
Mathematical Programming manuscript No.
(will be inserted by the editor)

R. Baker Kearfott

Improved and Simplified Validation of Feasible
Points

Inequality and Equality Constrained Problems

Received: date / Revised version: date

Abstract. In validated branch and bound algorithms for global optimization, upper bounds
on the global optimum are obtained by evaluating the objective at an approximate optimizer;
the upper bounds are then used to eliminate subregions of the search space. For constrained
optimization, in general, a small region must be constructed within which existence of a feasible
point can be proven, and an upper bound on the objective over that region is obtained. We
had previously proposed a perturbation technique for constructing such a region. In this work,
we propose a much simplified and improved technique, based on an orthogonal decomposition
of the normal space to the constraints. In purely inequality constrained problems, a point,
rather than a region, can be used, and, for equality and inequality constrained problems, the
region lies in a smaller-dimensional subspace, giving rise to sharper upper bounds. Numerical
experiments on published test sets for global optimization provide evidence of the superiority
of the new approach within our GlobSol environment.

1. Introduction

The overall problem being considered is

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,
where ϕ : x → R and ci, gi : x → R, and where x ⊂ Rn is
the hyperrectangle (box) defined by

xi ≤ xi ≤ xi, 1 ≤ i ≤ n,
where the xi and xi are constant bounds.

(1)

We will call this problem a general nonlinear programming problem, abbreviated
“general NLP” or “NLP”.

In deterministic algorithms for solving NLP, the search region (defined by
the box x) is recursively subdivided, and a branch and bound process is used
to eliminate subregions that cannot contain the global optimum. A fundamental
technique1 in this branch and bound process is obtaining an upper bound ϕ
for the global optimum by evaluating the objective ϕ at a feasible point, then
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1 This is not the only technique used in such algorithms, since “acceleration” procedures are
necessary to make the algorithms practical.
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eliminating subregions x̃ by obtaining a lower bound ϕ(x̃) on the objective over
x̃, then eliminating x̃ provided ϕ(x̃) > ϕ.

In validated algorithms for solving an NLP, the algorithm returns bounds on
all possible optimizers and on the global optimum, and roundoff error is taken
into account in such a way that completion of the algorithm is a mathematical
proof that the optimum and optimizers must be exactly within the bounds that
are output. When there are inequality and equality constraints in the NLP,
a valid algorithm cannot obtain the upper bound ϕ by merely evaluating the
objective ϕ(x̌) at an approximate optimizing point2, but ϕ must be evaluated
either at a point that is proven to be feasible or over a small region, such as a
box x, x̌ ∈ x, and then computing a rigorous upper bound for ϕ over x, such as
can be done using interval arithmetic.

One is tempted to use the Kuhn–Tucker equations (or Fritz–John equations)
in an interval Newton method to prove existence of a constrained critical point
(and hence, of a feasible point) within a box x constructed about the approx-
imate optimizer x̌. However, because of likely singularity of this system, this
technique is likely to fail; see the discussion in [5, §2] to gain insight into the
case where the NLP (1) is linear.

In [3], we proposed and provided test results for a technique for perturb-
ing the approximate optimizing point x̌ and by constructing a box about the
perturbed feasible point within which an interval Newton method can prove
existence of feasible points. Since then, we have obtained significant additional
experience with this technique within our GlobSol (see [4, §2], [6] and [1]) algo-
rithmic environment. In particular, we have found that, for a significant number
of problems, the interval Newton method fails to prove existence of a feasible
point within x, or the widths of the box x are such that the upper bound ϕ so
obtained is not sharp enough to be as effective as it could be.

In this paper, we describe alternate techniques for validating feasibility. Not
only are these techniques significantly simpler than that in [3], but they also are
more reliable and gives sharper ϕ. When there are only inequality and bound
constraints, our new technique uses a QR factorization of the matrix of gradi-
ents of the active constraints to perturb x̌ to a point x̃ in the interior of the
feasible region, such that an interval evaluation of the constraints at x̂ can prove
that x̂ is feasible. In contrast, using the technique in [3] to handle inequality
constraints, the active inequality constraints are treated as equality constraints,
and an attempt is made to prove existence of a point at which all constraints
are simultaneously active, a much stronger but unnecessary condition.

In the case of both inequality constraints and equality constraints, we perform
a QR factorization of the matrix of both equality and inequality constraints, thus
obtaining vectors orthogonal to the gradients of the equality constraints, in which
we can perturb x̌ to obtain a point x̂. We then apply an interval Newton method
in a subspace of Rn parallel to the gradients of the equality constraints and in

2 This is true even if roundoff is taken into account when ϕ is evaluated, such as if interval
arithmetic is used and the upper bound of ϕ(x̌) is taken as the value.



Improved and Simplified Validation of Feasible Points 3

the tangent space of the inequality constraints. Experimental results confirm
that this technique is reliable and effective.

We present the basic technique for inequality-constrained problems in §2.
We describe our experimental environment and test set in §3, we present ex-
perimental results with the basic technique for inequality-constrained problems
in §4. We explain and analyze our technique for both equality and inequality
constraints in §5, and we present experimental results in the presence of both
types of constraints in §6. Conclusions appear in §7.

2. Perturbations for Inequality Constraints

Let x̌ ∈ Rn be an approximately obtained optimizing point of the NLP (1),
and assume that m1 = 0 (that is, assume there are no inequality constraints).
Suppose further that there are mi approximately active inequality constraints
at x̌, including possibly active bound constraints, with mi ≤ n, and denote these
active inequality and bound constraints by gij

≤ 0, 1 ≤ j ≤ mi.

Note 1. Approximate (i.e. “floating point”) optimizers typically return approx-
imate dual variables or Lagrange multipliers for the inequality and bound con-
straints. The mathematically “usual” situation is that there are n or less such
constraints active, and these constraints can be identified by non-zero values of
the approximate Lagrange multipliers. However, it sometimes occurs3 that more
than n inequality constraints are simultaneously approximately active at x̌. If
only n or less of the corresponding Lagrange multipliers are non-zero, we can
still attempt to apply our techniques.

Let A(ι) ∈ Rn×mi be that matrix whose j-th column is the approximate
gradient ∇gij (x̌), 1 ≤ j ≤ mi, and form a QR factorization

A(ι) = Q(ι)R(ι). (2)

We then use the following algorithm to produce a direction v at x̌ that is likely
to point into the feasible region.

Algorithm 1 (Producing a direction into the feasible region)
INPUT: The matrix Q(ι) as in Equation (2).
OUTPUT: A vector v likely to point from x̌ into the interior of the feasible
region of the NLP (1).

1. IF Q
(ι)
:,1 ◦A

(ι)
:,1 < 0 THEN Q

(ι)
:,1 ← −Q

(ι)
:,1 .

2. v1 ← −Q
(ι)
:,1 sgn(R(ι)

1,1)
3. DO for j = 2 to mi:

(a) δk ← Q
(ι)
:,k ◦A

(ι)
:,k .

(b) IF δk < 0 THEN
i. Q

(ι)
:,k ← −Q

(ι)
:,k

3 due, for example to redundancy in the model formulation
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ii. δk ← −δk.
END IF

(c) νk ← vk−1 ◦A
(ι)
:,k .

(d) αk ← 2νk/δk.
(e) IF αk > 0 THEN

i. uk ← vk−1 − αkQ
(ι)
:,k .

ii. vk ← uk/‖uk‖2.
ELSE

vk ← vk−1.
END IF

END DO
4. v ← vmi

.

Note 2. The vectors uk and vk need not be stored separately, but may be accu-
mulated in a single vector v.

Note 3. The factor “2” in Step 3d of Algorithm 1 can, in principle, be any number
greater than 1, as we shall see in the proof of the following theorem.

Theorem 1. Suppose the NLP (1) contains only equality constraints (i.e. m1 =
0), and suppose that the bound constraints are included in the m2 inequality
constraints. Suppose that x̌ ∈ Rn is a point at which mi ≤ n constraints gij ≤ 0,
1 ≤ j ≤ mi are exactly active, and no other constraints are active at x̌. Suppose
all constraints (both active and inactive) are continuous at x̌, and suppose the
constraint functions gij are differentiable at x̌. Suppose ∇gij (x̌) 6= 0, let A(ι) ∈
Rn×mi be the matrix whose j-th column is exactly the gradient ∇gij (x̌), 1 ≤ j ≤
mi, and suppose v is produced by Algorithm 1. Then, for all sufficiently small ε,
x̂ = x̌ + εv is strictly feasible with respect to the constraints of NLP.

Proof. The proof will proceed by induction on the number mi of active inequality
constraints. If mi = 1, then

v = −∇gi1(x̌)/‖∇gi1(x̌)‖
by construction. Thus, since gi1 is differentiable and with nonzero gradient at x̌,
there is a sufficiently small ε1 such that for all ε > 0, ε < ε1, gi1(x̌ + εv) < 0.
Now, denote an arbitrary remaining inequality constraint or bound constraint
for the NLP by g̃(x) ≤ 0. Since g̃(x̌) < 0, there is an ε̃ such that ε < ε̃ implies
g̃(x̌ + εv) < 0. Thus, if ε is less than the minimum of ε1 and all of the ε̃, then all
of the constraints of the NLP are strictly feasible at x̌ + εv.

Now assume that Algorithm 1 produces a vector v such that v ◦∇gij (x̌) < 0
for each active inequality constraint gij (x̌) = 0 when the number of active in-
equality constraints is mi = k; suppose the NLP has mi = k + 1 active inequal-
ity constraints

{
gij

}mi

j=1
at x̌, and suppose Algorithm 1 produces vk+1 for NLP.

Then, by construction,

uk+1 = vk − 2
min

{
vk ◦A

(ι)
k+1, 0

}

Q
(ι)
k+1 ◦A

(ι)
k+1

Q
(ι)
k+1,
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where Q
(ι)
k+1 has possibly been negated, so that Q

(ι)
k+1 ◦ A

(ι)
k+1 > 0, and vk+1 =

βuk+1 for some β > 0. Furthermore:

1. ∇gij
(x̌) for j ≤ k is in the column space of the first k columns of A(ι), and

hence is orthogonal to Q
(ι)
k+1;

2. vk can be thought of as being formed from the relaxed problem obtained
from the NLP (1) by removing the constraint gik+1(x) ≤ 0. Thus, from the
induction hypothesis, vk ◦ ∇gij

(x̌) < 0 for 1 ≤ j ≤ k.

To complete the induction step (namely, to show that vk+1 ◦ ∇gij (x̌) < 0 for
1 ≤ j ≤ k + 1), we thus need only show that vk+1 ◦ ∇gik+1(x̌) < 0. This is
equivalent to showing uk+1 ◦ ∇gik+1(x̌) < 0. If vk ◦ A

(ι)
k+1 ≤ 0, then vk+1 = vk

by construction, and the induction step is complete, so assume vk ◦ A
(ι)
k+1 > 0.

Then:

uk+1 ◦ ∇gik+1(x̌) = vk ◦ ∇gik+1(x̌)− 2
vk ◦A

(ι)
k+1

Q
(ι)
k+1 ◦A

(ι)
k+1

(
Q

(ι)
k+1 ◦ ∇gik+1(x̌)

)

= vk ◦ ∇gik+1(x̌)− 2vk ◦ ∇gik+1(x̌)
= −vk ◦ ∇gik+1(x̌)
< 0,

thus completing the induction step.
Now, choose ε1 sufficiently small so that gij (x̌+εvk+1) = ε∇gij

(x̌)◦vk+1+o(ε)
leads to gij (x̌ + εvk+1) < 0 for each j, 1 ≤ j ≤ mi = k + 1 and every ε < ε1.
Now, as in the case of mi = 1, choose ε̃ such that ε < ε̃ implies g̃(x̌ + εv) < 0 for
each inactive constraint g̃(x̌) < 0. To complete the proof, choose ε < min{ε1, ε̃}.

ut
Note 4. If x̌ is only approximately feasible with respect to the constraints of the
NLP, but the approximation is sufficiently good that x̌ is much closer to a point
where the mi constraints are active than to points where the inactive constraints
become active, then there is a range [ε, ε] such that, if ε ∈ [ε, ε], then x̂ = x̌ + εv
is strictly feasible with respect to the constraints of NLP.

To use Algorithm 1, we use the following algorithm.

Algorithm 2 (Finding and validating an approximate optimum of the NLP (1),
when only inequality constraints exist )
INPUT: A tolerance εd

OUTPUT: Either a point x̂ that has been proven to be feasible and that is likely
to be near an optimizing point of the NLP (1), or a “failure” message

1. Use a high-quality floating point approximate optimizer to compute a point
x̌ that is an approximate local optimizer of the NLP(1). Supply a tolerance
of εd/100 to the approximate optimizer so its heuristic that determines the
accuracy of the solution likely will result in an approximate feasible point that
is significantly closer than εd to a Kuhn–Tucker point.
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2. Determine the active inequality and bound constraints to be those correspond-
ing to non-zero dual variables as returned4 by the approximate optimizer.

3. IF the number of constraints identified as active exceeds n, THEN exit, sig-
nalling failure.

4. Compute a QR factorization as in Equation (2) of the matrix A(ι) whose
columns are the gradients of the constraints identified as active.

5. Use the QR factorization from Step 4 to execute Algorithm 1 to produce a
vector v likely to point into the feasible region at x̌.

6. Compute x̂ = x̌ + εdv.
7. Using interval arithmetic to bound rounding errors, compute gi(x̂) for every

inequality and bound constraint gi(x) ≤ 0 of the NLP (1).
IF the upper bound of each gi is non-positive THEN

Return with x̂ as the validated feasible point for the NLP 1.
ELSE

Return, indicating “failure”.
END IF

3. Experimental Environment and Test Problems

We performed our experiments within the GlobSol environment, on a dual
3.2GHz Pentium-4 based machine5 running Windows XP. We used an exper-
imental version of GlobSol’s algorithm that uses linear relaxations, essentially6

as we presented in [4]. In that algorithm (essentially Algorithm 2 in [4] with
an LP filtering step inserted between constraint propagation (step (iii)) and the
interval Newton method (step (iv))), the feasible point verification scheme from
[3] was attempted

1. within the initial box, before the start of Algorithm 2 of [4],
2. when the LP solver produced an optimizing point7 to the linear relaxation8,

such that a validated upper bound on the optimum is smaller than any
previously computed validated upper bound,

3. with a starting point within each box that is “sufficiently small” (i.e. step
(v)(a) of Algorithm 2 in [4]), and

4. optionally, after the interval Newton step and before bisection (i.e. immedi-
ately prior to step (vi) of Algorithm 2 in [4]), with starting point equal to
the midpoint of the current box.

4 A tolerance τ is used, such that a Lagrange multiplier λ is deemed to be non-zero provided
|λ| < τ .

5 The machine had 2 gigabytes of memory, but this was irrelevant, since at no time did
GlobSol require more than several megabytes when running the reported experiments.

6 In addition to the modifications to include our simplified improved validation of feasi-
ble points, another possibly significant modification over the algorithm in [4] was ordering
the coordinates in the “complementation” process we presented in [2, §4.3.1] from widest to
narrowest.

7 to be used as a starting point for the approximate optimizer
8 This step occurs between steps (iii) and (iv) of Algorithm 2 in [4].
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In our experiments, we inserted our simplified scheme, i.e. Algorithm 2 above,
both after successful computation of an upper bound from an LP relaxation and
immediately before bisection. In the experiments, we kept the scheme from [3], to
be tried only if Algorithm 2 above failed. For comparison, we ran GlobSol twice
on all problems in the test sets, with identical parameters and configuration,
except in the first set of runs, we did not use Algorithm 2 whereas we did in the
second set of runs.

As an initial test, we used the problem designated as “OET5” in [10] and
which we formulated as Equation 4 in [4] using Lemaréchal’s conditions. Al-
though approximate optimizers easily find Kuhn–Tucker points for this problem
and although the BARON global optimization software [8] readily produces an
optimizing point, our GlobSol software has found it challenging to validate that
all solutions have been found, and part of the difficulty has been in validation
of feasible points.

For a more systematic test, we used those problems from the “Tiny 1”
Neumaier–Shcherbina test set [7] for which we both had correct Fortran 90 input
files9 and such that we had already implemented rigorous linear relaxations in
GlobSol for the standard functions that occurred. For testing Algorithm 2 above,
we used only those problems that did not contain equality constraints. We also
eliminated several problems in which there appeared to be issues with opera-
tion exceptions in our installation of the floating point constrained optimization
routine10. We also eliminated all of the unconstrained problems.

In each case we attempted to run the branch and bound algorithm (in Glob-
Sol) to completion, but we allowed at most 10,000 seconds of processor time,
except for OET5, where we allowed 25,000 seconds of processor time.

4. Experimental Results: Only Inequality-Constrained Problems

The following abbreviations are used in the tables.

OK? indicates whether the branch and bound algorithm successfully validated
all global optimizing points (Y) or not (N) within 10,000 processor seconds.

Nbox is the total number of sub-boxes processed in the branch and bound pro-
cess.

Ttot is the total processor time, in seconds used in the branch and bound algo-
rithm.

Nbetter is the number of times a smaller upper bound on the global optimum
was obtained from a feasible point obtained with our simplified scheme (Al-
gorithm 2).

Ntoo many is the number of times there were too many active inequality con-
straints, as identified in step 3 of Algorithm 2

Nv is the number of times a perturbed point x̂ from Algorithm 2 was proven to
be feasible.

9 There were some difficulties with the conversion process from AMPL format, for some files.
10 We used a version of IPOPT [9] dating from early 2003 as a floating point optimizer.
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N¬v is the number of times a point x̂ was found in Algorithm 1 but could not
be proven to be feasible in the interval evaluation in step 7 of Algorithm 2.

Nv: old is the number of times existence of a point at which the mi identified
active constraints are validated through our older technique in [3] to be si-
multaneously active.

Columns of the tables below labelled “w/o” represent statistics for the branch
and bound algorithm without the simplified validation scheme of Algorithm 2
above, whereas columns labelled “w” represent statistics for the branch and
bound algorithm when Algorithm 2 above is included.

4.1. Results for OET5

The experimental results for OET5 appear in Table 1. This table displays that,
although the branch and bound process successfully completed both with and
without Algorithm 2 above, it completed significantly more quickly (in roughly
2/3 the time and with roughly 2/3 the number of boxes processed) when Al-
gorithm 2 was included. It also revealed that in no case were too many active
constraints identified; this is interesting, since our Lemaréchal formulation of
OET5 had only n = 5 but 42 inequality constraints. We also see that in no case
did Algorithm 2 above produce a perturbed point x̂ that the interval arithmetic
could not verify was strictly feasible, while 17736 feasible points were produced,
of which 24 resulted in better lower bounds on the objective. In contrast, the
old scheme could validate existence of a feasible point only 1062 times11.

Table 1. Results for OET5. (See text for column headings.)

w/o w Ratio
OK? Y Y
Ttot 15062 9335 0.62
Nbox 23791 15141 0.64
Ntoo many — 0
N¬v — 0
Nv — 17736
Nbetter — 24
Nv: old 1062 2

4.2. Results for the Neumaier–Shcherbina Test Set

Information related to improvements in efficiency of the branch and bound pro-
cess when Algorithm 2 above is used appears in Table 2, while information

11 In this case, the 2 times that the old scheme validated existence of a feasible point when
the new scheme was also used correspond to application of that process before and after the
branch and bound algorithm, at points other than those described above.
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related to how reliably Algorithm 2 finds points that can be proven to be fea-
sible and that lead to a better validated upper bound on the global optimum
appears in Table 3.

Table 2. Efficiency study for the test set from [7]. (See text for column headings.)

Problem Name OK? Ttot Nbox
w/o w w/o w w/o w

ex14.1.1 Y Y 2.20 2.78 87 87
ex14.1.3 Y Y 9.70 17.06 856 856
ex14.1.9 Y Y 1.50 0.41 211 36
ex2.1.1 Y Y 2.03 2.05 259 259
ex2.1.2 Y Y 2.03 2.05 173 173
ex2.1.4 Y Y 3.33 3.36 228 228
ex3.1.2 Y Y 1.86 1.86 84 84
ex3.1.3 Y Y 3.25 3.23 291 291
ex3.1.4 Y Y 0.77 0.84 35 35
ex4.1.9 Y Y 0.34 0.38 36 32
ex7.2.5 Y Y 5.25 5.88 110 110
ex7.2.6 Y Y 0.36 0.36 32 32
ex7.3.2 Y Y 0.05 0.05 8 8
sample Y Y 38.47 8.53 141 82

Totals 71.14 48.84 2551 2313
Ratios 0.69 0.91

As can be seen in Table 2, the branch and bound algorithm completed suc-
cessfully on all of these problems, but there were significant differences in effi-
ciency for some of the problems. Algorithm 2 had a small but significant impact
on the total number of boxes for the entire set (with 10% less boxes) and a
significant impact on the total processor time (30% less time). Furthermore, the
total execution time was skewed by “ex14.1.3”, an unusual problem in which
there were many instances when more than n constraints were identified as ac-
tive at the solution (as is seen from Table 2); the only other problem in which
this occurred was “ex14.1.1”. (We had used a heuristic in the branch and bound
algorithm to decide whether to attempt the scheme from [3]; we did not use
that heuristic before trying Algorithm 2, since we judged the time to actually
do Algorithm 2 to be significantly less.)

The process resulted in significant decreases in the total number of boxes
processed in the branch and bound in “ex14.1.9” and “sample,”, but resulted in
no change in the number of boxes processed in any of the other problems except
“ex4.1.9”. In “ex14.1.9” and “sample”, our older technique from [3] was also
able to verify feasibility, but our new technique apparently led to better upper
bounds earlier in the algorithm, allowing rejection of larger boxes not containing
optima. Finally, Algorithm 2 requires significantly less work than the scheme
from [3], a fact that accounts for the bigger difference in processor time than in
number of boxes processed.

Examining Table 3, we see that in no case did Algorithm 2 above produce
a point that could not be proven to be feasible by evaluation of the constraints
with interval arithmetic.
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Table 3. Reliability study for the test set from [7]. (See text for column headings.)

Problem Name Ntoo many N¬v Nv Nbetter Nv: old
w w/o

ex14.1.1 133 0 0 0 7 7
ex14.1.3 1271 0 0 0 1 1
ex14.1.9 0 0 36 6 0 117
ex2.1.1 0 0 4 0 51 52
ex2.1.2 0 0 0 0 0 0
ex2.1.4 0 0 0 0 0 0
ex3.1.2 0 0 1 0 3 3
ex3.1.3 1 0 0 0 0 0
ex3.1.4 5 0 7 0 9 9
ex4.1.9 0 0 15 5 10 29
ex7.2.5 0 0 1 1 9 9
ex7.2.6 0 0 33 0 0 27
ex7.3.2 0 0 0 0 0 0
sample 0 0 82 15 0 72

Totals 1410 0 179 27 90 326

5. Handling Equality Constraints

Equality constraints can be efficiently evaluated using a combination of the tech-
niques from §2 above and [3], as follows.

Suppose that there are mi inequality constraints and me ≤ n − mi active
equality constraints at a point x̌, and let A(eq) ∈ Rn×me be that matrix whose
i-th column is the gradient of the i-th active equality constraint at x̌. Similarly,
let A(ι) ∈ Rn×mi be the matrix whose i-th column is the gradient of the i-th
active inequality constraint, and form the combined matrix A = [A(eq), A(ι)] ∈
Rn×(me+mi) whose first 6= columns are the columns of A(eq) and whose last mi

columns are the columns of A(ι). Compute a QR factorization:

A = [A(eq), A(ι)] = QR = [Q(eq), Q(ι), Q(null)]R, (3)

where the columns of Q(eq) form a basis for the space spanned by the columns of
A(eq), the columns of Q(ι) form a basis for the space spanned by the columns of
A(ι), and the columns of Q(null) form a basis for the null space of A. The matrix
Q(ι) in Equation 3 will give us directions tangent to the equality constraints,
in which we can perturb x̌ into the region that is feasible with respect to the
inequality constraints.

Assuming that we have a point that is sufficiently inside the region defined
by the inequality constraints, we need to prove existence of a nearby point at
which all of the equality constraints are satisfied. To do this, we construct a
box, as in [3], in an me-dimensional subspace of Rn; however, in contrast to
using coordinate directions as a basis for this space as in [3], we use a subspace
orthogonal to the inequality constraint gradients, to maintain feasibility of the
inequality constraints. To this end, we form a matrix Ã as the matrix A above,
except that we place the columns of A(ι) first, then form a QR decomposition of
the resulting matrix. That is, we form

Ã = [A(ι), A(eq)] = Q̃R̃ = [Q̃(ι), Q̃(eq), Q̃(null)]R̃. (4)
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As with Q(eq) in Equation 3, the columns of Q̃(eq) form a basis for the space
spanned by the columns of A(eq), except that, here, the columns of Q̃(eq) are
within the tangent space of the inequality constraints.

Now, define c̃ : Rn → Rme to be the function whose i-th component is the i-th
equality constraint that has been identified as active, and form f : Rmi → Rmi

by

f(u) = c̃

(
x̂ +

me∑

i=1

uiQ̃
(eq)
:,i

)
, (5)

where x̂ will have been previously obtained by perturbing an approximate opti-
mizing point using Algorithm 1, but with Q(ι) computed from Equation (3).

The algorithm for validating existence of a feasible point in the presence of
both equality and inequality constraints then proceeds as follows:
Algorithm 3 (Finding and validating an approximate optimum of the NLP (1),
when both inequality and equality constraints exist )
INPUT: A tolerance εd

OUTPUT: Either a small box x̂ that has been proven to be feasible and that is
likely to be near an optimizing point of the NLP (1) or a “failure” message

1. Produce a perturbed point x̂ as in Algorithm 1, but use12 the matrix Q(ι) =
Q:,me+1:me+mi as in Equation (3).

2. IF the perturbed point from step 1 is not proven to be feasible13 THEN EXIT,
returning “failure”.

3. Compute a QR factorization of the matrix Ã as in Equation 4.
4. Form a box u = (u1, . . . , ume) such that ui = [−εd/10, εd/10].
5. Use an interval Newton method with system of equations f(u) = 0, f as in

Equation 5, and initial box u as in step 4. Let ũ be the image under the
interval Newton method.
IF ũ 6⊆ u THEN

EXIT, returning “failure”.
ELSE
(a) Iterate the interval Newton method with u ← u ∩ ũ to obtain as narrow

a set of parameters as possible.
(b) Form a box x̂ = x̂ +

∑me

i=1 uiQ̃
(eq)
:,i , where the ui are the components of

the parameter box that has been narrowed by the interval Newton method.
END IF

6. Use interval arithmetic to bound the range of each inequality constraint gi(x) ≤
0, 1 ≤ i ≤ m2, over x̂, that is, compute interval values gi(x) and thus com-
pute upper bounds gi(x) for each gi over x.
IF gi(x) > 0 for any i THEN

12 Note that, when this is done, the vector x̂− x̌ is orthogonal to the gradients of the equality
constraints, and hence in the direction of the tangent space of the equality constraints. More
precisely speaking, x̂ − x̌ is only approximately orthogonal to these gradients, since the QR
decomposition, etc. have been done in floating point arithmetic. However, the fact that the
computations are only approximate at this point do not affect the rigor in the validation.
13 e.g. by evaluating the inequality constraints with interval arithmetic
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EXIT, returning “failure”.
ELSE

EXIT, returning x̂ as narrow bounds within which there must exist a
feasible point.

END IF

Note 5. The widths of the box in step 4 of Algorithm 3 should be related to
the tolerances used in the approximate optimizer and in the perturbation for
the inequality constraints. In particular, we have suggested using εd/100 as a
tolerance for the approximate optimizer, εd as the length of the perturbation, and
εd/10 as the size of the box over which validation is attempted for the equality
constraints. In any case, the perturbation for the inequality constraints should
be larger than the tolerance for the approximate optimizer, to take account
of inaccuracies in the approximate optimizing point. Similarly, the box widths
should be larger than the tolerance of the approximate optimizer, but these box
widths should also be smaller than the length of the step to perturb into the
interior of the region defined by the inequality constraints; this latter condition
makes it likely that the entire box lies in the interior of the region defined by
the inequality constraints.

6. Experimental Results: Both Inequality and Equality Constraints

For tests of Algorithm 3, we used only those problems from the “Tiny 1”
Neumaier–Shcherbina test set of [7] for which there was at least one equality
constraint. As in the tests of Algorithm 2, we eliminated problems for which
GlobSol had no implementation for rigorous linear relaxations and for which
there were operation exceptions in the approximate solver. We also removed
ex8.1.8 because our copy of it was identical to ex7.2.2. Finally, we removed
the problem “house”. This problem did not complete successfully in 10,000 sec-
onds with either the new or just the old method of calculating feasible points,
and a study of the partial results hints that there is a continuum of optimiz-
ers in the version available to us, something that GlobSol can handle, but not
efficiently.

The results appear in Table 4 and Table 5. As can be seen, the results are
similar to the case with only inequality constraints. An interesting aspect is
that our new technique, Algorithm 3 above, never failed to prove feasibility of
a nearby point for any of the approximate optimizers passed to it. (That is, in
Table 5, N¬v = 0 for all of the problems tried.) This provides evidence that the
approximate solver IPOPT is giving high-quality approximate optimizers, that
the parametrization (5) defining the function for the interval Newton method is
reasonable, and that the heuristics that we used to determine the relative sizes
of the accuracy request passed to the approximate solver, the size of the step
into the region defined by the inequality constraints, and the widths of the box
constructed for the interval Newton method are adequate.
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Table 4. Efficiency study for equality-constrained problems from the test set from [7]. (See
text for column headings.)

Problem Name OK? Ttot Nbox
w/o w w/o w w/o w

ex14.1.2 0 0 80.53 54.62 505 478
ex14.1.5 0 0 3.70 2.12 124 102
ex14.2.5 0 0 27.09 12.84 352 266
ex4.1.8 0 0 0.06 0.06 11 11
ex6.1.2 0 0 5.98 3.62 116 120
ex7.2.2 0 0 7.16 7.25 96 109
ex7.3.3 0 0 0.61 0.62 17 17
mhw4d 0 0 6.64 10.94 196 196

Totals 131.77 92.07 14171 1299
Ratios 0.70 0.92

Table 5. Reliability study for equality-constrained problems from the test set from [7]. (See
text for column headings.)

Problem Name Ntoo many N¬v Nv Nbetter Nv: old
w w/o

ex14.1.2 573 0 0 0 29 21
ex14.1.5 0 0 27 1 0 9
ex14.2.5 199 0 0 0 10 18
ex4.1.8 0 0 8 8 0 3
ex6.1.2 0 0 123 1 0 68
ex7.2.2 0 0 106 7 0 55
ex7.3.3 0 0 0 0 0 0
mhw4d 0 0 212 4 1 67

Totals 772 0 476 21 40 241

7. Conclusions

We have presented much simplified methods for computationally but rigorously
proving existence of feasible points within small bounds of an approximate op-
timizer of an inequality and equality-constrained nonlinear program. Numerical
results on a small previously published test set indicate the methods are reliable
and effective.

The basic methods presented above are not applicable when more than n
equality and inequality constraints have been identified as active, where n is the
number of variables, although we are hopeful that progress can be made on this
case, too.
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