
ON PRECONDITIONERS AND SPLITTING IN THE INTERVAL
GAUSS–SEIDEL METHOD

R. BAKER KEARFOTT∗ AND SIRIPORN HONGTHONG†

Abstract. Finding bounding sets to solutions to systems of algebraic equations with uncertain-
ties in the coefficients, as well as finding mathematically rigorous but rapid location of all solutions
to nonlinear systems or finding global optima, involves bounding the solution sets to systems of equa-
tions with wide interval coefficients. The interval Gauss–Seidel algorithm has various properties that
make it suited to this task. However, the system must in general be preconditioned for the interval
Gauss–Seidel method to be effective. The most common preconditioner has been the “inverse mid-
point” preconditioner; however, we have proposed other classes of preconditioners that obey certain
optimality conditions, and have shown empirically advantages of their use. In this paper, we revisit
similar preconditioners, previously applied only in the context of interval Newton methods, that are
appropriate when the solution set may have more than one semi-infinite component. We first review
our previous work, describing it in a more general context than interval Newton methods. We then
carefully study the effectiveness of various preconditioners, compared to the inverse midpoint pre-
conditioner, our previously studied “width-optimal” preconditioner, exact bounding of the systems
of equations, and compared to variants based on a quadratic penalty function. We first compare
the preconditioners in detail on some simple, specially-designed small systems, then we study the
behavior of the preconditioners on some larger, randomly generated systems.

Key words. numerical linear algebra, global optimization, validated computing, interval anal-
ysis

AMS subject classifications. 65F10, 65G20, 65K99

1. Introduction. It is sometimes appropriate to express uncertainties in the
coefficients of linear algebraic systems as intervals. Also, it is sometimes appropriate
to express the effect of nonlinearities in a system as intervals of possible values1, also
leading to linear systems with interval coefficients. In either case, this leads to an
interval linear system of equations

Ax = b,(1.1)

where A is a matrix with interval coefficients and b is a vector with interval coefficients.
It is desirable to find sharp bounds on the solution set to (1.1), where the solution set
is defined as

Σ(A, b) = {x | Ax = b for some A ∈ A and some b ∈ b} ,(1.2)

Even when A is a square (n by n) matrix and each A ∈ A is nonsingular (so that the
solution set Σ(A, b) is bounded), it is known (see, for example [?]) that, in the general
case, finding exact bounds {xi = [xi, xi]} on the components of the points2 in Σ(A, b)
is NP-hard. Furthermore, in many cases of interest, such as when the system (1.1)
arises during an interval Newton method, and the underlying nonlinear system has
more than one isolated solution with the domain, the solution set Σ(A, b) contains
two or more disjoint unbounded components.

∗Department of Mathematics, University of Louisiana, U.L. Box 4-1010, Lafayette, Louisiana,
70504-1010, USA (rbk@louisiana.edu).

†Department of Mathematics, University of Louisiana, U.L. Box 4-1010, Lafayette, Louisiana,
70504-1010, USA (sxh1113@hotmail.com).

1typically, during an interval Newton method
2The set Σ(A, b) is, in general, not a box of the form {x ∈ Rn : xi ≤ xi ≤ xi, 1 ≤ i ≤ n}, but is

a star-shaped region or an unbounded region; see, for example [?, §3.4].

1

2 R. B. KEARFOTT AND S. HONGTHONG

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�����

�����

���
���

���

x x

x

1 1

2

��

���

���

x
2���

x
2��

x
2

��

~

~

Fig. 1.1. Application of the interval Gauss–Seidel method when the solution set is unbounded.

In either case (bounded solution set or unbounded solution set), directly applying
an interval version of a solution procedure, e.g. applying interval Gaussian elimination
or the interval Gauss–Seidel algorithm directly to (1.1) in general leads to catastrophic
overestimation in the bounds for the components of Σ(A, b). In such instances, we
precondition the system (1.1), forming3 the derived system

Y Ax = Y b i.e. Ãx = b̃.(1.3)

Although the solution set to (1.3) in general is not equal to the solution set to (1.1) (but
merely contains it), Y can often be chosen so that the overestimation in the solution
process4 for (1.3) is not catastrophic, and usable (although not optimal) bounds on
the components of Σ(A, b) can be obtained. This paper deals with designing and
choosing preconditioners that give practical results in as wide as possible a range of
cases.

The most common preconditioner Y in (1.3) has been the inverse midpoint ma-
trix, that is Y = (m(A))−1, where m(A) is the matrix whose i, j-th entry is a float-
ing point approximation to ai,j = (ai,j + ai,j)/2, where the (i, j)-th entry of A is
ai,j = [ai,j , ai,j]. This preconditioner is relatively simple and inexpensive to compute,
and is especially effective when the widths of the matrix A are small. However, the
preconditioner can be ineffective when the the entries of A are wide (that is, when
the entries of A have much uncertainty). The inverse midpoint preconditioner can
be especially ineffective when A contains singular matrices (and Σ(A, b) is thus un-
bounded), but we nonetheless desire to compute bounds on some of the coordinates
of the solution set that lie within a particular given set of bounds x. See Figure 1.1:
there, the solution set lies between the two oblique lines, the original bounds are
x1 ≤ x1 ≤ x1 and x2 ≤ x2 ≤ x2, and it may be possible with the interval Gauss–
Seidel method to narrow the bounds on x2 to x̃2 ≤ x2 ≤ x̃2.

In contrast, in Figure 1.2, the the solution set is disconnected and unbounded;
in this case, the interval Gauss–Seidel method can compute bounds for each compo-
nent, thus eliminating a portion of the region described by the original bounds. This
computation is useful, for example, if an exhaustive search is being used to rigorously
bound all solutions to a nonlinear system of equations, the initial bounds represent
a portion of that region to (hopefully) be eliminated, and the interval linear system
has arisen from an interval Newton method for the nonlinear system of equations.

3in theory; in practice, the actual full matrix Y A need not always be formed and stored at once.
4usually, interval Gaussian elimination or the interval Gauss–Seidel method

SPLITTING PRECONDITIONERS 3

�
�
�
�
�

�
�
�
�
�

�����

�����

x x1 1��

���

x2���

x2��

x2��

~

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

(1)
x2

��~

(2)
���

���������

�
�
�
�
�
�
�

��
��

��
��
��

�
�
�
�
�
�

��
��
��
��

��

Fig. 1.2. Application of the interval Gauss–Seidel method when the solution set is disconnected.

In previous work ([?] and [?, Ch. 3]), we proposed preconditioners for the interval
Gauss–Seidel method for the cases illustrated in Figure 1.1 and Figure 1.2. These
preconditioners are designed for the interval Gauss–Seidel method. Specifically, if Ã
and b̃ are as in (1.3), the interval Gauss–Seidel method is given as

xk is given for 1 ≤ i ≤ n,

x̃k ← 1
ãk,k



b̃k −

k−1∑

j=1

ãk,jx̃j −
n∑

j=k+1

ãk,jxj



 for k = 1, 2, . . . , n.(1.4)

If 0 6∈ ãk,k, then x̃k is an interval of the form

x̃k = [x̃k, x̃k],(1.5)

as in Figure 1.1, whereas, if 0 ∈ ãi,i and the numerator in (1.4) does not contain zero,
then x̃k will consist of two semi-infinite intervals of the form

x̃k =
(
−∞, x̃

(1)
k

] ⋃[
x̃

(2)
k ,∞

)
,(1.6)

as is illustrated in Figure 1.2.
For the case that x̃k is a single connected interval, the preconditioners we de-

scribed in [?, Ch. 3] are based on devising the k-th row Yk of the preconditioner to
attempt to:

• minimize the width w(x̃k) = x̃k − x̃k,
• maximize the left end point x̃k, or
• minimize the right end point x̃k

in (1.5). In [?], we examined in detail “width-optimal” preconditioner (in which
we attempt to minimize w(x̃k)); in the experiments there, we showed that, for a
particular test set, the width-optimal preconditioner resulted in less overall processor
time used in a branch and bound algorithm to find all solutions to nonlinear systems
of equations, compared to the inverse midpoint preconditioner.

In the case 0 ∈ ãi,i (as in Figure 1.2), the “splitting preconditioners” are based
on devising the i-th row Yk to attempt to:

• maximize the gap x̃
(2)
k − x̃

(1)
k ,

• minimize x̃
(1)
k ,

• maximize x̃
(2)
k , or

4 R. B. KEARFOTT AND S. HONGTHONG

• maximize min{|x̃(1)
k |, |x̃(2)

k |}.
The last criterion, which we call “mignitude optimality,” maximizes the distance from
0 of the image components. This criterion is useful for systems arising from interval
Newton methods, in which x is centered about the zero-vector and we may wish
to make the volume of x̃ ∩ x as small as possible. Furthermore, the corresponding
computational preconditioner for mignitude optimality gives a useful preconditioner
even if a preconditioner that results in two semi-infinite intervals of the form (1.6)
does not exist; see Lemma 3.7, page 138 of [?].

We refer to preconditioners which lead to two disjoint solution components as
“splitting-” or “S-preconditioners.” Our early empirical experiments with our “opti-
mal S-preconditioners” gave ambivalent results, and were never published. However,
others (such as [?], in the context of parallel computation) have reported advantages
to using “splits” in the interval Gauss–Seidel method5. This has prompted us to
revisit the issue of optimal splitting preconditioners.

In §2, we review details of our linear programming formulations, while in §3, we
give a penalty function formulation that leads to a quadratic program. In §5, we give
examples designed to test specific aspects of our formulations. In §7, we give a more
comprehensive set of experimental results, while we summarize in §8.

2. Ideas Behind Optimal Preconditioners: Review and Analysis. Here,
we review the derivation in [?] and [?, Ch. 3], placing it in somewhat more general
terms and pointing out an underlying heuristic assumption that, when not true, can
cause the solution of the linear program to fail to give a good preconditioner.

We assume the i-th row of the preconditioner Y for (1.3) is

Yk = (y1, . . . yn)T ,

and we rewrite

yi = y+
i − y−i , where y+

i = max{yi, 0} and y−i = max{−yi, 0},(2.1)

for 1 ≤ i ≤ m. If we are not computing inverses, we don’t need to assume a square
system, so we may assume A is a general interval m by n matrix, and b is an interval
m vector6. We have

Theorem 2.1. Assume that no other x̃` have been computed for ` 6= k (i.e. that
x̃i = xi for i 6= k), and assume that the components of the initial guess x are centered
at zero, that is, that xj = [−xj , xj], 1 ≤ j ≤ m, j 6= k. Then the numerator in (1.4)
is

νk = Ykb +
n∑

j=1
j 6=k

{YkA:,j}xj

=
m∑

i=1

yim(bi) +
1
2

m∑

i=1

|yi|w(bi)[−1, 1] +
1
2

n∑
j=1
j 6=k

w(xj)

∣∣∣∣∣
m∑

i=1

yiai,j

∣∣∣∣∣ [−1, 1],(2.2)

and the denominator in (1.3) is

dk = YkA:,k =
m∑

i=1

yiai,k =
m∑

i=1

m(ai,k) +
1
2

m∑

i=1

|yi|w(ai,k)[−1, 1].(2.3)

5Splits produce more boxes; however, in a parallel processing context in which each processor is
given a box to process, more boxes may not be a disadvantage.

6For certain existence verification arguments, we need m ≤ n, but this is not even necessary if
our interest is merely reducing the size of the set of all possible solutions.

SPLITTING PRECONDITIONERS 5

Proof. The proof proceeds from Lemma (3.4) of [?, p. 129], in a manner entirely
analogously to Lemma (3.5) of [?].

Now, assuming that y+
i and y−i are the positive and negative parts of yi (as in

(2.1)), we have, as in the development in [?, pp. 130–131],
∣∣∣∣∣

m∑

i=1

yiai,j

∣∣∣∣∣ =

{
m∑

i=1

(− y+
k ai,j + y−k ai,j

)
}

+ v+
j .(2.4)

and
∣∣∣∣∣

m∑

i=1

yiai,j

∣∣∣∣∣ =

{
m∑

i=1

(
y+

i ai,j − y−i ai,j

)
}

+ v−j ,(2.5)

where v+
j and vj are the positive and negative parts of vj , as defined for y in (2.1),

and where vj is defined to be equal to

vj =
m∑

i=1

yiai,j +
m∑

i=1

yiai,j , 1 ≤ j ≤ n, j 6= i.(2.6)

Thus, if the hypotheses of Theorem 2.1 hold, then, observing that |yi| = y−i + y+
i , we

have

νk =
m∑

i=1

yim(bi) +
1
2

m∑

i=1

(y−i + y+
i)w(bi)[−1, 1]

+
1
2

n∑
j=1
j 6=k

w(xj)

(
δ

{
m∑

i=1

(− y+
i ai,j + y−i ai,j

)
+ v+

j

}
(2.7)

+(1− δ)

{
m∑

i=1

(
y+

i ai,j − y−i ai,j

)
+ v−j

})
[−1, 1],

and similarly

dk =

[
m∑

i=1

(
y+

i ai,k − y−i ai,k

)
,

m∑

i=1

(
y+

i ai,k − y−i ai,k

)
]

.(2.8)

Now, continuing the derivation on page 133 of [?], the “width-optimal C-precon-
ditioner7” of [?] is based on minimizing the width w(x̃k) in (1.4),

find minYk
w(νk) = minYk

{νk − νk}
subject to dk = 1,(2.9)

which can be expressed in terms of the positive and negative parts y+
i , y−i , v+

i and
v−i defined above as

minimize
m∑

i=1

(y+
i + y−i)w(bi)

7We used the designation “C” to denote that the Gauss–Seidel operator “contracts” the box x.

6 R. B. KEARFOTT AND S. HONGTHONG

+ δ

n∑
j=1
j 6=k

w(xj)

{
v+

j +
m∑

i=1

(
y−i ai,j − y+

i ai,j

)
}

+(1− δ)
n∑

j=1
j 6=k

w(xj)

{
v−j +

m∑

i=1

(
y+

i ai,j − y−i ai,j

)
}

(2.10)

subject to
m∑

i=1

(
y+

i ai,k − y−i ai,k

)
= 1.

Observe now
1. The formulation (2.10) is equivalent to (2.9), provided that the y+

i and y−i are
the positive and negative parts of yi and that the v+

j and v−j are the positive
and negative parts of vj, respectively.

2. The formulation (2.10) is linear in y+
i , y−i , v+

i , and v−j .
In formulating our linear program, we use the linear objective and linear constraint
in (2.10). To this objective and constraint, we append the following.

1. To force the vj to be as defined in (2.6), we append the constraints

v+
j − v−j −

m∑

i=1

(y+
i − y−i)(ai,j + ai,j) = 0, 1 ≤ j ≤ n, j 6= k

(cf. (3.29) on page 132 of [?]).
2. To (hopefully) force the y+

i , y−i , v+
j and v−j to correspond to the positive

and negative parts of the yi and vj at the solution of the linear program, we
append the natural constraints y+

i ≥ 0, y−i ≥ 0, v+
j ≥ 0, and v−i ≥ 0 for

1 ≤ i ≤ m and 1 ≤ j ≤ n, j 6= k.
Summarizing, we have

Definition 2.2. A traditional width-optimal LP is a linear program consisting
of the objective and equality constraint in (2.10) (for an arbitrarily selected δ ∈ [0, 1]),
along with the equality constraints in item 1 above and the nonnegativity constraints in
item 2 above. Rearranging the objective (2.7) and the equality constraints, the linear
program thus is as in Table 2.1.

In contrast, for a splitting preconditioner, we assume that the denominator dk in
(1.4) (and characterized in (2.3)) contains zero, and we normalize the numerator νk

(as characterized in (2.2)). In particular, the “mignitude-optimal” preconditioner is
based on the optimization problem

find minYk
|dk|

subject to νk = 1.(2.11)

Using a derivation, as in [?] and similar to that above for the width optimal C-
preconditioner8, we obtain a linear program as in Table 2.2.

Definition 2.3. A mignitude-optimal LP is a linear program (for a particular
δ ∈ [0, 1]) as in Table 2.2 (obtained from (2.11) with Theorem 2.1 and formulas (2.7)
and (2.8)).

Among splitting preconditioners, we have chosen the mignitude optimal precon-
ditioner for further study for the following reason.

8in particular, using (3.28) on page 132 and (3.36) on page 135 of [?]

SPLITTING PRECONDITIONERS 7

Table 2.1
A linear program for an optimal width contracting preconditioner

minimize
m∑

i=1

y+
i





w(bi) +
n∑

j=1
j 6=k

w(xj)
[
(1− δ)ai,j − δai,j

]




+
m∑

i=1

y−i





w(bi) +
n∑

j=1
j 6=k

w(xj)
[
δai,j − (1− δ)ai,j

]




+
n∑

j=1
j 6=k

v+
j {w(xj)}+

n∑
j=1
j 6=k

v−j {w(xj)}

subject to:
m∑

i=1

y+
i

{
ai,k

}
+

m∑

i=1

y−i {−ai,k} = 1,

m∑

i=1

y+
i

{−(ai,j + ai,j)
}

+
m∑

i=1

y−i
{
ai,j + ai,j

}

+ v+
j − v−j = 0, 1 ≤ j ≤ n, j 6= k,

and y+
i ≥ 0, y−i ≥ 0, 1 ≤ i ≤ m,

v+
j ≥ 0, v−j ≥ 0, 1 ≤ j ≤ n, j 6= k.

Theorem 2.4. (Lemma 3.7, page 138 of [?], and originally observed in unpub-
lished work by Manuel Novoa) Suppose a preconditioner row Yk solves the optimization
problem (2.11). Then the following are true.

1. If 0 ∈ dk, then x̃k consists of two semi-infinite intervals, and Yk solves

max
νk=1

min
{
− 1

dk

,
1
dk

}
,

and hence maximizes the minimum distance of x̃
(1)
k and x̃

(2)
k from 0 in (1.6).

2. If dk > 0, then x̃k is a single connected interval as in (1.5), and Yk maximizes
the left end pointx̃k.

3. If dk < 0, then x̃k is a single connected interval as in (1.5), and Yk minimizes
the right end pointx̃k.

Thus, if xk is symmetric about 0, then the solution to the optimization problem
corresponding to the mignitude optimal LP maximizes, in the sense, the possibility
that xk ∩ x̃k will contain half or less of the original interval.

In addition to the width-optimal preconditioner and the mignitude-optimal pre-
conditioner, we have formulated, in a way similar to the width-optimal and mignitude-
optimal preconditioners, two preconditioners that force the denominator to contain
zero (and thus force two disjoint intervals if the numerator does not contain zero).
We have formulated a pair of such preconditioners because, for different problems, we
expect one of these to be infeasible.

8 R. B. KEARFOTT AND S. HONGTHONG

Table 2.2
A linear program for a mignitude optimal preconditioner

minimize
m∑

i=1

y+
i

{−δai,k + (1− δ)ai,k

}

+
m∑

i=1

y−i
{
δai,k − (1− δ)ai,k

}
+ v+

k {δ}+ v−k {1− δ}

subject to:
m∑

i=1

y+
i





m(bi)− 1
2
w(bi)

+
n∑

j=1
j 6=k

w(xj)
(

δ

2
ai,j −

1− δ

2
ai,j

)




+
m∑

i=1

y−i




−m(bi)− 1

2
w(bi)

+
n∑

j=1
j 6=k

w(xj)
(
−δ

2
ai,j +

1− δ

2
ai,j

)




+
n∑

j=1
j 6=k

v+
j

{
−δ

2
w(xj)

}

+
n∑

j=1
j 6=k

v−j

{
−1− δ

2
w(xj)

}
= 1,

and
m∑

i=1

y+
i

{−(ai,j + ai,j)
}

+
m∑

i=1

y−i
{
ai,j + ai,j

}

+ v+
j − v−j = 0, 1 ≤ j ≤ n,

and y+
i ≥ 0, y−i ≥ 0, 1 ≤ i ≤ m,

v+
j ≥ 0, v−j ≥ 0, 1 ≤ j ≤ n.

The positive numerator S-preconditioner:

find maxYk
νk

subject to dk ≤ −1 and dk = 1.
(2.12)

The negative numerator S-preconditioner:

find minYk
νk

subject to dk = −1 and dk ≥ 1.
(2.13)

A linear program for the positive numerator S-preconditioner appears in Table 2.3,

SPLITTING PRECONDITIONERS 9

Table 2.3
A linear program for the positive numerator S-preconditioner

minimize
m∑

i=1

y+
i




−m(bi) +

1
2
w(bi) +

n∑
j=1
j 6=k

w(xj)
(
−1− δ

2
ai,j +

δ

2
ai,j

)




+
m∑

i=1

y−i





m(bi) +
1
2
w(bi) +

n∑
j=1
j 6=k

w(xj)
(
−δ

2
ai,j +

1− δ

2
ai,j

)




+
n∑

j=1
j 6=k

v+
j

{
−δ

2
w(xj)

}
+

n∑
j=1
j 6=k

v−j

{
−1− δ

2
w(xj)

}

subject to:
m∑

i=1

y+
i

{
ai,k

}
+

m∑

i=1

y−i {−ai,k} ≤ −1,

m∑

i=1

y+
i {ai,k}+

m∑

i=1

y−i
{−ai,k

}
= 1,

m∑

i=1

y+
i

{−(ai,j + ai,j)
}

+
m∑

i=1

y−i
{
ai,j + ai,j

}

+ v+
j − v−j = 0, 1 ≤ j ≤ n, j 6= k,

and y+
i ≥ 0, y−i ≥ 0, 1 ≤ i ≤ m,

v+
j ≥ 0, v−j ≥ 0, 1 ≤ j ≤ n, j 6= k.

while a linear program for the negative numerator S-preconditioner appears in Ta-
ble 2.4.

3. A Penalty Function Formulation. The linear programs exemplified in
Tables 2.1 through 2.4 do not specify the variables sufficiently enough to force y+

i y−i =
0 and v+

j v−j = 0. In fact, the traditional width-optimal LP often gives solutions for
which both y+

i > 0 and y−i > 0 for many i; however, defining the preconditioner by
yi = y+

i − y−i , 1 ≤ i ≤ m often leads to a good preconditioner. However, in the
case of splitting preconditioners or the mignitude optimal preconditioner, ambivalent
initial results leads us to question whether or not forcing y+

i y−i = 0 and v+
i v−i = 0 is

advantageous. To do so, we simply add the quadratic penalty function

Q = ρ





m∑

i=1

y+
i y−i +

∑

j

v+
j v−j



(3.1)

for some large ρ, to the linear objectives in Table 2.1 or Table 2.2. This results in a
quadratic program9.

4. On Extended Arithmetic. In computing the quotient (1.4), the mignitude-
optimal preconditioner and the S-preconditioners lead to denominators that contain

9which is not necessarily positive-definite

10 R. B. KEARFOTT AND S. HONGTHONG

Table 2.4
A linear program for the negative numerator S-preconditioner

minimize
m∑

i=1

y+
i





m(bi) +
1
2
w(bi) +

n∑
j=1
j 6=k

w(xj)
(

1− δ

2
ai,j − δ

2
ai,j

)




+
m∑

i=1

y−i




−m(bi) +

1
2
w(bi) +

n∑
j=1
j 6=k

w(xj)
(

δ

2
ai,j − 1− δ

2
ai,j

)




+
n∑

j=1
j 6=k

v+
j

{
δ

2
w(xj)

}
+

n∑
j=1
j 6=k

v−j

{
1− δ

2
w(xj)

}

subject to:
m∑

i=1

y+
i {−ai,k}+

m∑

i=1

y−i
{
ai,k

} ≤ −1,

m∑

i=1

y+
i

{
ai,k

}
+

m∑

i=1

y−i {−ai,k} = −1,

m∑

i=1

y+
i

{−(ai,j + ai,j)
}

+
m∑

i=1

y−i
{
ai,j + ai,j

}

+ v+
j − v−j = 0, 1 ≤ j ≤ n, j 6= k,

and y+
i ≥ 0, y−i ≥ 0, 1 ≤ i ≤ m,

v+
j ≥ 0, v−j ≥ 0, 1 ≤ j ≤ n, j 6= k.

0. Since there have been various and conflicting operational definitions of extended
interval arithmetic (when zero is in the denominator of a quotient) in the past, we
clarify here what is appropriate in our context.

Our guiding principle in our use of extended intervals is cset theory as explained,
for example, in [?]. In particular, we want to make certain that no part of the solution
set to Ax − b contained in the initial bounds x is discarded, but we otherwise want
the result to be as small a set as possible. This leads to the rules in Table 4.1.

5. Examples. In this section, we present results from problems that have been
specifically designed, both to test correctness of our implementation and provide initial
evidence of the effectiveness of the underlying ideas. In most of these “toy” problems,
exact bounds on the solution (to within roundout error) can be computed easily
enough by solving 2n linear programs (using the technique explained in [?] and earlier
in [?], based on inequalities presented in [?]), so the quality of the bounds obtained
with the various preconditioners can be easily studied.

In these studies, we used MATLAB version 7 with INTLAB ([?]) to do the interval
arithmetic, while we used linprog and quadprog from the MATLAB optimization
toolbox to approximately solve the linear and quadratic programs, respectively. In all
of the examples in this section, we systematically tried

1. the optimal width contracting preconditioner,
2. the mignitude optimal preconditioner,

SPLITTING PRECONDITIONERS 11

Table 4.1
Rules for extended interval division based on cset theory

[νk, νk]
[dk, dk]

=





[νk, νk]/[dk, dk] in the usual sense if 0 6∈ [dk, dk],

[−∞,∞] if 0 ∈ [νk, νk] and 0 ∈ [dk, dk],

[−∞, t1] ∪ [t2,∞]





if νk < 0, where:

t1 =
{ −∞ if dk = 0,

νk/dk otherwise
and

t2 =
{ ∞ if dk = 0,

νk/dk otherwise

[−∞, t1] ∪ [t2,∞]





if νk ≥ 0, where:

t1 =
{ −∞ if dk = 0,

νk/dk otherwise
and

t2 =
{ ∞ if dk = 0,

νk/dk otherwise.

3. the negative numerator S-preconditioner, and
4. the positive numerator S-preconditioner

with
1. the MATLAB optimization toolbox routine linprog to solve approximately

for the LP preconditioners, and
2. the MATLAB optimization toolbox routine quadprog to solve approximately

the quadratic program involving the penalty term (3.1), with ρ = 1000.
For each of these eight possibilities, we tried the 11 equally spaced values of δ: δ = 0,
δ = .1, δ = .2, . . ., δ = 1.

Example 1. The simple non-singular point system:

A =




1 2 3
4 5 6
7 8 10


 , b =



−1

0
1


 , and x =




[−10, 10]
[−10, 10]
[−10, 10]


 .

The point solution to this point system is x = (5/3,−4/3, 0)T . The width-optimal
preconditioner and mignitude optimal preconditioner should both give Yk a multiple
of the k-th row of the identity matrix, while the LP for the S-preconditioners should
be infeasible.

The results for Example 1 appear in Table 5.1. Summarizing Table 5.1, we see
that, for Example 1, the width-optimal preconditioner was reliable, regardless of δ
and regardless of whether or not a quadratic penalty function was used, while the
S-preconditioner LP and QP were identified as infeasible for all δ tried. (This is a
satisfactory result, since no S-preconditioners exist for this problem.) The mignitude
optimal preconditioner behaved similarly with or without the penalty function, but
only gave a satisfactory result for δ = .3, δ = .4, and δ = .5. Further experimentation
indicated that successful mignitude optimal preconditioners could be computed only
for δ ∈ [0.25, 0.5].

12 R. B. KEARFOTT AND S. HONGTHONG

Table 5.1
Results for Example 1

preconditioner
linear or
quadratic Comments

width-optimal linear

Different solutions were obtained for different δ, but in all cases,
the preconditioner obtained by setting yi = y+

i − y−i was within
five significant digits of (−2/3,−4/3, 1), and the image of the
Gauss–Seidel step was a correct enclosing interval contained in
[1.6666, 1.6667].

width-optimal quadratic
The computation succeeded for all δ, all preconditioners so com-
puted were within five significant digits of (−2/3,−4/3, 1), and,
as without the penalty function, the image of the Gauss–Seidel
step was a correct enclosing interval contained in [1.6666, 1.6667].

mignitude-optimal linear

linprog indicated an unbounded solution or primal and dual in-
feasibility, except for δ = .3, .4, and .5. For δ = .3 and δ = .4, the
corresponding preconditioner was (−.4,−.8, .6), and the Gauss–
Seidel step gave results similar to the width-optimal precondi-
tioner, while a worse preconditioner resulted for δ = .5.

mignitude-optimal quadratic

Although quadprog indicated success, the returned y+
i and y−i

were on the order of 1012 (indicating possibly an unbounded
LP), except for δ = .3, .4, and .5. For those values of δ,
the corresponding preconditioner was Y1 = (−.4,−.8, .6), and
the Gauss–Seidel step gave results similar to the width-optimal
preconditioner.

neg. num.-S linear
No feasible point was found for any value of δ. However, except
for δ = 1, x̃1 was within rounding error of the exact point result,
and x̃1, though somewhat wider, was close to that.

neg. num.-S quadratic No feasible point was found for any value of δ, but useable pre-
conditioners were returned for each δ.

pos. num.-S linear
Either no feasible point was found or both primal and dual were
reported to be infeasible, for all values of δ. No useable precon-
ditioners were returned.

pos. num.-S quadratic
No feasible point was found for any value of δ, but the point
quadprog returned resulted in x̃1 ⊆ [−1.6380, 4.2304], a useful
result.

Example 2. (The Brown’s almost linear function example from [?, p. 121])

A =




2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1

[−18.1, 17.7] [−17.3, 16.9] [−19.0, 18.5] [−18.5, 19.0] [−8.5, 17.7]




,

b =




5.925
5.925
5.925
5.825

−1.00000015625




, and x =




[−2.0, 2.1]
[−2.1, 2.2]
[−1.9, 2.0]
[−2.0, 1.9]
[−2.0, 2.05]




.

Since the components of x are not centered about 0 in Example 2, the linear
programs for the width-optimal, mignitude-optimal, and S preconditioners do not
correspond exactly to solutions to the corresponding nonlinear optimization problems,
but still may give reasonable results.

Results for Example 2 appear in Table 5.2. Summarizing Table 5.2, we observe

SPLITTING PRECONDITIONERS 13

Table 5.2
Results for Example 2

preconditioner
linear or
quadratic Comments

width-optimal linear

Although different values for δ gave different solutions y+
i and

y−i with y+
i y−i 6= 0, in all cases the corresponding preconditioner

Y1 formed by yi = y+
i − y−i was equal to (.8,−.2,−.2,−.2, 0) to

at least 5 significant digits, with x̃1 ⊆ [.7949, 1.6051].

width-optimal quadratic All values of δ gave approximately the same solution, with Y1 ≈
(.8,−.2,−.2,−.2, 0), and with x̃1 ⊆ [.7949, 1.6051].

mignitude-optimal linear

linprog indicated successful termination only for δ =0, .1, .2, .3,
.4, and .5. For δ = 0 and δ = .4, the resulting preconditioner
was (1,−.25,−.25,−.25, 0) to 4 or more significant figures, while
the preconditioners were different for δ = 0, .1, .2, .3, and .5.
The Gauss–Seidel step gave x̃1 ⊆ [.7949, 1.6051] (similar to the
width-optimal preconditioner) for δ = 0, .1, .2, .3, and .4, while
δ = .5 gave10 x̃1 ⊆ [.7065, 1.6198]. Useable x̃1 were obtained for
all δ.

mignitude-optimal quadratic

quadprog indicated success for all values of δ. For δ = 0,
0.1, 0.2, 0.3, and 0.4, the preconditioners were identical to
those obtained with linprog without a penalty function, while,
for δ = 0.5, the preconditioner in this case was identical
to that for δ = 0 and δ = 0.4. For δ = 0.6, 0.7, 0.8,
0.9, and 1.0, the preconditioners had entries of magnitudes
on the order of 1012 or greater; however, the Gauss–Seidel
steps gave x̃1 ⊆ [−0.0434, 4.0434], x̃1 ⊆ [−0.0377, 3.8007],
x̃1 ⊆ [−0.0757, 4.0100], x̃1 ⊆ [−3.5815, 14.3347], and x̃1 ⊆
[0.0109, 1.7200], respectively. (This represents useful width re-
ductions, except for δ = 0.9, but inferior to the reductions for
smaller δ and for the width-optimal preconditioner.

neg. num.-S linear
linprog reported success in all cases, but the resulting precondi-

tioner with yi = y+
i − y−i had entries with ‖Y1|∞ < 10−10 in all

cases, resulting in 0 ∈ ν1, 0 ∈ d1, and x̃1 ⊆ [−∞,∞].

neg. num.-S quadratic
Results were identical to the case without the penalty function.
(The penalty function was not sufficient to force y+

5 y−5 ≈ 0, even

when increased to ρ = 106.)

pos. num.-S linear
linprog reported an unbounded problem for all values of δ ex-
cept for δ = .8, where it gave Y1 ≈ (0, 0, 0, 0, 0). No useable
preconditioners were produced.

pos. num.-S quadratic
quadprog reported success for all values of δ, but ‖Y1|∞ > 1010

in all cases except δ = .8, in which case ‖Y1|∞ < 10−16. No
useable preconditioners were produced.

.

that the width-optimal preconditioner does well, while the mignitude-optimal pre-
conditioner does well at reducing the interval, but not at producing splits, and the
mignitude-optimal preconditioner depends on a good guess for δ. The S-precondition-
ers were unsuccessful at producing splits.

Example 3.

A =
(

1 1
[−2, 0] 1

)
, b =

(
0
1

)
and x =

(
[0, .5]
[−1, 0]

)
.

Subtracting the first equation from the second, we obtain [−1, 1]x1 = 1, whence
x1 ∈ [−∞,−1] ∪ [1,∞] and x2 ∈ [−∞,−1] ∪ [1,∞], and the intersection of this set
with x is the empty set.

The results appear in Table 5.3. Examining Table 5.3, we surmise that there is

14 R. B. KEARFOTT AND S. HONGTHONG

Table 5.3
Results for Example 3

preconditioner
linear or
quadratic Comments

width-optimal linear
linprog reported success for all δ, the resulting preconditioner
was Y1 ≈ (1, 0) for all δ, and this resulted in x̃1 ⊆ [−1, 0],
whence x̃1 ∩ x1 = [0, 0], for all δ.

width-optimal quadratic Although the y+
i and y−i differed from the linear case (without

penalty function), the resulting preconditioners were virtually
the same, for all δ.

mignitude-optimal linear

linprog reported an unbounded problem for δ = 0, 0.1, 0.2,
0.8, 0.9, and 1.0, and reported success for other values of δ.
For δ = 0.3, 0.4, 0.5, 0.6, and 0.7, the resulting precondi-
tioner was Y1 = (−1, 1), resulting in x̃ ⊆ [∞,−1] ∪ [1,∞], and
x̃ ∩ x = ∅. In the unbounded cases δ = 0¡ 0.1, and 0.2, useable
preconditioners were returned, with x̃1 ⊆ [−3.0001,−0.3332],
x̃1 ⊆ [−2.5473,−0.3036], and x̃1 ⊆ [−3.0001,−0.3333], respec-
tively; a useable preconditioner was not produced for δ = 0.8,
0.9, and 1.0.

mignitude-optimal quadratic

quadprog reported an unbounded problem for δ = 0 and δ = 0.1,
the number of iterations exceeded the maximum for δ = 1, and
quadprog reported success for all other values of δ. However, the
resulting preconditioner was Y1 = (1, 1) only for δ = 0.3, 0.4, 0.5,
0.6, and 0.7; for δ = 0.2, 0.8, 0.9, preconditioners with ‖Y1‖∞ >
1010 were produced. Useable preconditioners, similar to those in
produced without the penalty functions, were obtained for the
same δ that usable preconditioners were obtained without the
quadratic penalty function; in addition, a useable preconditioner
was produced for δ = 0.8.

neg. num.-S linear
linprog reported an unbounded problem for each δ. However,
interestingly, in all cases, a useable preconditioner was returned,
giving d1 ≈ [−1, M], ν1 = [−N,−.5M] for large numbers M and
N , so x̃1 ≈ [−∞,−.5] ∪ [N,∞], so x̃1 ∩ x1 = ∅.

neg. num.-S quadratic
quadprog reported an unbounded problem for each δ, but, for
each δ, gave useable preconditioners of the same form as without
the quadratic penalty function.

pos. num.-S linear

linprog reported an unbounded problem for 0 ≤ δ ≤ 0.6, and
reported success for 0.7 ≤ δ ≤ 1. In all of the unbounded cases,
the preconditioner produced x̃1 ⊆ [−∞,−1]∪ [0,∞], not useable
in this case, while Y1 = (−1,−1), x̃1 ⊆ [−∞,−1] ∪ [1,∞], and
x̃1 ∩ x1 = ∅ in the bounded cases.

pos. num.-S quadratic
quadprog reported success for all δ, but gave a preconditioner
Y1 = (−1,−1) only for those δ for which linprog reported suc-
cess. For the other δ, virtually the same x̃1 was produced as
when no quadratic penalty function was used.

no practical gain11 in use of the penalty function, even though not using it results
in solutions with y+

i y−i 6= 0. The most successful preconditioner was the negative
numerator S, giving an optimal x̃1 ∩ x1 = ∅ for each δ tried; the fact that un-
bounded problems were nonetheless produced suggests that the positive numerator
S-preconditioner defining optimization problem (2.12) be modified with the additional
constraint dk ≥ −M and that the corresponding problem (2.13) for the negative nu-
merator preconditioner be modified with the additional constraint dk ≤ M , for some
large number M .

11at least for this problem

SPLITTING PRECONDITIONERS 15

Example 4.

A =




[−1, 1] 1 3
4 [−5, 5] 6

[−1, 1] 8 10


 , b =




100
200
300


 and x =




[−1, 1]
[−1, 1]
[−1, 1]


 .

Table 5.4
Results for Example 4

preconditioner
linear or
quadratic Comments

width-optimal linear

linprog reported success for all δ. For 0 ≤ δ ≤ 0.4, the
resulting preconditioner was Y1 ≈ (0, 0.29412,−0.17647) and
x̃1 ⊆ [2.2174, 8.7647], while, for 0.5 ≤ δ ≤ 1, the resulting pre-
conditioner was Y1 ≈ (0, 0.25, 0) and x̃1 ⊆ [47.25, 52.75]. Thus,

for all δ, x̃1∩x1 = ∅. Also, for all δ for this example, y+
i y−i = 0,

i = 1, 2, 3.

width-optimal quadratic Results in this case were virtually identical to results without the
quadratic penalty function.

mignitude-optimal linear

linprog reported an unbounded problem for all δ. For δ = 0
and δ = 0.1, x̃1 ⊆ [−7.5677, 0], and for 0.2 ≤ δ ≤ 0.4,
x̃1 ⊆ [−7.1044, 0], useful but not optimal. For δ = 0.5,
x̃1 ⊆ [47.25, 52.75], and for δ = 0.6, x̃1 ⊆ [9.4159, 17.7697]
optimal since x̃1 ∩ x1 = ∅ in these cases. For 0.7 ≤ δ ≤ 1,
the corresponding preconditioners gave x̃1 a single interval with
inf x̃1 > 0, not optimal.

mignitude-optimal quadratic

quadprog reported success for 0 ≤ δ ≤ 0.8, but reported “maxi-
mum number of iterations exceeded” for δ = 0.9 and δ = 1. The
resulting x̃1 varied more with respect to δ than when no penalty
function was used, with useable preconditioners for all δ except
δ = 0.9 and δ = 1, and x̃1 ∩ x1 = ∅ for δ = 0.3, 0.4, and 0.5.

neg. num.-S linear
linprog reported an unbounded problem for each δ, but produced
a useable preconditioner with x̃1 ≈ [−M,−23.11] in all cases,
with M large and slightly dependent on δ. Thus, x̃1 ∩ x1 = ∅
for all δ.

neg. num.-S quadratic
quadprog reported success for all 11 values of δ. In each
case, a splitting preconditioner was produced, with x̃1 ⊆
[−∞,−28.5108] ∪ [M,∞], with M large and slightly dependent
on δ. Thus, x̃1 ∩ x1 = ∅ for all δ.

pos. num.-S linear
linprog reported an unbounded problem for each δ, but, for each
δ, a preconditioner was produced that gave a single interval x̃1 ⊆
[M, N], with M and N large and dependent on δ. Thus, in all
cases, x̃1 ∩ x1 = ∅.

pos. num.-S quadratic
quadprog reported success for all δ; for each δ, a splitting precon-
ditioner was produced which gave x̃1 ⊆ [−∞,−M]∪[164.625,∞],
for M large and somewhat dependent on δ; hence, for all δ,
x̃1 ∩ x1 = ∅.

For this small (m = n = 3) but singular problem, the techniques from [?] (and
reviewed in [?]) indicate that no component of the solution set to Ax = b lies in x.
The preconditioner results appear in Table 5.4. For Example 4, use of the quadratic
penalty function was apparently advantageous in forcing S-preconditioners, and the
S-preconditioners were apparently superior to the mignitude-optimal preconditioners.
However, the width-optimal preconditioners, although apparently corresponding to
unbounded problems, worked just as well in this case.

16 R. B. KEARFOTT AND S. HONGTHONG

Example 5.

A =




[0, 1] [−1, 0] 0
0 [0, 1] [−1, 0]
−1 0 1


 , b =



−.25
−.25

0


 and x =




[−.5, .5]
[−.5, .5]
[−.5, .5]


 .

Using the techniques from [?], we compute the exact interval bounds on the portion

Table 5.5
Results for Example 5

preconditioner
linear or
quadratic Comments

width-optimal linear linprog reported success and gave preconditioner Y1 ≈ (0, 0,−1)
for all δ, but x̃1 = [−.5, .5], a useless computation.

width-optimal quadratic Results were virtually identical to the case without a quadratic
penalty function.

mignitude-optimal linear
linprog reported success for all δ, with preconditioners of the
form Y1 ≈ (0, 0, a), with a depending on δ. For each δ, x̃1 =
[−.5, .5], not useful.

mignitude-optimal quadratic
quadprog reported success for all δ except for δ = 0.5; precon-
ditioners produced were virtually identical to those without the
quadratic penalty function, except for δ = 0.5, in which case the
preconditioner was the unusable Y1 ≈ (0, 0, 0).

neg. num.-S linear
linprog reported an unbounded problem for δ = 0, and reported
success for all other values of δ. In all cases, 0 ∈ ν1, so the result
x̃1 = [−∞,∞] is unusable.

neg. num.-S quadratic quadprog reported success for all 11 values of δ, but x̃1 =
[−∞,∞] for every δ, an unusable result.

pos. num.-S linear
linprog reported an unbounded problem for each δ, and the pre-
conditioners returned gave 0 6∈ d1 and x̃1 = [−a, b], with a and
b depending on δ, but a > .5 and b > .5 for each δ.

pos. num.-S quadratic
quadprog reported success for all δ; for each δ, a splitting pre-
conditioner was produced, but 0 ∈ ν1, so x̃1 = [−∞,∞], an
unusable result for each δ.

of the solution set lying in x to be

([0.25, 0.5], [0.25, 0.5], [0.25, 0.5]) ∪ ([−0.5,−0.25], [−0.5,−0.25], [−0.5,−0.25]),

whence the best possible bounds x̃1 are x̃1 = [−0.5,−0.25]∪ [0.25, 0.5]. An interesting
aspect of this problem is that a preconditioner without 0 ∈ d1 cannot be effective.
The results for the preconditioners appear in Table 5.5. We see that, despite the
fact that the actual intersection of the solution set with x could be bounded more
narrowly than by x, no preconditioner gave a useable result for this example, for any
value of δ.

Example 6.

A =




[−.5, .5] [−.25, .25] 0
0 [0, .25] [−.25, 0]
−1 0 1


 ,

b =



−.25
−.25

0


 and x =




[−.5, .5]
[−.5, .5]
[−.5, .5]


 .

SPLITTING PRECONDITIONERS 17

Table 5.6
Results for Example 6

preconditioner
linear or
quadratic Comments

width-optimal linear linprog reported success and gave preconditioner Y1 ≈ (0, 0,−1)
for each δ, but x̃1 = [−.5, .5], a useless computation.

width-optimal quadratic
quadprog reported success for each δ and the values returned
resulted in the same preconditioners as without the quadratic
penalty function.

mignitude-optimal linear

linprog reported success for 0 ≤ δ ≤ 0.5, and reported an un-
bounded problem for the other values of δ. For 0 ≤ δ ≤ .5, the
preconditioner returned had 0 6∈ d1, and x̃1 ⊆ [0.5, a], where a
depended on δ; this gives an optimal result x̃1 ∩ x1 = {0.5}, for
0 ≤ δ ≤ 0.5. For 0.6 ≤ δ ≤ 0.8 and δ = 1, x̃1 = [0, 2], useable
but not optimal, while for δ = 0.9, x̃1 ⊆ [−0.039, 1.885], also
useable but not optimal.

mignitude-optimal quadratic
quadprog reported success for each δ. However, for each δ except
δ = 0.9, the resulting preconditioner gave x̃1 of the same form
and with the same usefulness as without the quadratic penalty
function. For δ = 0.9, x̃1 ⊆ [−0.517, 0.589], not useful.

neg. num.-S linear linprog reported success for each δ. For each δ, x̃1 =
[−∞,−0.25] ∪ [0.25,∞], useful but not optimal.

neg. num.-S quadratic
quadprog reported success for all δ, and gave the same x̃1 as
without the quadratic penalty function, despite the fact that the
returned optima and the resulting preconditioners differed.

pos. num.-S linear
linprog reported an unbounded problem for each δ, the precon-
ditioners returned had 0 6∈ d1, and, for each δ [−.5, .5] ⊂ x̃1, not
useful.

pos. num.-S quadratic quadprog reported success for each δ; for each δ, d1 ≈ [−1, 1],
but 0 ∈ ν1; thus x̃1 = [−∞,∞], not useful for any δ.

In Example 6, the intersection of the solution set with x is {(0.5, 0.5, 0.5)}. Precon-
ditioner results appear in Table 5.6. We see that the width-optimal preconditioner is
useless for Example 6, and the only useful preconditioners were the negative numera-
tor S and the mignitude optimal; interestingly, the mignitude optimal preconditioner
was the only preconditioner that resulted in optimally narrow bounds x̃1.

Example 7.

A =




[−.5, .5] [−.25, .25] 0
0 [0, .25] [−.25, 0]

[−1, 0] 0 1


 ,

b =



−.25
−.25

0


 and x =




[−.5, .5]
[−.5, .5]
[−.5, .5]


 .

Using the techniques in [?], we see that, as in Example 6, the intersection of the
solution set for Example 7 with x is the single point {(0.5, 0.5, 0.5)}, while the pre-
conditioner results appear in Table 5.7.

For one summary of these seven examples, we assign a score to each preconditioner
computation according to the number of δ for which the maximum width reduction
in x̃1 ∩ x1 versus x1 is achieved; these results appear in Table 5.8.

In Table 5.9, we list the number of times each particular preconditioner led to
successful reduction of the measure of x, regardless of whether or not the amount of re-

18 R. B. KEARFOTT AND S. HONGTHONG

Table 5.7
Results for Example 7

preconditioner
linear or
quadratic Comments

width-optimal linear
linprog reported (correctly) that the problem is infeasible, for
all values of δ; the returned preconditioner resulted in x̃1 =
[−∞,∞], unusable in all cases.

width-optimal quadratic quadprog also reported infeasibility, and x̃1 = [−∞,∞], as with-
out the quadratic penalty function.

mignitude-optimal linear

linprog reported success and returned preconditioners with 0 ∈
d1, 0 6∈ ν1, for each δ. Except for δ = 1, x̃1 = [−∞,−m] ∪
[0.5,∞], with M depending on δ but large, so that x̃1 ∩ x1 =
{0.5}, an optimal result. For δ = 1, x̃1 ⊆ [−∞,−M] ∪
[0.2660,∞], useful but not optimal.

mignitude-optimal quadratic quadprog reported success for each δ, and gave x̃1 ∩ x1 = {0.5},
an optimal result for each δ.

neg. num.-S linear linprog reported success, and gave x̃1 = [−∞,−0.25]∪ [0.25,∞],
useful but not optimal, for each δ.

neg. num.-S quadratic
quadprog reported success for each δ. Although the actual pre-
conditioners differed from those obtained without the quadratic
penalty function, the effect was the same, namely: x̃1 =
[−∞,−0.25] ∪ [0.25,∞], useful but not optimal, for each δ.

pos. num.-S linear
linprog reported an unbounded problem for each δ, the precondi-
tioners returned had 0 ∈ d1 and 0 ∈ ν1, and hence x̃1−[−∞,∞],
not useful for any δ.

pos. num.-S quadratic
quadprog reported success for each δ, but, as without the
quadratic penalty function, x̃1 − [−∞,∞], not useful for any
δ.

Table 5.8
Summary of when the preconditioners gave optimally sharp results

Ex.# width opt. mig. opt. neg. num. S pos. num. S
lin. / quad. lin. / quad. lin. / quad. lin. / quad.

1 11 / 11 2 / 3 10 / 0 0 / 0
2 11 / 11 5 / 5 0 / 0 0 / 0
3 0 / 0 8 / 8 11 / 11 4 / 4
4 11 / 11 2 / 3 11 / 11 11 / 11
5 0 / 0 0 / 0 0 / 0 0 / 0
6 0 / 0 6 / 6 0 / 0 0 / 0
7 0 / 0 10 / 11 0 / 0 0 / 0

Totals 33 / 33 33 / 36 22 / 22 15 / 15

duction was optimal. Finally, in Table 5.10, we list, for each preconditioner, the num-
ber of δ for which linprog or quadprog reported successful termination. Table 5.10
illustrates that successful termination depended on δ most for the mignitude optimum
preconditioner, and use of the quadratic penalty function12 forced successful termina-
tion (and, presumably, forced the corresponding preconditioner computation problem
to be well-posed) in a number of cases.

One infers from these small examples that the various preconditioners are comple-

12that is, using quadprog rather than linprog

SPLITTING PRECONDITIONERS 19

Table 5.9
Summary of when the preconditioners successfully reduced x

Ex.# width opt. mig. opt. neg. num. S pos. num. S
lin. / quad. lin. / quad. lin. / quad. lin. / quad.

1 11 / 11 11 / 10 11 / 11 0 / 11
2 11 / 11 11 / 10 0 / 0 0 / 0
3 11 / 8 8 / 9 11 / 11 4 / 4
4 11 / 11 11 / 9 11 / 11 11 / 11
5 0 / 0 0 / 0 0 / 0 0 / 0
6 0 / 0 11 / 10 11 / 11 0 / 0
7 0 / 0 11 / 11 11 / 11 0 / 0

Totals 44 / 41 63 / 59 55 / 55 15 / 26

Table 5.10
Summary of when the LP or QP solver reported successful termination

Ex.# width opt. mig. opt. neg. num. S pos. num. S
lin. / quad. lin. / quad. lin. / quad. lin. / quad.

1 11 / 11 3 / 11 0 / 0 0 / 0
2 11 / 11 6 / 10 11 / 11 1 / 11
3 11 / 11 5 / 8 0 / 0 4 / 11
4 11 / 11 1 / 8 0 / 11 0 / 11
5 11 / 11 11 / 11 11 / 11 0 / 11
6 11 / 11 6 / 11 11 / 11 0 / 11
7 0 / 0 11 / 11 11 / 11 0 / 11

Totals 66 / 66 43 / 60 44 / 44 5 / 66

mentary, with one working where the others do not. Along these lines, the mignitude
optimal preconditioner appears the most versatile, but its performance depends more
on δ than the other preconditioners. There is qualitatively no difference between
the positive numerator S and negative numerator S preconditioners, since one can be
obtained from the other by geometrically reflecting xk about 0, so the difference in
performance seen in the tables must be due to selection of the examples. In the tables,
we see little difference in effectiveness of the resulting preconditioners between using
the quadratic penalty function and not using it; however, we have observed slightly
more predictability, more normal terminations in quadprog versus linprog (and pre-
sumably if other linear programming and quadratic programming solvers were used)
and optima that are better scaled, when the quadratic penalty function is used. Thus,
if the computational cost is similar, use of the quadratic penalty function is probably
preferable.

5.1. Comparison with Alternate Techniques. Most general-purpose solvers
do not handle the case when A is not regular. For example, verifylss, distributed
with INTLAB, gives an optimal enclosure13 to x1 for Example 1, but gives all compo-
nents of x1 equal to [NaN, NaN] for Examples 2 through 7.

6. Possible Procedures for Use of These Preconditioners. There is a
number of ways that use of these preconditioners can be combined to result in algo-

13to within rounding error

20 R. B. KEARFOTT AND S. HONGTHONG

rithms that may be more effective, and yet do not suffer from exponential complexity
when n is large. In particular, the following procedure will result in an optimal re-
duction of x in each of the examples in §5 except for Example 5, but will not result
in exponential complexity with respect to m and n, if linear programming solvers or
quadratic programming solvers that execute in polynomial time are used. (That is,
the number of linear or quadratic programs to be solved for a particular coordinate
is constant with respect to m and n.)

Algorithm 1. (Gives optimal width reductions for each of the examples except
Example 5).
INPUT: the m by n interval matrix A, the interval m-vector b, the initial bounds x,
a subdivision number L for δ, and the coordinate index k to be reduced.
OUTPUT: new bounds x̃k on the k-th coordinate.

1. x̃k ← xk.
2. Compute x̃

(w)
k using a Gauss–Seidel step with a width-optimal preconditioner

and a random δ ∈ [0, 1].
3. x̃k ← x̃k ∩ x̃

(w)
k .

4. IF x̃k = ∅ THEN RETURN
5. Compute x̃

(ns)
k using the negative numerator S-preconditioner14 and a random

δ ∈ [0, 1].
6. x̃k ← x̃k ∩ x̃

(ns)
k .

7. IF x̃k = ∅ THEN RETURN
8. Compute x̃

(ps)
k using the positive numerator S-preconditioner15 and a random

δ ∈ [0, 1].
9. x̃k ← x̃k ∩ x̃

(ps)
k .

10. IF x̃k = ∅ THEN RETURN
11. h ← 1/L.
12. DO for i = 0 to L.

(a) Compute x̃
(mig,i)
k using the mignitude-optimal preconditioner with δ =

ih.
(b) x̃k ← x̃k ∩ x̃

(mig,i)
k .

(c) IF x̃k = ∅ THEN RETURN
END DO

END Algorithm 1

The following algorithm will give a successful, but perhaps not optimal, reduction
for each of the examples except Example 5, but will often complete more quickly than
Algorithm 1.

Algorithm 2. (Gives successful width reductions for each of the examples except
Example 5).
INPUT: the m by n interval matrix A, the interval m-vector b, the initial bounds x,
a subdivision number L for δ, and the coordinate index k to be reduced.
OUTPUT: new bounds x̃k on the k-th coordinate.
Algorithm 2 is the same as Algorithm 1, except that each test

IF x̃k = ∅
is replaced by

IF x̃k 6= xk.

14x̃
(ns)
k possibly consists of two disjoint semi-infinite intervals

15x̃
(ps)
k possibly consists of two disjoint semi-infinite intervals

SPLITTING PRECONDITIONERS 21

END Algorithm 2

Although Algorithm 2 is similar to Algorithm 1 at this level of explanation, Algo-
rithm 2 is somewhat simpler to implement, since, in principle, two or more intervals
can be produced from each stage of Algorithm 1, so that the returned value x̃k in
general would consist of a list of more than two intervals. However, because of the
nature of the semi-infinite intervals produced with the extended arithmetic, we think
this is unlikely, if not provably impossible.

7. General Experiments. For a more objective assessment, we designed and
carried out some experiments involving random matrices. In particular, we fixed m, n,
B, and R, and generated random m by n interval matrices A, random right-hand-side
vectors b, and random initial bounding boxes x as follows:

1. Each entry of A is of the form

[ai,j − βi,j , ai,j + βi,j],

where ai,j is pseudo-uniformly distributed in the interval [−1, 1] and βi,j is
pseudo-uniformly distributed in the interval [0, B].

2. Each entry of b is of the form

[ωi + bi − γi, ωi + bi + γi],

where, as with the entries of A, bi is pseudo-uniformly distributed in the
interval [−1, 1], and γi is pseudo-uniformly distributed in the interval [0, B],
and where the offset ωi is pseudo-uniformly distributed in the interval [0, Ω].

3. Each entry of x is of the form [−ri, ri], where ri is pseudo-uniformly dis-
tributed in the interval [0, R].

We used the function rand from Matlab version 7.04 to generate the pseudo-uniform
distribution. With this scheme, we generated sets of problems for analysis; for each
such set of problems, we saved the initial state of rand, to be able to check and
reproduce the results. For each problem in a set, we attempted to use the Gauss–
Seidel method to produce narrower bounds on x1. For each set of problems, we
gathered statistics for each of the following four preconditioner schemes:

1. the inverse midpoint preconditioner only;
2. the width-optimal preconditioner only;
3. Algorithm 1;
4. Algorithm 2.

We used the linear formulation for the width-optimal preconditioner and the quadratic
formulation for each of the other preconditioners, both when the width-optimal is used
alone and within Algorithms 1 and 2. The experimental variables and statistics we
gathered for each set of problems, for each of these schemes, are as follows:
Nt: the total number of problems in the set;
Nw: the number of problems for which the scheme reduced the measure of the image

intersection x̃1 ∩ x1.
Ns: the number of problems for which the scheme returned a disconnected set of two

intervals.
NM : The number of problems for which the scheme resulted in the maximum reduc-

tion of radius over all possible schemes.
ρ÷: The average, over all problems in the set, of the ratio of the radius of x1 to the

sum of the radii of the components of x̃1 ∩ x1.

22 R. B. KEARFOTT AND S. HONGTHONG

T : The total clock time in seconds to execute a Gauss–Seidel step for that particular
preconditioner for all of the problems in the set16.

In our first set of experiments, we set Ω = 0. In these experiments, it is likely
that the solution set contains points near the origin in Rn, making it unlikely that the
solution set contains disconnected components (and less likely that a preconditioner
will produce a split), and less likely that Algorithm 1 will exit due to x̃1 ∩ x1 = ∅
before all steps have been completed. The results appear in Table 7.1. We note that

Table 7.1
Experiments with random problems, Ω = 0.

m n Nt B R Ω type Nw Ns NM ρ÷ T
3 3 100 1 1 0 Inv. mid.: 8 3 71 0.946 0.89

Opt. width: 17 0 80 0.917 5.20
Alg. 1: 29 1 99 0.775 95.97
Alg. 2: 29 5 86 0.827 63.62

10 10 100 1 1 0 Inv. mid.: 0 0 100 1.000 1.62
Opt. width: 0 0 100 1.000 33.44

Alg. 1: 0 0 100 1.000 563.49
Alg. 2: 0 0 100 1.000 561.48

10 10 100 0.1 1 0 Inv. mid.: 1 0 85 0.999 1.59
Opt. width: 11 0 92 0.961 33.29

Alg. 1: 15 0 100 0.942 620.72
Alg. 2: 15 0 93 0.956 539.49

10 10 10 0.1 100 0 Inv. mid.: 0 0 100 1.000 1.63
Opt. width: 0 0 100 1.000 32.96

Alg. 1: 0 0 100 1.000 552.29
Alg. 2: 0 0 100 1.000 547.78

50 50 10 0.01 10 1 Inv. mid.: 0 0 10 1.000 0.68
Opt. width: 0 0 10 1.000 81.27

Alg. 1: 0 0 10 1.000 3772.12
Alg. 2: 0 0 10 1.000 3765.33

all preconditioner schemes seem to have failed when n is large and B is large, or when
R is large. Such cases do not give us much information, since it is possible (but we do
not know) in those cases that the exact solution set contains the original bounds x
for all of the generated problems. However, the relative performance of the different
preconditioner schemes gives us some information in the other cases.

Runs with Ω 6= 0 appear in Table 7.2. There, we observe more success, especially
for the composite algorithms, for larger values of Ω and smaller values of B. This is
to be expected, since the solution set to Ax = b is more likely to lie outside x, and
hence splitting preconditioners are more likely to be effective in such cases.

Finally, we did some experiments with no uncertainty in the right-hand-side vector
b (that is, with b a point vector); this corresponds to use of these techniques in
interval Newton methods. The results appear in Table 7.3. Comparing Table 7.3
with Table 7.2, we see that all preconditioner schemes do a better job when there is a
point right side vector, although some problems (especially with larger m and n) are
still difficult.

8. Summary and Future Work. Sharply bounding the solution sets of linear
systems with large uncertainties in the coefficients and right-hand-side vectors is an
NP-hard problem, but various heuristics, including preconditioning, can be used. We
have presented details of linear programming formulations for such preconditioners
for cases where the solution set is unbounded or contains more than one component,

16We ran the experiments on a dual-processor Dell Optiplex GX-280 with dual 3.2 gigahertz
processors and 2 gigabytes of RAM. Since nested loops were used in Matlab at several places, loop
overhead may be a significant component of the overall time.

SPLITTING PRECONDITIONERS 23

Table 7.2
Experiments with random problems, Ω 6= 0.

m n Nt B R Ω type Nw Ns NM ρ÷ T
10 10 100 1 1 1.0 Inv. mid.: 0 0 100 1.000 1.63

Opt. width: 0 0 100 1.000 33.35
Alg. 1: 0 0 100 1.000 566.42
Alg. 2: 0 0 100 1.000 563.16

10 10 100 0.1 1 1.0 Inv. mid.: 3 0 36 0.984 1.60
Opt. width: 16 0 38 0.931 33.22

Alg. 1: 64 0 100 0.476 495.51
Alg. 2: 64 0 52 0.681 318.04

10 10 100 1 1 2.0 Inv. mid.: 0 0 99 1.000 1.59
Opt. width: 0 0 99 1.000 33.20

Alg. 1: 1 0 100 0.998 593.34
Alg. 2: 1 0 100 0.998 585.54

10 10 100 1 1 5.0 Inv. mid.: 2 0 25 0.984 1.60
Opt. width: 12 0 28 0.916 33.60

Alg. 1: 76 5 100 0.305 405.30
Alg. 2: 76 11 52 0.478 237.36

10 10 100 0.1 1 5.0 Inv. mid.: 64 0 54 0.406 1.61
Opt. width: 71 0 44 0.430 33.69

Alg. 1: 100 0 100 0.000 113.19
Alg. 2: 100 0 65 0.168 56.19

50 50 10 0.1 1 5.0 Inv. mid.: 0 0 0 1.000 0.67
Opt. width: 0 0 0 1.000 80.42

Alg. 1: 10 0 10 0.000 671.95
Alg. 2: 10 0 3 0.350 332.57

Table 7.3
Experiments with random problems, no uncertainty in b.

m n Nt B R Ω type Nw Ns NM ρ÷ T
10 10 100 0.1 1 0.0 Inv. mid.: 49 0 22 0.688 1.66

Opt. width: 68 0 14 0.667 34.21
Alg. 1: 94 0 99 0.133 347.50
Alg. 2: 93 1 22 0.511 102.57

50 50 10 0.1 1 0.0 Inv. mid.: 0 0 10 1.000 0.67
Opt. width: 0 0 10 1.000 79.98

Alg. 1: 0 0 10 1.000 4849.18
Alg. 2: 0 0 10 1.000 4856.83

50 50 10 0.01 1 0.0 Inv. mid.: 6 0 3 0.514 0.68
Opt. width: 7 0 0 0.715 80.30

Alg. 1: 10 0 10 0.000 475.97
Alg. 2: 10 0 4 0.388 111.13

10 10 100 1.0 1 1.0 Inv. mid.: 0 0 100 1.000 1.60
Opt. width: 0 0 100 1.000 33.20

Alg. 1: 0 0 100 1.000 566.26
Alg. 2: 0 0 100 1.000 562.78

10 10 100 0.1 1 1.0 Inv. mid.: 57 0 30 0.572 1.63
Opt. width: 74 0 20 0.536 33.33

Alg. 1: 98 0 100 0.033 244.84
Alg. 2: 98 0 33 0.373 68.73

10 10 100 1.0 1 2.0 Inv. mid.: 0 0 93 1.000 1.59
Opt. width: 2 0 93 0.998 33.48

Alg. 1: 7 0 100 0.946 585.66
Alg. 2: 7 0 97 0.965 564.11

10 10 100 1.0 1 5.0 Inv. mid.: 10 6 11 0.948 1.61
Opt. width: 17 0 17 0.867 33.23

Alg. 1: 92 3 100 0.099 299.71
Alg. 2: 92 8 47 0.361 183.40

and have posed related penalty-function formulations that result in a quadratic pro-
gram. We have used specially designed examples to illustrate the contexts in which
each of these are advantageous, and we have proposed two composite polynomial
time algorithms which incorporate all of these preconditioners. We have tested these
algorithms with randomly generated matrices.

Our results illustrate that the inverse midpoint preconditioner is inadequate in

24 R. B. KEARFOTT AND S. HONGTHONG

such cases, but our optimal preconditioners sometimes perform well or adequately. In
particular, our linear programming- or quadratic programming-based splitting pre-
conditioners, previously examined only17 [?], are worth incorporating into solution
algorithms, in various contexts.

The performance of our computations may be improved, particularly for specific
classes of problems, by heuristically identifying which preconditioners may be most
appropriate and only using those, rather than a sequence of all preconditioners18.
Furthermore, theory as observed in [?] can be used to inexpensively determine a
priori non-existence of S-preconditioners, obviating the need to formulate and solve
the linear or quadratic programs in such cases.

We observe that the various steps of Algorithm 1 are completely independent,
and thus can be done in parallel, with the intersection of the various x̃k with xk

computed afterwards.
Finally, the execution time depends heavily on the linear programming solver

or quadratic programming solver used to compute the preconditioners; choices of
solver, including choice of either the linear programming or quadratic programming
formulation, appropriate for the problem size and structure, will undoubtedly improve
performance.

17Splitting not involving linear programming was also examined in [?] and [?].
18This has been done, for example, in [?].

