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Abstract

Linear and nonlinear programs are often ill-posed, or approximately
ill-posed. However, current commercial software often is constructed with
implicit assumptions of well-posedness built in. The result is that such
software returns just one of many possible solutions, without any indica-
tion that singularity or approximate singularity exists. This is illustrated
by applying several commercial packages, including a commercial global
optimization package with complete search, to a simple example problem.
However, on that same problem, a global optimization package that does
not include nonsingularity assumptions does return the entire solution set,
but very inefficiently. An algorithm is therefore proposed for efficiently
depicting such singular solution sets and for efficiently but rigorously ver-
ifying that all such solution sets have been enclosed. This algorithm is
implemented, and computations with it are illustrated.

Keywords: ill-posed nonlinear programs, branch and bound algo-
rithms, epsilon-inflation, interval analysis, complete search

1 Introduction

In recent years, commercial high-quality global optimization problems, such as
BARON [11], has become available for “complete search” algorithms for global
optimization; in such complete search algorithms, completion of the algorithm
finds the global optimum with certainty, provided roundoff error is not a factor.
(See, for example, [10] for a further discussion of “complete search” and related
concepts.) However, there has been little focus on uniqueness of optimizing
points, even if it would be useful to the modeler who posed the problem to
know of multiple instances of optimizing points. For example, if the problem
is detected to be linear, it may be passed to a linear program solver, which
might return an approximate optimizing point with no errors, even though an
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entire hyperplane of optimizing points exists. As an example of this, consider
the following classroom problem.

Example 1 An investment company needs to decide how to invest $200, 000 in
a mix of four stocks, with the following expected rates of return and measures of
risk.

STOCKS

Price per share
Return per share
Risk measure per $

A B C D
$100 $50 $80 $40
0.12 0.08 0.06 0.10
0.10 0.07 0.05 0.08

Furthermore, we require that

• The annual rate of return must be at least 9%.

• No one stock can account for more than 50% of the total investment.

• We wish to minimize the risk subject to these conditions.

This leads to the following linear program.
Minimize 10A+ 3.5B + 4C + 3.2D
Subject to:

100A+ 50B + 80C + 40D≤ 200, 000,
12A+ 4B + 4.8C + 4D≥ 18, 000,
0 ≤ 100A ≤ 100000, 0 ≤ 50B ≤ 100000,
0 ≤ 80C ≤ 100000, 0 ≤ 40D ≤ 100000.

This simple linear problem was not designed to be special, and there is no reason
to think that it should be. However, a crucial property of this problem, possibly
of interest in the application area, can be overlooked when a given solver is used.
(Although this problem is simple, the overlooked property and its interest to
the modeler will be present to an even greater degree in larger-scale and non-
linear problems.) To illustrate, we tried the MINOS [8] solver as distributed
with AMPL [2], CONOPT [1] with GAMS [3], BARON [12] through NEOS [9],
and GlobSol [5]. The general MINOS solver and CONOPT are designed for
large-scale constrained nonlinear optimization, and do not pretend to be global
optimizers, while BARON, although not claiming to be mathematically rigorous,
claims to offer complete search for global optimization. GlobSol is an interval-
arithmetic-based branch and bound code for small problems in constrained and
unconstrained global optimization, that claims to output mathematically rig-
orous enclosures to all global optimizing points, provided its search completes.
The results are as follows:

Solver A B C D min
MINOS (ampl) 666.6 0 0 2500 14666

CONOPT (gams) 333.3 0 833.3 2500 14666
BARON (neos) 666.6 0 0 2500 14666

GlobSol See below 14666
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MINOS, CONOPT, and BARON completed almost immediately, with normal
termination and no warnings, but GlobSol did not complete its search, even
after hours. However, GlobSol’s partial output included a list of boxes that
contained both of the solutions returned by MINOS, BARON, and CONOPT.
In fact, GlobSol’s list of unresolved boxes, plotted quantity A versus quantity
C, is as follows:

In all of the unresolved boxes represented in this figure, the quantity A is within
approximately 0.06 of 0, while the quantity D is very near 2500. Also, there
was a severe “clustering effect” in the sense that the line in the figure depicted
above represents 256,903 boxes.

A brief analysis of the problem shows that the objective gradient and the
gradient of the constraint on the total amount invested are linearly dependent,
resulting in a line in parameter space upon which the objective is minimum. A
random perturbation will remove this singularity. For example, if we perturb
Example 1 as follows

Old / New
A B C D

Price $100 $50 $80 $40

Return
0.12
0.124

0.08
0.06
0.061

0.10

Risk
0.10
0.101

0.07
0.05
0.051

0.08

then all four solvers give A ≈ 645.161, B = C = 0, D = 2500, and a minimum of
14, 516, values that are close to one of the particular solutions to the unperturbed
problem; in fact, an experimental version of GlobSol, using LP relaxations,
completed this perturbed problem with a search tree consisting of only 163
boxes.

One might be tempted to accept the answer to the perturbed problem as an
approximate answer to the singular problem, and to not attempt to describe the
solution set to the original problem. However, the original application, namely,
minimizing the risk of a particular portfolio, indicates that the investor might
be interested in the entire choice of possibilities, or at least in knowing that
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the choice exists. For example, although there is a continuum of portfolios
that minimize the risk, some might have a larger potential profit, or be more
desirable according to other criteria. Furthermore, even if the problem is only
approximately ill-posed, it may be desirable for the same reasons to compute
and describe approximate solution sets. This leads to the following questions:

1. How can we efficiently characterize and represent solution sets of ill-posed
problems?

2. How can we efficiently locate such solution sets and eliminate the remain-
ing portions of the search region in a branch and bound algorithm?

3. Can we design such techniques for approximately singular problems, in
addition to exactly singular problems?

4. Can our techniques be applicable generally, to constrained nonlinear pro-
grams?

This work addresses these questions.

2 Representation of Singular Solution Sets

The “clustering” problem referenced in the introduction is largely due to the
fact that a solution whose orientation is skewed with respect to the original
coordinate axes requires a large number of boxes with sides parallel to the coor-
dinate axes to cover even a small portion of it tightly. This has been observed
many times, such as in [7, Fig. 12]; we illustrate the phenomenon for a hypo-
thetical tessellation resulting from a branch and bound process in Figure 1. In
this figure, it is assumed that boxes 1 through 6 are identified, in that order, as
containing solutions; after taking the complement of these boxes in the list of
unfathomed boxes (as in [4, Algorithm 11, p. 156]), we obtain the other narrow
boxes depicted in the figure.

Reasoning intuitively, we conclude that representation of a box in terms of
coordinates that are locally tangent and locally orthogonal to the solution set
will be advantageous. We take this general approach.

2.1 Context and Notation

Although Example 1 is a simple linear program, we view it as a canonical case
of a phenomenon that can occur in general constrained nonlinear programs, and
we discuss our methods within that general context. The general problem we
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Figure 1: Hypothetical tessellation in a branch and bound algorithm over a
singular set

consider will be stated as

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . ,m2,
where ϕ : x→ R and ci, gi : x→ R, and where x ⊂ Rn is
the hyperrectangle (box) defined by

xi ≤ xi ≤ xi, 1 ≤ i ≤ n,
where the xi and xi delineate the search region.

(1)

We distinguish between possible bound constraints, which here we assume will
be included among the inequality constraints gi(x) ≤ 0, and simple limits x ∈ x
on the search region.

2.2 Directions for the Solution Set

Suppose x̌ ∈ x is an approximately feasible point point at which ϕ is approx-
imately optimal, and suppose ϕ, the ci, and the gi have continuous partial
derivatives throughout x. (The point x̌ may be obtained through any efficient
local optimizer.) Also, suppose that the inequality constraints

{
gij
}na

j=1
are ac-

tive at x̌. Then, locally, directions that are perpendicular to both ∇ϕ, all of the
∇ci, and the ∇gij will be directions v such that x̌+ εv remains approximately
feasible and approximately optimal, for sufficiently small ε. (There may be ad-
ditional directions pointing into the feasible region defined by the inequality
constraints, but we will ignore these for now.) We then form a matrix G whose
columns consist of the gradients ∇ϕ(x̌), ∇ci(x̌), and ∇gij (x̌) of the objective,
equality constraints, and active inequality constraints:

G =
[
∇ϕ(x̌),∇c1(x̌), . . . ,∇cm1

(x̌),∇gi1(x̌), . . . ,∇gina
(x̌)
]
. (2)

Through standard linear algebra techniques (such as a singular value decompo-
sition) we then obtain an orthonormal basis {vi}nw

i=1 for the null space of G, and
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we obtain an orthonormal basis {vi}ns

i=nw+1 for the orthogonal complement of
the null space of G. (Here, we may look at approximate null spaces in the sense
that corresponding singular values are small.) We denote the space spanned
by the vectors {vi}nw

i=1 (directions in which the point remains approximately
optimal) by W, and we denote the space spanned by the vectors {vi}ns

i=nw+1

(directions in which the objective value increases or the problem becomes infea-
sible) by S. (More generally, rather than divide the basis into two sets, we may
order the vi in order of increasing singular values of G, representing directions
of increasing importance in determining optimality.)

2.3 Construction in the New Coordinates

We represent points z near our approximate optimizing point x̌ in terms of the
coordinates vi and wi:

z = x̌+

nw∑
i=1

αivi +

n∑
i=nw+1

αivi (3)

The key to the success of our techniques is expanding the objective and
constraints in Taylor series in terms of the new basis {vi}ni=1. (Automatic dif-
ferentiation technology enables us to do this in a practical way.) In particular,
if

f ∈
{
ϕ, {ci}m1

i=1, {gij}
na
j=1

}
,

then we write

f(z) ∈ f(x̌) +

nw∑
i=1

αiDvi(f)(x(B)) +

n∑
i=nw11

αiDvi(f)(x(B)), (4)

where x(B) is some bounding box centered on x̌ and Dvi(f)(x(B)) is an interval
extension of the directional derivative of f in the direction vi over x(B). We then
construct new coordinates αi = [−αi, αi] for a skewed box α

α =
{
x̌+

n∑
i=1

αivi, αi ∈ αi, 1 ≤ i ≤ n.
}

(5)

In (5), the extents |αi| in the directions vi are determined according to target
tolerances εϕ, εc, and εg, such that ϕ be within εϕ of optimal, the ci be within εc
of feasible, and the gij be within εg of feasible. In particular, we set a bounding
box x(B), then choose the |αi| so that

n∑
i=1

|αi||Dvi(ϕ)(x(B))| ≤ εϕ,

n∑
i=1

|αi||Dvi(cj)(x
(B))| ≤ εc, 1 ≤ j ≤ m1

n∑
i=1

|αi||Dvi(gjk)(x(B))| ≤ εg, 1 ≤ k ≤ na.

(6)
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Equations (6) will be true if

ri = |αi| = {radius of the skewed box in the direction of vi}

obeys

ri = minj,k

{
εϕ/ (n|Dvi(ϕ)(x(B))|) ,
εc/ (n|Dvi(cj)(x

(B))|) , (7)

εg/ (n|Dvi(gk)(x(B))|)
}
,

where the minimum is over all all equality constraints and active inequality
constraints, and where a term is not included if the corresponding |Dvi | is less
than the machine epsilon εM. Additionally, we require

ri ≤ min
1≤ı≤n,
|vi,j |>εM

w(x(B)

i )

2
, (8)

where vi,j is the j-th component of the i-th basis vector vi and w(x(B)

i )/2 is
the radius of the i-th coordinate of the bounding box. The conditions (8) are
essentially necessary conditions for α ⊆ x(B).

Once the skewed box is initially determined according to (7), a containing
box, that is, a box x(C) whose sides are parallel to the coordinate axes and that
tightly encloses the skewed box to within roundout error, is determined by

x(C) = x̌+

n∑
i=1

αivi = x̌+ Vα, (9)

where V is the n× n matrix whose i-th column is vi.
Finally, observe that the interval extensions (4) are valid only if α ⊂ x(B),

so that it is guaranteed that |ϕ(x)−ϕ(x̌)| ≤ εϕ, |ci(x)| ≤ εc, and gij (x) ≤ εg for
every x ∈ α only if α ⊂ x(B). For this reason, after our initial computation of
α and x(C) using (7), the bounding box widths are individually and iteratively
adjusted larger and smaller, along with recomputation of α and x(C), until x(C)

and x(B) have widths that are roughly the same. Actual bounds on ϕ and the
ci and gij are then obtained by evaluating the expressions (4) using interval
arithmetic.

3 Elimination Near Singular Solution Sets

The skewed box α of the previous section represents a set of bounds, wide in
some directions and narrow in others, enclosing the solution set. To avoid the
clustering effect, we want to be able to efficiently reject the region around α
as not containing approximate optimizers. To achieve this, it makes sense to
represent the adjacent regions as boxes with sides parallel to the vi, rather than
parallel to the standard coordinate axes. Furthermore, if we proceed outward
from the sides of α in directions {vi}nw

i=1, the objective and constraints will not
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change very much, and it will be unlikely we can reject corresponding portions
of the search region. On the other hand, if we proceed outward from α in
directions {vi}nw+ns

i=nw+1, the objective or constraints will be changing, and we will
be more likely to be able to reject a corresponding portion of the search space.
This is illustrated in Figure 2.

Figure 2: Illustration of the skewed box, the containing box, and elimination
around the skewed box

With these considerations, we construct boxes proceeding outward from α,
adjacent to the 2ns sides of α corresponding to αi = ±ri, i = nw + 1 to i =
nw +ns. This is done with a type of “epsilon inflation” process (akin to classical
epsilon inflation as in [6]):

1. An initial box “sliver” αS, represented in terms of the skewed coordinates,
is constructed, with all coordinate bounds except the i-th bound equal to
corresponding bounds on the skewed box α, and with the i-th coordinate
bounds having one bound equal to either −αi or αi (depending on which
side of α is being considered), and the other bound having value ±(αi+ε),
where ε is appropriately chosen according to accuracy tolerances in the
computation.

2. It is determined that αS can be rejected by first computing a containing
box for αS, then evaluating ϕ, the ci, and the gij over αS using the
representation (4), where the containing box for αS is used in place of
the bounding box x(B). (If the lower bound on ϕ is greater than a verified
upper bound on the global optimum, if the range bounds on at least one
of the ci do not contain zero, or if the lower bound on at least one of the
gi is greater than zero, then αS can be rejected.)

3. ε is increased, αS is re-constructed (i.e. αS is expanded outward in the
direction of vi), the containing box for αS is recomputed, and it is re-
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checked that αS can be rejected. This is done iteratively until a maximally
wide αS that can be rejected is found.

Once all 2ns box slivers αS are so constructed, the union of these with the
original skewed box α is another skewed box Λ that can be eliminated from
the search region in the branch and bound process. Although the branch and
bound process works with boxes with sides parallel to the original coordinate
axes, a box x in such a branch and bound process has corresponding skewed
coordinate bounds

z = V T (x− x̌);

any boxes produced during the branch and bound process whose corresponding
skewed coordinate bounds lie completely within the bounds Λ can be rejected.
Because the sensitivities of the objective and constraints to various directions
have been used, there is less interval dependency in construction of Λ, and the
result is a more powerful fathoming device in the branch and bound process
than simply using the standard coordinate directions.

4 Some Numerical Results

These techniques were implemented, utilizing the interval arithmetic and auto-
matic differentiation capabilities within our GlobSol environment. We then tried
the techniques on both the exactly singular example and the approximately sin-
gular perturbation of it from the introduction to this paper. For Example 1, with
upper bound on the global optimum ϕ = 14667.14175, εϕ = εc = εg = 10−2,
initial approximate optimizing point x̌ ≈ (666.7, 0, 0, 2500), and initial bound-
ing box radii equal to 0.1. This resulted in nw = 1, ns = 3, and the basis of vi
approximately as in the following table.

v1 v2 v3 v4
−0.3714 0.0604 0.8833 −0.2796

0.0000 0.0205 0.3005 0.9536
0.9285 0.0242 0.3533 −0.1119
0.0000 0.9777 0.0000 0.0000

In the process, we used a small box xV, given in terms of the original coordi-
nates, within which it is assumed that a feasible point has been verified to exist.
We obtained the following coordinates for the epsilon-inflated skewed box Λ,
the containing box X(C) for Λ, along with corresponding interval evaluations of
the active constraints; here, all bounds are rounded outward into the precision
displayed.
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Box: xV Λ X(C)

coords. [653, 681] [−2× 1011, 2× 1011] [−5× 1010, 5× 1010]
[0, 1.97] [−47.7, 0.63] [−4.9, 7.6]
[0, 1.97] [−12.4, 18.8] [−2× 1011, 2× 1011]

[2450, 2500] [−.135, 1.96] [−2452, 2502]
obj. [14369, 14811] [14139, 14681] [−9× 1011, 9× 1011]

act. con. [−178, 361] [−178, 361] [−1× 1012, 1× 1012]
[−2000,≈ 0] [−2000,≈ 0] [−1955, 58.91]

This table makes the advantages of dealing with the skewed box clear.
In a second test, we applied the same methods to the perturbation of the

singular problem we presented in the introduction to this work. For this ap-
proximately singular problem, we used x̌ ≈ (645.2, 0, 0, 2500), ϕ ≈ 14516.2, and
all of the other parameters and tolerances the same as for the singular problem.
As with the exactly singular problem, a constraint was identified to be active if
it is within 1 unit of 0. With those criteria, the same constraints were identified
as active as in the exactly singular problem, and nw = 1. Here, we compare v1
for the exactly singular problem to v1 for the approximately singular problem:

exact. sing. approx. sing.

-0.3714 -0.2263
-0.0000 -0.3883
0.9285 0.8933
0.0000 0.0000

Thus, even when the problem is only approximately singular, we obtain a di-
rection in which the problem remains approximately feasible and in which the
objective value does not change much. A corresponding table, for the approx-
imately singular problem, with coordinates for the xV we used, Λ, X(C), and
corresponding bounds on the objective and active constraints, is:

Box: xV Λ X(C)

coords. [640, 650] [−2× 1011, 2× 1011] [−3× 1010, 3× 1010

[0, 1] [−2.8, 2.4] [−5× 1010, 5× 1010]
[0, 1] [−4.9, 4.8] [−1× 1011, 1× 1011]

[2499, 2500] [−.071, .998] [2496, 2504]
obj. [14450, 14580] [14470, 14580] [−8× 1011, 8× 1011]

act. con. [−69, 69] [−69, 69] [−1× 1012, 1× 1012]
[−40,≈ 0] [−40,≈ 0] [−124, 107]

This illustrates that the methods are insensitive to perturbations, and are useful
even when the singularity is only approximate.

5 Improvements and Future Work

The methods described here use only first-order information, and will be advan-
tageous only for problems that are locally approximately linear and that have
a significant number of active constraints at optimizing points. To see this,
observe that, for an unconstrained problem, ∇ϕ(x̌) ≈ 0, so G in (2) is the zero
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matrix, nw = n, and the skewed coordinate system can taken to be the original
coordinate system. However, in unconstrained problems with non-isolated sets
of optimizing points, the Jacobi matrix of the gradient, that is, the second-order
derivative tensor of ϕ is typically singular at the approximate optimizing points.
If we denote this second-order tensor by ∇2ϕ, then directions v in which the
skewed box can be wide are defined by those directions v for which

(∇ϕ+∇2ϕ(v)) ◦ v ≈ 0.

Similar second-order expansions can be used for active constraints whose gra-
dients vanish at approximate optimizing points. If, among the objective and
constraints, there are various such functions whose gradients vanish, we obtain
a system of quadratic equations that the components of v must satisfy. Ad-
ditional analysis should yield efficient ways of determining such directions v,
and hence of determining appropriate bases for skewed boxes. In this context,
the representations (4) should possibly be replaced by second-order representa-
tions, with the first order directional derivatives Dvi(f) evaluated at the point x̌
and with interval extensions for the second-order directional derivative matrices
Dvi,vj (x

(B)). For more bizarre types of singularities, where the second derivative
tensors are singular, higher-order tensors could possibly be employed.
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