc + fGNC(x),

↑
signomial

↑

univariate

concave

↑

general

nonconvex

(4)

where nb, nt, nf , nft, ns, and nuc are the number of bilinear, trilinear, fractional,
fractional trilinear, signomial1, and univariate concave terms, respectively. The
above decomposition may be motivated partly from the fact that terms of the rep-
resented forms are found in the various models considered by the Floudas team;
see [14]. Relaxations do not need to be given for the linear and convex terms, while
various techniques are used to construct relaxations to the bilinear, trilinear, frac-
tional, fractional trilinear, signomial, and univariate concave terms. The bivariate
and trivariate terms (bilinear, trilinear, fractional, and fractional trilinear) may be
estimated with techniques predating the work of Floudas et al, but are unified in
[36, Theorem 1], and explained fully in [14] and later work. Relaxations of general
univariate concave functions over an interval may be obtained as linear interpola-
tions of their values at the end points of the interval. Floudas develops the “αBB”
method for convex relations of general non-convex terms fgnc, see [14, Chapter 12].
In the αBB method, a parameter α times a quadratic term is added in such a way
that the resulting term dominates all of the negative eigenvalues of the Hessian
matrix over x, while the negative eigenvalues are bounded using an interval eval-
uation of the Hessian matrix and Gerschgorin’s theorem and other techniques; see
[14, §12.4].

Recently, Floudas has reported solving a very large previously unsolved practical
problem by arbitrary close approximation with these decomposition and relaxation
techniques alone, without the need for branch and bound [12].

3.2. Constraint Propagation

Constraint propagation is based on a simple idea: Solve a relation in many variables
for one of the variables, then plug in bounds on the other constraints to compute
new bounds on the original constraint. We took this point of view, giving exam-
ples, in [22]. Actually, this simple idea is the underlying computation in the entire
field of constraint propagation, also known as constraint solving . The computation
underlies a programming paradigm, various books are devoted to constraint solv-
ing, as well as uniquely suited programming languages and periodic conferences,
and there are numerous industrial applications; see [6], or perhaps [4, 41, 48]. An
early deterministic global optimization package constructed upon the philosophy of

1Signomial terms are terms of the form
∏

N

i=1
t
αi
i

, where the αi are arbitrary real numbers.
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constraint logic programming is [51]. The technique is presently incorporated into
leading commercial deterministic global optimization software, such as BARON
[45].

For future discussion, we give a simple example. Consider

minimize ϕ(x) = x2
1 − x2

2

subject to x2
1 + x2

2 = 1,
x1 + x2 ≤ 0.

Suppose we have already found the feasible point x̂ = (0,−1) with ϕ(x̂) = −1, so
−1 is an upper bound on the optimum, and suppose we are searching in the box
([−1, 1], [−1, 1]). Using the upper bound ϕ gives

x2
1 − x2

2 ≤ −1.

Solving this for x1 gives

x1 ≤
√

[−1, 1]2 − 1 =
√

[0, 1] − 1 =
√

[−1, 0]

and

x1 ≥
√

[−1, 1]2 − 1 =
√

[0, 1] − 1 =
√

[−1, 0].

Here, it is appropriate to interpret
√

[−1, 0] = 0, so we obtain x1 = 0. We now
solve for x2 in x2

1 + x2
2 = 1 and plug in x1 = 0 to get

x2 = 1 or x2 = −1,

Plugging x1 = 0, x2 = 1 into x1 + x2 ≤ 0 gives a contradiction, leading to the
unique point x = (0,−1) in ([−1, 1], [−1, 1]) that can be a global optimizer.

It is clear from this example that propagation of continuous constraints depends
on bounding the range of expressions over interval vectors, whether or not the
software is designed to be mathematically rigorous.

3.3. Interval Newton Methods

Interval Newton methods and Krawczyk-like methods, usually found just in soft-
ware designed to be mathematically rigorous, are a prominent feature throughout
the literature on interval computations. For example, introductions can be found
in our review and didactic works, such as [1, §8.4] or [37, Chapter 8], and there
are many other excellent references. The general framework of interval Newton
methods is as follows. Suppose F : x ⊂ R

n → R
n where x is an interval n-vector,

suppose ẋ ∈ x is fixed, and suppose that A is an interval matrix such that

A contains all matrices A such that
F (x)−F (ẋ) = A(x−ẋ) for every x ∈ x.

(5)

(For example, a componentwise interval extension of the Jacobian matrix of F
over x will do.) Then a multivariate interval Newton operator F is any mapping
N (F,x, ẋ) from the set of ordered pairs (x, ẋ) of interval n-vectors x and point
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n-vectors ẋ to the set of interval n-vectors, such that

x̃←N(F,x, ẋ) = ẋ + v, (6)

where v ∈ IR
n (where IR

n is the set of all n-dimensional interval vectors) is any
box that bounds the solution set to the linear interval system

Av = −F (ẋ). (7)

There are well-established ways of bounding solutions to (7), with a rich literature
on interval linear algebra.

Attractive properties of interval Newton methods are as follows.

(1) Any solution x∗ ∈ x, F (x∗) = 0 is also in N(F,x, ẋ).
(2) If N (F,x, ẋ) ∩ x = ∅, then there are no solutions to F (x) = 0 within x.
(3) If the interval matrix A obeys (5) for every ẋ ∈ x (such as if A is a

componentwise interval extension of the Jacobian matrix of F over x), and
if N (F,x, ẋ) is contained in the interior of x, then there is a unique solution
of F (x) = 0 within x.

(One reference for the theory underlying interval Newton methods is [38].)
Interval Newton methods are local methods, good for finding tight rigorous

bounds on solutions to linear and nonlinear systems of equations, given a good
approximation to such solutions. They are of some, but more limited use, over
larger regions in reducing their size and in proving existence and non-existence.
In particular, the condition in useful property (3) of interval Newton methods is
most likely to hold if the point ẋ is sufficiently close to an actual solution x∗ of
F (x∗) = 0, if ẋ is near the center of x, if the widths of x are large compared to
the distance of ‖ẋ− x∗‖, and if the widths of x are sufficiently small. Specifically,
the maximum size of x for which the condition in property (3) is satisfied can
be thought to be roughly inversely proportional to the condition number of the
Jacobian matrix of F near ẋ; the analysis in [24, §6.2.2] is revealing.

In the context of global optimization, F represents the Kuhn–Tucker condi-
tions or the Fritz John equations. However, the Kuhn–Tucker system can be ill-
conditioned or singular, and the condition in property (3) is likely to hold only if
good bounds on the Lagrange multipliers are known.

3.4. Overall Branch and Bound Methods

Algorithm 1 (The general branch and bound procedure)
In general, relaxations, constraint propagation, interval Newton methods, and

other such techniques alone cannot yield acceptable bounds on the global opti-
mizers. In such instances, the region x is typically subdivided, to achieve better
accuracy over the smaller subregions. Here, for further discussion, we present a
prototypical such subdivision scheme.
Input: The objective ϕ, the constraints c and g for problem 1, and the initial search
region x.
Output: An enclosure [ϕ∗, ϕ] for the global optimimum and (depending on re-
quirements), a list C of boxes containing some (or all) global optimizers.

(1) Establish an upper bound ϕ on the global optimum over the feasible set
(defined by the constraints).

(2) (Branching) Subdivide the initial region x into two or more subregions x̃.
Place all but one of these on a list L for further processing.
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(3) Use various methods to reduce the size of x̃ (possibly producing the empty
set).

(4) (Bounding) Bound below the range of the objective function over each
subregion x̃, to obtain

ϕ(x̃) ≤ {ϕ(x) | x ∈ x̃, c(x) = 0, g(x) ≤ 0.} .

(5) If ϕ > ϕ, (1) is infeasible over x̃, if the Kuhn–Tucker1 conditions do not
hold at any point in x̃, or if x̃ cannot contain a global optimizer for some
other reason
Then

(Pruning) Discard x̃,
Else If the diameter of x̃ is smaller than a specified tolerance

Then

Put x̃ onto a list of boxes containing possible global optimizers.
Else

Insert x̃ into the list L for further branching and bounding through
steps (2) and (4).

End If

End If

End Algorithm 1.

We emphasize that the above algorithmic description is mainly for our present
expository purposes, and lacks subtleties and details important for efficiency in
particular contexts.

Branch and bound algorithms based loosely on Algorithm 1 are ubiquitous in
the literature on deterministic global optimization. Some (but not the more re-
cent) such algorithms are compared in [40]. Relaxations, constraint propagation,
and other techniques are generally combined in Steps (3), (4), and (5), and the de-
tails of these techniques, the way they are combined, and efficiency of the computer
programming greatly impact the practicality of the overall algorithm. Furthermore,
more basic properties of this scheme make a difference. One such property is order-
ing of the list L of subregions waiting to be processed. This ordering is especially
important if the optimum, as opposed to all optimizers, is desired, and different
orderings may be more appropriate in different multiprocessing environments. Sim-
ilar considerations apply in the way a region x̃ is further subdivided in step (2).
Furthermore, regions x̃ that are discarded in step (5) may sometimes be expanded,
as explained, e.g. in [24, §4.2]; the way in which this is done and in which the
volume of such expanded regions is deleted from further consideration can greatly
effect the overall practicality of the algorithm.

In this work, we focus not on the overall branch and bound algorithm and the
way the individual techniques are combined, but on the practicality of making
the individual techniques rigorous. In this way, we strive to gain insight into how
practical it is to make non-rigorous algorithms rigorous, into intrinsic limits of
rigorous computations, and into where additional work is worthwhile.

1or, alternatively, Fritz John
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4. Rigor in Individual Techniques

Here, we examine individually the practicality of implementing the aforementioned
techniques in a mathematically rigorous way.

4.1. Making Linear Relaxations Rigorous

Some of the computations with linear relaxations can be made mathematically
rigorous with negligible performance penalty. However, care needs to be taken in
doing so. There are two steps in which roundoff error needs to be considered in
implementing linear relaxations in a rigorous way:

(1) computing the coefficients of the linear functions comprising the relax-
ations, and

(2) providing rigorous bounds on the solution to the linear relaxation.

For step (1), the underestimating functions ℓ(x) (e.g. ℓϕ(x), ℓgi
(x), ℓci

(x), ℓ−ci
(x),

or linear underestimations to individual operations comprising the computation of
the objective or constraints) are linear relations

ℓ : R→ R, ℓ(u) = au + b,

such that ℓ(u) forms either a secant line to the function f(u) being underestimated
over some interval u = [u, u], or a tangent line to f at some u ∈ u. The trick
is to use directed rounding appropriately in the computation of the coefficients a
and b to be able to assert that the stored machine representations of a and b have
ℓ(u) ≤ f(u) for every u ∈ u. This is done rigorously in [5]; see also [18].

The linear relaxation formed in step (1) is typically a large, sparse linear pro-
gram that is solved approximately by a conventional proprietary or open-source
linear programming solver, using well-studied mature technology. The optimal ob-
jective value, if exact, would represent a lower bound on the solution to the original
problem (1). A successful approach to obtaining a mathematically rigorous lower
bound to (1), given an approximate solution returned by conventional software,
involves several simple computations (dot products and matrix-vector multiplica-
tions), with careful setting of the rounding mode, and is based on the duality gap.
An approximate solution to the dual problem is also needed, but these are usually
available in current linear programming solvers. Additionally, the technique, using
information returned from the approximate linear programming solver, can also,
in relevant instances, prove that the relaxation, and hence the original problem (1)
is infeasible over x. See [39] for a clear explanation of the technique; also see [20],
where the technique was independently reported.

Thus, much of the linear relaxation technology used in non-rigorous determinis-
tic branch and bound software can be made rigorous with negligible performance
penalty.

The range xi = [xi, xi] can also be reduced through the linear relaxation, using
the linear (relaxed) constraints, using xi or −xi as objective, and appending the
additional constraint (or relaxation thereof) ϕ(x) ≤ ϕ, where ϕ is the current
upper bound on the global optimum. This technique can similarly be easily made
mathematically rigorous.

Nonetheless, it is less straightforward to relate approximate optimizers to the
linear relaxation to rigorous enclosures of optimizers of the original problem (1).
Some previous work on bounding the solutions to linear programming problems
with interval coefficients, occurs in [3],[33], or [44]. We say more about relating
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optimizers of the relaxation to optimizers of the original problem and propose a
possible computational framework in sections 4.4.2 and 5.

4.2. Making Other Relaxations Rigorous

In addition to linear relaxations, convex, and possibly other, relaxations are com-
monly used. We consider mathematically rigorous implementations involving such
relaxations here.

4.3. Ensuring the Computed Relaxation is Actually a Relaxation

Maranas and Floudas, in [36] and then in [14, §12.2] give explicit formulas for
convex underestimators for each of the terms in (4). For each of these terms ex-
cept the general nonconvex term, the techniques used to form the underestimators
are similar to the linear case1. Thus, there should be no problem implementing
computation of these underestimators in such a way that the resulting machine
representation is guaranteed with mathematical rigor to be a convex relaxation.
(However, to our knowledge, this has not yet been actually documented or tried.)
Floudas et al use the “αBB” approach (as in [14, Chapter 10]) to construct a
convex underestimator for the general non-convex term. In fact, Floudas himself
presents a method for mathematically rigorously constructing an underestimator
to this term; see [14, §12.4].

4.4. Computing Rigorous Bounds, Given Solutions to Relaxations

Obtaining rigorous bounds on the optimum and rigorous bounds on members of
the optimizing set (or enclosing the optimizing set) involve both different tech-
niques and different degrees of difficulty. The techniques and degree of difficulty
also depend upon whether or not we require bounds on the exact solution to the
problem or whether or not we are enclosing epsilon-optimal solutions or proving
that a given point is epsilon-optimal.

4.4.1. Obtaining a Rigorous Lower Bound on the Optimum of the Relaxation

For general relaxations, a lower bound ϕ∗ on the global optimum ϕ∗ to the
relaxation (and hence, to the original problem) can be computed by computing a
solution to the relaxation, while an upper bound can be computed by computing
the objective value at a feasible point. Approximate optimizers for both linear
and convex programs can be computed efficiently (and, in many but not all cases,
reliably) with a choice of software packages.

If the relaxation is linear, an approximate optimum of the relaxation can be per-
turbed to a mathematically rigorous lower bound ϕ

ℓ
with the aforementioned dual-

ity gap technique of Neumaier and Shcherbina [39]. Also see [10]. To our knowledge,
an analogous technique has not yet been developed for general convex programs,
but we are optimistic one can be found. One possibility might be to apply an in-
terval Newton method to the Kuhn–Tucker equations for the relaxation to prove
existence of a critical point2, taking heed of the possible pitfalls we have mentioned
in §3.3.

1although the formulas are not quite as simple.
2which should be unique for a convex program
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4.4.2. Ensuring the Relaxed Optimizer is Near an Optimizer of the Original
Problem

Given an optimizer of a relaxation, obtaining mathematically rigorous bounds on
a corresponding optimizer of the original problem does not seem to be as simple as
obtaining rigorous bounds on the optimum. One possibility would be to use work
such as that of Jansson [19, 21], while expressing the original problem or the relax-
ation as a linear problem with uncertain coefficients. However, we are unaware of
widespread success with the techniques from [19] and [21] for bounding the solution
sets of linear programs with interval coefficients, let alone using such solution set
bounds to bound solution sets of general nonlinear optimization problems.

If the original problem (1) is convex, a possibility worth investigating, as men-
tioned above for computing bounds on the optimum, is to use an interval Newton
method to prove existence of a solution to the Kuhn-Tucker equations. Uniqueness
theory associated with convex problems can then be used to prove globality.

In Section 5, we give an analysis of convergence of optimizers of relaxations,
along with an example illustrating how close the optimizing set is in a particular
case. Additional development of these ideas may lead to more general techniques.

4.4.3. On Epsilon-Optimality

In contrast, proving that a point is epsilon optimal in the sense of problem (2) is
very simple: Perform interval evaluations of ϕ, the ci, and the gi. Thus, if a single
epsilon-optimal point is desired, it is almost trivial to prove that a point found
either by an approximate local optimizer or by such an optimizer applied to a
relaxation is epsilon-optimal. Finding enclosing regions to all such epsilon-optimal
solutions is much more computationally intensive for general nonlinear problems,
and in general requires an exhaustive search of the region. Furthermore, the goals
of such a search must be carefully defined; see [42].

4.5. Making Constraint Propagation Rigorous

In both mathematically rigorous and non-rigorous software, evaluation of the
ranges of expressions is typically done with interval computations. This can be
made mathematically rigorous with virtually no performance penalty. In fact, con-
straint propagation based on interval computations is an important component of
the award-winning commercial BARON global optimization software [45, 49], even
though BARON as a whole is not claimed to give mathematically rigorous results.

4.6. Proving Feasibility

A significant component of branch and bound algorithms for continuous global
optimization is maintaining an upper bound on the global optimum, to use in
determining branch cuts and in eliminating regions. In non-rigorous algorithms,
the objective ϕ may simply be evaluated at an approximate feasible point x̂, to
obtain an approximate upper bound, where the feasible point is obtained from a
local optimization process or by some projection method onto the feasible point. To
make such a process rigorous, one must not only bound roundoff error in evaluation
of ϕ, but must also assure that x̂ is feasible. If problem (1) has only inequality
constraints, and none of them are active (that is, if there are no ci and if gi(x̂) < 0
for each i, then feasibility can be rigorously ascertained by evaluating the gi at x̂
while taking account of roundoff error1. However, if there are equality constraints

1such as evaluating using interval arithmetic
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or if some of the inequality constraints are approximately active (i.e. if gi(x̂) ≈ 0
for one or more i), simple interval evaluation will not prove that x̂ is feasible. In
fact, the only rigorous method of which we know is to construct a box x̂ about
x̂ within a subspace of dimension equal to the number of active constraints, then
use an interval Newton method (or analogous fixed-point-contraction criterion) to
prove existence of a feasible point within x̂, then evaluate ϕ over x̂ to obtain the
upper bound; see [25]. Implementation of such procedures adds complication, and
the procedure isn’t successful at all approximate feasible points x̂. For instance,
see our comments in §3.3.

Such problems are less severe if we merely desire to prove we have found epsilon-
approximate solutions (and not necessarily to enclose all such epsilon-approximate
solutions). In such cases, an interval Newton method is not required, and im-
plementing the algorithm with mathematical rigor should not carry a significant
performance penalty.

4.7. Rigor’s Cost: Rigor or General Algorithm Design?

Current global optimization algorithms use sophisticated combinations of these
techniques, and have differing goals (as we outlined in §2). Although software
that does not claim to be mathematically rigorous has performed better in certain
benchmarks than mathematically rigorous software, this is not convincing proof
that mathematical rigorous software cannot be competitive. Many facets have not
been taken into account. Except for rigorous verification of feasibility, most aspects
of general global optimization algorithms can be made rigorous without significant
performance penalty, and there are alternatives to verification of feasibility for
obtaining rigorous upper bounds on the optimum. One such alternative may be
computing a linear relaxation and bounding the optimizing points of the relaxation.
Theorem 5.2 in the next section hints at the possibility of this. Another possibility,
if the application allows it, is to replace the original problem by a relaxed decision
problem, as in (2). Further design and experimentation is needed.

5. On Convergence of Optimizers of Relaxations

A common technique in continuous global optimization algorithms is approxima-
tion by relaxations. In fact, in the work by Floudas et al [12] we mentioned in
§3.1.2, large-scale practical non-convex optimization problems have been solved
approximately by separately constructing relaxations from subdividing individ-
ual coordinates, without branching and bounding in the overall parameter space.
Similarly, leading current general software such as BARON [45] also relies on relax-
ations. Even though such problems are non-convex, careful a priori analysis of the
structure of the problem reveals how one might replace the problem by an equiva-
lent problem (in the sense defined [27]), in which the only non-convex constraints
are dependent on one or two variables, which are possibly artificial slack variables.
In this way, the problem can be approximated arbitrarily closely by a set of convex
relaxations, by subdividing the intervals corresponding to variables upon which the
non-convex constraints depend. By solving the relaxations, the approximate prob-
lems then lead to approximate solutions. We illustrate this subdivision process in
a very simple context in Example 5.3, although the technique has been applied to
solve important large problems from application areas.

When such a process is used in a non-rigorous way, an approximate optimum (or
perhaps, non-rigorous lower and upper bounds on an approximate optimum), as
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well as approximate optimizing point or points are obtained from the relaxations.
When lower and upper bounds on the optimum are obtained, such bounds can be
processed, at least when the relaxation is linear, to obtain mathematically rigorous
lower and upper bounds. However, to our knowledge, no attempt has been made
to date to formally relate the optimizing set of the relaxations to the optimiz-
ing set of the original problem. Theorem 5.2 in this section gives such a relation,
highlighting the limitations of relaxations to determine the entire optimizing set
in mathematically rigorous computations. Furthermore, the theorem gives weak
conditions (namely, that the objective and constraints are approximated well) un-
der which the optimum of the relaxations converge to the optimum of the original
problem. Ensuring that such conditions are satisfied for non-convex problems is,
in general, problematical, but can be done if either non-convex relaxations whose
global optima can be easily obtained can be constructed, or if the problem can
be divided into a relatively small but increasing number of subproblems whose re-
laxations approximate the original subproblem well. This is illustrated in a simple
setting in Example 5.3, while other techniques are given in [49] and [50].

Theorem 5.2 is based on a simple continuity argument. We present the theorem,
following a definition that clarifies our notation.

Definition 5.1 Let T be a set, and let s be a point. The distance d(s,T ) is defined
as

d(s,T ) = min
t∈T
‖s− t‖.

If S and T are two sets, then the distance d(S,T ) between them is defined as

d(S,T ) = max

{

max
s∈S

d(s,T ),max
t∈T

d(t,S)

}

Theorem 5.2 Assume the following,

(1) In problem (1) assume ϕ, the gi, and the ci are defined over a domain
D, and that ϕ is uniformly continuous over D. Denote the feasible set
of problem (1) by F ⊆ D, denote the optimum by ϕ∗, and denote the
optimizing set by O.

(2) Let Pǫ denote any member of a family of relaxations of problem (1), with
feasible set Fǫ ⊆ D, with objective function ϕǫ, with global optimum ϕ∗

ǫ ,
and with set of optimizers Oǫ. Assume that each such Pǫ has the following
properties:
(i) Each feasible set Fǫ is bounded.
(ii) The family {ϕǫ}ǫ>0 is equicontinuous over D.
(iii) 0 ≤ ϕ(x)− ϕǫ(x) < ǫ uniformly over D.
(iv) d(Fǫ,F) < ǫ.

Then,

(a) limǫ→0 ϕ∗
ǫ = ϕ∗,

(b) For each tolerance τ > 0, there is an ǫd > 0 such that ǫ < ǫd implies that,
for any global optimizing point x∗

ǫ of Pǫ, there is an optimizing point x∗ of
problem (1) such that ‖x∗

ǫ − x∗‖ < τ .

Theorem 5.2, although abstract, provides guidance for construction of approx-
imations. The condition d(Fǫ,F) < ǫ can be checked in terms of bounds on the
approximations on the gi and ci, while the condition |ϕ(x) − ϕǫ(x)| < ǫ can be
similarly checked directly. (Explicit such bounds are given in review in [14].)
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Proof To prove (a), first observe that Pǫ is a relaxation of the original problem
implies ϕ∗

ǫ ≤ ϕ∗, and conditions (i) and (iii) imply that each ϕ∗
ǫ is bounded below

by the same number µ, that is, ϕ∗
ǫ ∈ [µ,ϕ∗] for all ǫ, so the ϕ∗

ǫ have a limit point
ϕ̃ ≤ ϕ∗ as ǫ→ 0. Assume ϕ̃ < ϕ∗, and set ∆ = ϕ∗ − ϕ̃. Then, choose ǫ0 such that,
for ‖y − x‖ < ǫ0,

(i) ‖y − x‖ < ǫ0 =⇒ ‖ϕǫ(y)− ϕǫ(x)‖ < ∆/6, and
(ii) |ϕ(y) − ϕ(x)| < ∆/6 .

for every x, y ∈ D. Now, for any ǫ ≤ ǫ0, any optimizing point x∗
ǫ ∈ Fǫ of the

relaxation is within ǫ of a point x̂ǫ ∈ F of problem 1. Then, for ǫ = ǫi, a member
of the sequence for which ϕ∗

ǫ → ϕ̃,

|ϕǫ(x
∗
ǫ )− ϕ(x̂ǫ)| ≤ |ϕǫ(x

∗
ǫ )− ϕǫ(x̂ǫ)|+ |ϕǫ(x̂ǫ)− ϕ(x̂ǫ)|+ |ϕ(x̂ǫ)− ϕ(x∗)|

< ∆/6 + ∆/6 + ∆/6 = ∆/2.

Thus,

0 ≤ ϕ(x̂ǫ)− ϕǫ(x
∗
ǫ ) < ∆/2, whence

ϕ∗ − ϕǫ(x
∗
ǫ ) < ∆/2, whence

lim
ǫ→0

(ϕ∗ − ϕǫ(x
∗
ǫ )) = ∆ < ∆/2,

a contradiction. Hence, part (a) is proved.
To prove part (b), assume to the contrary that there is some s > 0 such that, for

every ǫ, there is an optimizer x∗
ǫ of some problem Pǫ with d(x∗

ǫ ,O) > s. Choose a
sequence of points x∗

ǫn
with ǫn ↓ 0, such that d(x∗

ǫn
,O) > s for every member of the

sequence. Furthermore, since Fǫ is bounded for each ǫ and since Fǫn
⊆ Fǫ whenever

ǫn ≤ ǫ, the points x∗
ǫn

are bounded, so there is a convergent subsequence which,
without loss of generality, we will also denote by x∗

ǫn
. Furthermore, x∗

ǫn
→ x∗

∗, where
x∗
∗ ∈ F . However, (a), the fact that ϕǫ → ϕ as ǫ → 0, and continuity of ϕ and ϕǫ

give ϕ(x∗
∗) = ϕ∗, so x∗

∗ ∈ O. The fact that the sequence x∗
ǫn

converges to x∗
∗ thus

leads to a contradiction, proving part (b). �

Although, under the hypotheses of Theorem 5.2, Oǫ tends to a subset of O, it
is not true in general that every point in O is eventually approximated well by
a point in Oǫ, that is, it is not true in general that d(Oǫ,O) → 0 as ǫ → 0. A

φ
ε

φ

ε

ε

φ(x)

x

x*
ε

Figure 1. Example where not all optimizers of the original problem are limit points of relaxation optimiz-
ers.

counterexample is illustrated in Figure 1, where ϕ is constant (and hence every
point is optimal), while ϕǫ is constructed so x∗

ǫ converges to a single point (in
Figure 1, the right end point) as ǫ→ 0.
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Example 5.3 Consider an optimization problem of the form (1), with n = 2,

ϕ(x) = x2
1 − x2

2,

and D = ([−1, 1], [−1, 1]). Assuming the constraints are convex, construct smooth
convex relaxations ϕǫ(x), with ǫ explicitly known.

From the assumptions, we need only replace ϕ by a relaxation. Here, ϕ has a
convex term and a concave term, so convex relaxations need only be given for the
univariate concave term −x2

2. Divide [−1, 1] into 2N subintervals Si = [−1 + (i−
1)/N,−1+i/N ], 1 ≤ i ≤ 2N . Replace −x2

2 by IN (x2), where IN (x2) is the piecewise
linear interpolant to −x2

2 with sub-intervals Si, and define

ϕ̃(x) = x2
1 + IN (x2).

Then ϕ̃(x) ≤ ϕ(x) for x ∈ D (since f(t) = −t2 is concave), but IN (t) is not convex.
If a non-convex relaxation (or indeed, the problem without replacing −x2

2 at all)
can be solved efficiently, this can be done. However, if the computations are set
up to solve linear relaxations, we may consider the 2N subproblems obtained by
restricting the domain of x2 to Si, 1 ≤ i ≤ 2N . It is well-known that the piecewise
linear interpolation I(f)(t) of a function f with maximum subinterval length δ has
an error bound of

|f(t)− I(f)(t)| ≤ 1

8
δ2 max |f ′′(t)|,

so

∣

∣−t2 − IN (t)
∣

∣ ≤ 1

4N2
.

Thus, for the hypotheses of Theorem 5.2 to apply to each subproblem, take
N ≥ 1/(2

√
ǫ). Note that, in this case, the number of relaxations we need to solve

goes up as the square of the accuracy of approximating problem, while the accu-
racy of the approximate optimum and approximation to a subset of the solution
set is related to the closeness of the approximating problem to the original problem
through the moduli of continuity of the ϕǫ, ϕ, the constraints, and the approxi-
mating constraints. However, if there are only several such non-convex terms in a
large problem, the total number of relaxations to be solved to achieve a particular
accuracy could be much less than would be required with a general branch and
bound process over the whole space. Also, if it can be shown that the hypotheses
of the theorem can be met through this process, the computations themselves can
bound the error in the objective.

(For this example, the uniform continuity of each ϕ
(i)
ǫ corresponding to the i-th

subinterval follows from the fact that piecewise linear interpolants are Lipschitz
with the same Lipschitz constant as the original function.)

We now illustrate the analysis for relaxed feasible sets F ⊆ Fǫ for Theorem 5.2.

Example 5.4 Suppose we have a constraint g(x) = x2
1 − x2

2 − 1 for problem (1),
where D = ([−1, 1], [−1, 1]). Assuming the objective and other constraints are
convex, construct relaxations Fǫ to apply Theorem 5.2.

We may use techniques that are similar to those we used for Example 5.3. In
particular, for this example, we may introduce the same piecewise linear interpolant
IN (x2) for the term −x2

2, and consider subproblems over each subregion. Replace
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the constraint g(x) ≤ 0 by

x2
1 + ℓi(x2)− 1 ≤ 0 x2 ∈ Si. (8)

We now determine the boundary of the feasible region for the i-th relaxed sub-
problem defined by the relaxed constraint (8). For a given x2 in (8), the largest x2

1

can be is when x2
1 = 1− ℓi(x2), i.e.

|x1| =
√

1− ℓi(x2).

In contrast, the analogous bound for the original constraint x2
1 − x2

2 − 1 ≤ 0 is

|x1| =
√

1 + x2
2.

Thus, an upper bound on the distance between any point x in Fǫ and F is

d(x,F) ≤ max
x2∈Si

(

√

1− IN (x2)−
√

1 + x2
2

)

= max
x2∈Si

(−x2
2)− IN (x2)

√

1− IN (x2) +
√

1 + x2
2

≤ maxx2∈Si

{

(−x2
2)− IN (x2)

}

2
≤

1
4N2

2
=

1

8N2
,

where we use the well-known fact that a bound on the error in replacing a twice
continuously differentiable function f by its linear interpolant with subintervals of
length h over the interval [a, b] is 1

8h2‖f ′′‖∞. Thus, since F ⊆ Fǫ, d(Fǫ,F) < ǫ

whenever N ≥ 1/(2
√

2ǫ).
(Of course, if more than one constraint or objective is non-convex, we can apply

the above techniques to each of them to obtain our problem Pǫ for Theorem 5.2.)

6. Experiments, Conclusions and Future Work

Studying both algorithms and observing computational performance, we have not
discovered significant intrinsic limitations to developing mathematically rigorous
versions of successful exhaustive search algorithms for continuous global optimiza-
tion.

While the author was developing GlobSol [26], a mathematically rigorous soft-
ware package for finding the entire solution set, he made several observations con-
cerning efficiency. The author did some informal tests in response to reports by
Stadtherr et al, in applications such as described in [47], that they were able to
compute mathematically rigorous enclosures to entire solution sets by modifying
the simpler, earlier software INTBIS [28] with INTLIB [29]; they claimed the com-
putation completed ten times more quickly than with GlobSol. Since INTBIS

uses simpler algorithms and fewer heuristics than GlobSol, GlobSol generally
completes its branch and bound process with fewer branchings than INTBIS, for
a particular problem; thus, the difference in computation time would be due to
execution speed in the implementation.

With this motivation, the author did some unpublished profiling studies. One
conjecture is that the interval arithmetic implementation (which in GlobSol is
based on [23]), or the way the objective and constraint evaluation is set up is a
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source of inefficiency. Namely, in GlobSol, all operations required to evaluate the
objective and all constraints are recorded before execution of the branch and bound,
and, unless sets of values are required simultaneously, the entire set of operations
is evaluated interpretively each time any individual objective or constraint value is
required. Furthermore, the underlying arithmetic, INTLIB, has elementary func-
tions that are far from optimal, with a factor of 100 or so difference in execution
time between floating point and interval values of the trigonometric functions, for
instance. However, on some problems, less than half of the total processor time
was spent in evaluating functions, with more time spent in dynamic memory allo-
cation and list processing. Also, when we replaced interpretive function evaluation
by pre-compiled function evaluation, or when we replaced the arithmetic from [23]
by Sun Fortran interval arithmetic (with a very high quality elementary function
library), this did not result in significant speedup of the overall algorithm in our
informal tests.

Comparisons with other automatically verified software have also revealed large
differences in completion time, sometimes due to differences in numbers of boxes
processed, and other times not.

Regarding problem structure, in the problem from [43], GlobSol took many
hours to complete, since GlobSol needed to enclose an entire line of optimal
points, without the benefit of acceleration procedures applicable when the opti-
mal points are isolated and the Kuhn–Tucker system is non-singular at them. In
[42], Roy developed a method of computational analysis and an algorithm that
computed parametrizations of the solution set and enclosed the solution set with
boxes parallel to the parameter directions. This mathematically rigorous algorithm
executed in much less time and with several orders of magnitude fewer boxes than
GlobSol, despite the fact that it was implemented entirely in matlab. The ineffi-
ciency observed in GlobSol did not surface in the non-rigorous branch and bound
algorithms we tried, since such algorithms did not attempt to locate all globally
optimal points, but stopped when one was located.

Another observation we made during development of GlobSol was the im-
portance of an upper bound on the global optimum to be able to quickly reject
portions of the parameter space that cannot contain global optimizing points. In
non-rigorous software, an approximate feasible point can be computed, and the
objective can be evaluated at that approximate feasible point to obtain an ap-
proximate upper bound. In contrast, with mathematically rigorous computations,
a small region must be constructed about such an approximate feasible point in
which it can be proven that a feasible point exists, then an upper bound on the
objective over this small region must be computed. We observed failure of this
verification step led to no upper bound or a bad upper bound, which in turn led
to excessive branching and bounding in regions that could not contain optimizing
points.

6.1. Conclusions

Our informal explorations and study of various algorithms have led us to believe
there isn’t a single reason for particular software, automatically verified or not, to
perform better on a set of problems than other software. Performance differences
are due to many factors, and some of these factors are more important for partic-
ular problems than for others. In our own work, the intrinsic speed of the interval
arithmetic has not been the primary limiting factor, although it could be in algo-
rithms in which other limitations have been ameliorated or in problems in which
those limitations are not important. The speed of interval arithmetic would not be
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an issue even then, since various efficient implementations, such as [34], exist.
We have not seen significant differences in the tools and techniques used between

software that claims to be mathematically rigorous and software that uses branch
and bound, but does not attempt to be mathematically rigorous. Thus, we have
not seen significant impediments to implementing any of the techniques used by
such non-rigorous software in a way that is mathematically rigorous; however, with
more careful definition of the kind of solution the software attempts to deliver,
more problems might be seen to be intrinsically difficult if the type of solution to
be delivered must satisfy requirements that are too strict. For instance, if it is too
difficult to verify exact feasibility of equality constraints, it is usually easy to verify
that they are ǫ-feasible, that is, that the magnitudes of their residuals are less than
ǫ.

Besides this issue with solution type, it is our belief that any remaining ad-
vantages of software that is not mathematically rigorous are due to the skill of
the researchers and software developers at incorporating and combining various
heuristics and techniques that can be used in either mathematically rigorous or
non-rigorous software. That is, the onus is on developers of mathematically rig-
orous software to increase performance of their products, using the same tools as
developers not striving for rigor, but with extra care to encompass roundoff error.

One question concerning how techniques used in non-rigorous software can be
incorporated into rigorous software is how to use the optimal points to relaxations.
Those optimal points give non-rigorous approximations to optimal points of the
original problem. Theorem 5.2 shows that optimal points of relaxations are actually
near optimal points of the original problem, thus giving some guidance towards
constructing rigorous bounds on optimal points.

6.2. Future Work

Some possibilities for improving the performance of mathematically rigorous soft-
ware are as follows.

• Implement efficient techniques and heuristics, such as the convex approximations
from [14]. This will involve careful construction of rigorous versions of libraries
for computing these relaxations.

• Carefully investigate alternatives to constructing relaxations. For instance, the
relaxation can be constructed based on individual operations (fine granularity,
as we have illustrated in [27]), or we may use techniques with coarser granularity,
such as those of [14] or [49].

• Develop the ideas we have presented in §5 for automated computation of the
distance of the solution of relaxations to the solutions of the practical problem.

• Study applications to specific problems. For example, in [12], a large-scale non-
convex problem was presented that, with appropriate preliminary analysis, could
be solved effectively without any subdivision of the full-dimensional region in R

n,
but by simply solving carefully constructed relaxations. It should be straightfor-
ward to implement such a computation so the result is mathematically rigorous,
even for instances of large-scale problems.

• Software designers are encouraged to state in clear mathematical terms the qual-
ity of solutions (as we have outlined in §2.2). Along these lines, rigorous software
might be made to perform better by designing it to enclose verified ǫ-approximate
solutions as in (2), rather than exact solutions.

• Continue the work in [42] to analyze and enclose non-isolated solution sets.
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