
CONSTRUCTION OF VALIDATED UNIQUENESS REGIONS FOR
NONLINEAR PROGRAMS IN WHICH CONVEX SUBSPACES HAVE

BEEN IDENTIFIED

R. BAKER KEARFOTT∗

Abstract. In deterministic global optimization algorithms for constrained problems, it can be
advantageous to identify and utilize coordinates in which the problem is convex, as Epperly and
Pistikopoulos have done. In self-validating versions of these algorithms, a useful technique is to
construct regions about approximate optima, within which unique local optima are known to exist;
these regions are to be as large as possible, for exclusion from the continuing search process. In this
paper, we clarify the theory and develop algorithms for constructing such large regions, when we
know the problem is convex in some of the variables. In addition, this paper clarifies how one can
validate existence and uniqueness of local minima when using the Fritz John equations in the general
case. We present numerical results that provide evidence of the efficacy of our techniques.
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1. Introduction. We consider the general global optimization problem

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,
where ϕ : x → R and ci, gi : x → R, and where x ⊂ Rn is the
hyperrectangle (box) defined by

x = (x1, . . . , xn) = ([x1, x1], [x2, x2], . . . , [xn, xn]),
where the xi and xi are constant bounds.

(1.1)

Branch and bound algorithms for solving Problem (1.1) proceed by an exhaustive
search of the hyperrectangle (“box”) x, consisting of the following general elements.
(branching) subdividing x, forming two sub-boxes x(1) and x(2) by bisecting one of

the coordinate intervals, that is, by replacing [xi, xi] by [xi, (xi + xi)/2] and
by [(xi + xi)/2, xi], for some i.

(bounding) obtaining lower bounds ϕ(x(i)) on the objective over the sub-boxes.
(fathoming) rejecting sub-boxes such that ϕ(x(i)) > ϕ, where ϕ is an upper bound

on the global optimizer1.
(recursion) further subdividing sub-boxes whose diameters are still large and which

aren’t fathomed.
In this procedure, the lower bounds on the objective become sharper as the diam-

eters of the sub-boxes become small. Typically, the coordinate i for bisection is chosen
to be the one with a scaled maximum width2. If the coordinate of maximum width
is bisected at each step, then 2n boxes must, in general, be produced to uniformly
subdivide x into boxes that have half the diameter of the original box. Thus, the
entire process can be impractical for a large number of variables n.

∗Department of Mathematics, University of Louisiana, U.L. Box 4-1010, Lafayette, Louisiana,
70504-1010, USA (rbk@louisiana.edu).

1The upper bound on the global optimizer is typically obtained by evaluating the objective at
feasible points, such as those obtained by local optimization software.

2with various scalings, such as the “maximum smear” or “Ratz scaling” of [8, (5.1),p. 175].
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In [2], Epperly and Pistikopoulos showed that, if the objective and constraints
are convex3 with respect to n − k of the variables, then only the k non-convex vari-
ables need to be subdivided, thus reducing the underlying dimension in the branch
and bound process from n to k. Experiments in [2] show a clear advantage for this
procedure.

The Epperly/Pistikopoulos procedure relies on the idea that, if Problem (1.1) is
convex, then it can be approximated arbitrarily closely by a linear relaxation, that
is, by a linear program (LP) whose optimum ϕ∗ is less than or equal to the optimum
of the original problem (1.1); see [25] for a description of the process. By a “close
approximation,” we mean that the solution xLP to the optimum of the relaxation
is near the solution ϕ∗. In the convex case, with the addition of slack variables,
the objective can be replaced by a linear objective and a convex constraint, and
each constraint can be replaced by a set of linear constraints whose feasible region
contains the feasible region of the original problem, but whose extent outside the
original feasible region is arbitrarily small. In [13, §1], we present a formal view,
along with some examples, of an automated process for producing a linear relaxation
and determining which variables are convex.

If some of the variables occur in a non-convex way, then the entire problem can be
approximated well (as described above) only if the coordinate bounds corresponding
to the non-convex coordinates are sufficiently narrow. As the non-convex coordinates
are subdivided, various processes other than bisection, such as those described in [25,
Ch. 5], can be used to obtain narrower bounds on the convex coordinates. Also, sharp
lower bounds ϕ(x) can be obtained from the linear relaxation, even if these convex
coordinates are not small. In these ways, sub-boxes can be fathomed, even though
subdivision occurs only in the non-convex variables.

1.1. Validated Branch and Bound. By validated methods for solving Prob-
lem (1.1), we mean methods that take account of roundoff error in a mathematically
rigorous way. Such methods return bounds ϕ∗ on the optimum ϕ∗ and bounds x∗ on
the optimizer x∗, such that, in the absence of programming, operating system, and
hardware errors, completion of the algorithm with bounds ϕ∗ and x∗ is a mathemat-
ical proof that ϕ∗ ∈ ϕ∗ and x∗ ∈ x∗.

Work by Neumaier and Shcherbina [20] and independently by Jansson [7] has
enabled validated solution of Problem (1.1) with linear relaxations. Several researchers
have developed validated algorithms employing validated linear relaxations, including
[1], [16], us ([10]), and others.

We have applied the linear relaxations in a validated context in [13]. However,
although our basic algorithmic structure is similar to that in [2], we did not observe
the advantage of subdivision in a subspace that was apparent in [2]. This could be
due to the fact that we have not yet devised validated versions of all of the narrowing
techniques in [25, Ch. 5]. Moreover, additional techniques, such as interval Newton
methods and ε-inflation with box complementation have been used in validated, but
not non-validated algorithms to exclude parts of the search region; in our work in
[13], we did not structure these techniques to take advantage of convexity.

In this paper, we first point out and derive relevant aspects of convexity analysis
in §2. Next, in §3, we review and derive results for the interval Newton procedures

3We say that an inequality constraint g(x) ≤ 0 is convex if and only if g is a convex function,
while we say an equality constraint c(x) = 0 is convex if and only if both c and −c are convex
functions
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to be used. We present the overall goals, as well as details, of the algorithms in §4,
while numerical experiments appear in §5. We summarize in §6.

2. Convex Subspaces. Here, we clarify our terminology and present a theorem
underlying our validation procedure that makes use of convex variables.

Definition 2.1. Consider Problem (1.1), consider a set of indices P ⊂ {i}n
i=1

with cardinality np, and fix ξi ∈ xi for i ∈ P. For each such choice, define a new
problem (1.1)P of the same form as Problem (1.1) but with ϕ, c, and g replaced by ϕ̃,
c̃, and g̃, where ϕ̃ : Rn−np → R, c̃ : Rn−np → Rm1 , and g̃ : Rn−np → Rm2 are defined
by fixing xi at ξi in ϕ, c, and g, respectively, for i ∈ P. We say that Problem (1.1)P
is the derived subspace problem to Problem (1.1) at (ξi1 , . . . , ξinp

), ij ∈ P.
Definition 2.2. We say that Problem (1.1) is convex with respect to the variable

set Q ⊆ {i}n
i=1, provided the derived subspace problem (1.1)P is convex for each choice

of the ξi ∈ xi, i ∈ P, where P = {i}n
i=1 \Q.

The following theorem underlies one of our important algorithm constructs.
Theorem 2.3. Assume
1. x† is a local optimizer of Problem (1.1).
2. x† is known to be unique within a set of bounds x† = (x†1, . . . , x

†
n), x†i ⊆ xi

for i ∈ {i}n
i=1.

3. Problem (1.1) is convex with respect to a variable set Q.
4. Define P = {i}n

i=1 \Q, and partition the coordinates of x ∈ x into xP =
(xi1 , . . . , xinp

), ij ∈ P and xQ = (xi1 , . . . , xin−np
), ij ∈ Q; assume (1.1)P

has a unique solution xQ ∈ x†Q at each point xP ∈ x†P .
Then, the local optimizer is has the smallest objective value of any point x within the
new box x̃† obtained by replacing x†i by the corresponding entire coordinate range xi,
for each i ∈ Q.
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Fig. 2.1. Construction in the proof of Theorem 2.3.

Proof. Suppose there is a feasible point x̂ ∈ x̃† for which ϕ(x̂) ≤ ϕ(x†), and
form an intermediate point x‡ = (x‡P , x‡Q) such that x‡P = x̂P and x‡Q = x†Q. (See
Figure 2.1.) Then, Assumption 3 implies that there is an x∗Q ∈ x†Q that is the
unique solution to (1.1)P for parameters x‡P . Assumption 3 then implies that ϕ is
nondecreasing on the line segment between (x̂P , x∗Q) and x̂, that is, ϕ(x̂P , x∗Q) ≤ ϕ(x̂).
Furthermore, Assumptions 1 and 2 and the inference that (x̂P , x∗Q) must be feasible
(as a solution to (1.1)P) implies that ϕ(x†) = ϕ(x†P , x∗Q) < ϕ(x∗) = ϕ(x̂P , x∗Q),
whence ϕ(x†) < ϕ(x̂), contradicting the assumption on x̂. Therefore, ϕ(x) > ϕ(x†)
for every x ∈ x̃†, and the theorem is proved.

Assumption 3 is checked in a symbolic preprocessing step, as explained in [2] and
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[13], while Assumptions 1, 2, and 4 can be checked in a natural way with the interval
Gauss–Seidel method, as we explain below.

3. Interval Newton Methods, Convex Subspaces, and Constraints. We
review and develop properties of interval Newton methods in the context of validating
the assumptions of Theorem 2.3 here.

3.1. Interval Newton Methods. The underlying theory goes back to early
work of Moore, Nickel, and others, and is based on classical fixed point theory. A
general theorem is [18, Theorem 5.1.7], and we review this theory in [8, §1.5].

Here, we use upper case letters X to denote vectors which we will view as being in
a higher-dimensional space that includes the Lagrange multipliers for Problem (1.1)
as components, in addition to the components of the variables x from Problem (1.1).

Suppose F : RM → RM , and let IRM denote the set of interval M -vectors. Then
a general form for multivariate interval Newton methods is

X̃ = N(F, X, X̌) = X̌ + V ,(3.1)

where V ∈ IRM contains all solutions V to point systems AV = −F (X̌), for A ∈
F ′(X), where F ′(X) is an interval extension to the Jacobi matrix of F over X, or is
an interval matrix containing a slope set for F over X. Then, under conditions such
as those in [18, Theorem 5.1.7] and [8, §1.5],

1. N(F, X, X̌) must contain all solutions X∗ ∈ X with F (X∗) = 0;
2. If N(F, X, X̌) is contained in the interior of X, then there is a solution of

F (X) = 0 within N(F, X, X̌), and hence within X.
3. If, in addition F ′(X) also is an interval derivative matrix, or if the technique

in [24] is used, and N(F, X, X̌) is contained in the interior of X, then the
solution to F (X) = 0 in X is unique.

A particular interval Newton method, the interval Gauss–Seidel method has various
desirable general properties; in addition, its componentwise nature is appropriate for
our context of validation in subspaces. Suppose A represents the interval extension
to the Jacobi matrix (or interval slope matrix), and ai,j is the entry in the i-th row,
j-th column of A. Then the image under the interval Gauss–Seidel method is defined
by

X̃i = X̌i −
(

Fi(X̌) +
i−1∑

j=1

ai,j(X̃j − X̌j) +
M∑

j=i+1

ai,j(Xj − X̌j)

)/
ai,i,(3.2)

where X̃i is defined sequentially for i = 1 to M . Also, F (X̌) is usually replaced by
Y F (X̌) and A is usually replaced by Y A, where Y is a preconditioner matrix; see
[8, Ch. 3] for a development of such preconditioners4. We say we have completed a
“sweep” of the interval Gauss–Seidel method provided we have sequentially computed
X̃i, i = 1, 2, . . . , n. We may iterate the interval Gauss–Seidel method through one or
more sweeps. We have the following validation properties.

Theorem 3.1. Suppose F : RM → RM , and suppose we obtain X̃ from one or
more sweeps of the interval Gauss–Seidel method (3.2), and X̃i is contained in the
interior of Xi for each i ∈ {i}M

i=1. Then:

4In the context here, where we are assuming the coordinates of X are relatively narrow, an
appropriate preconditioner is the “inverse midpoint matrix,” that is, an approximate inverse of the
matrix consisting of the midpoints of the elements of A.
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1. If a slope matrix is used for the matrix A, then, regardless of whether or not
preconditioning was used in the iteration formula (3.2), there is a solution to
the original system F (X) = 0 within X̃, and hence within X.

2. If, in addition, A is also an interval derivative matrix, then, regardless of
whether or not preconditioning was used in the iteration formula (3.2), there
is a unique solution to the original system F (X) = 0 within X̃, and hence
within X.

Theorem 3.1, well known (ibid.), allows us to use the interval Gauss–Seidel method
to verify Assumptions 1 and 2 of Theorem 2.3.

The following theorem, of particular use in the subspace context here, follows
from Theorem 3.1 and fundamental properties of interval arithmetic.

Theorem 3.2. Suppose that F : RM → RM−np , Q = {ij}M−np

j=1 ⊆ {i}M
i=1, and the

interval Gauss–Seidel iteration (3.2) is applied, starting with X, to only coordinates
ij ∈ Q and not to coordinates ij ∈ P = {i}M

i=1 \Q. Suppose that the image under this
process has X̃ij

in the interior of Xij
for all ij ∈ Q, and partition the coordinates of

X into XP and XQ as in the proof of Theorem 2.3. Then, for each XP ∈ XP , there
is a solution XQ ∈ XQ such that F (X) = F (XP , XQ) = 0.

Combined with the considerations below regarding the Fritz John system, Theo-
rem 3.2 allows us to use the interval Gauss–Seidel method to verify Assumption 4 for
Theorem 2.3.

3.2. The Fritz John and Kuhn–Tucker Systems. As has been suggested in
[4] and elsewhere, we have used the well-known Fritz John conditions in our GlobSol
[9, 14] software for our F in the interval Newton validation process for Problem (1.1).
Specifically, let u = (u0, u1, . . . , um2) represent the multipliers for ϕ and the gi, let
v = (v1, . . . , vm1) represent the multipliers for the ci, let M = n + m1 + m2 + 1, and
define X ∈ RM by X = (x, u, v). The Fritz John conditions then become

F (X) =




u0∇ϕ(x) +
∑m2

1=1 ui∇gi(x) +
∑m1

i=1 vi∇ci(x)

u1g1(x)
...

um2gm2(x)

c1(x)
...

cm1(x)

(
u0 +

∑m2
i=1 uj +

∑m1
i=1 v2

i

)− 1




= 0,(3.3)

With the normalization represented by the last equation, bounds on u and v are
ui ∈ [0, 1], 0 ≤ i ≤ m2 and vi ∈ [−1, 1], 1 ≤ i ≤ m1.

Applying the interval Gauss–Seidel method as described in §3 to the Fritz John
equations F (X) = 0 of (3.3) proves there is a unique critical point, but not necessarily
a local minimizer, of Problem (1.1). A sufficient condition for such a critical point to
be a local minimizer is for the projected Hessian matrix of the Lagrangian function
to be positive definite, that is, for the projected Jacobi matrix with respect to the
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variables x of

u0∇ϕ(x) +
m2∑
1=1

ui∇gi(x) +
m1∑

i=1

vi∇ci(x)(3.4)

to be positive definite (and u0 6= 0); see [3, §3.4] for a discussion of this, and see §3.3
below.

Suppose Problem (1.1) is convex with respect to the variable set Q, suppose
P = {i}n

i=1 \Q, and suppose X† has been proven via Theorem 3.1 to be a unique
critical point of the Fritz John system (3.3) within X†. If we verify that the projected
Hessian of the Lagrangian function is positive definite at the critical point x†, then
this verifies Assumption 1 of Theorem 2.3. Furthermore, suppose Theorem 3.2 has
also been used to prove existence of a critical point of Problem (1.1)P for each XP ∈
X†
P ; this combined with convexity with respect to Q then implies Assumption 4 of

Theorem 2.3. This is how our computational validation will actually proceed.
In our context here, we have used the Kuhn–Tucker system instead of the Fritz

John system. In the Kuhn Tucker system, the multipliers are not normalized, and
u0 is fixed at 1 and removed from the variable set; thus, the Kuhn–Tucker system
consists of (3.3) with the last equation removed and u0 replaced by the constant 1.
The Kuhn–Tucker system is slightly more common in the literature, but the Fritz John
system handles some exceptional cases not handled by the Kuhn–Tucker system. In
validated branch and bound algorithms, we have preferred the Fritz John system in
GlobSol because a priori bounds on the multipliers ([0, 1] for the u’s and [−1, 1] for
the v’s) are available. However, if the context is validation and we already have a
high-quality approximation to the Lagrange multipliers u and v corresponding to the
Kuhn–Tucker equations, we can construct small intervals about these approximate
values, and it is more convenient to use the Kuhn Tucker equations rather than try
to convert the Lagrange multipliers to multipliers for the Fritz John equations.

3.3. Null Spaces of Constraints. Suppose x∗ is an exact solution to the Fritz
John system (3.3), and suppose we have identified the set of active inequality con-
straints, that is, suppose we have identified that subset

{
gij

}ma

j=1
, ma ≤ m2 for which

gij (x
∗) = 0. (The remaining inequality constraints have gi(x∗) < 0, and have cor-

responding multipliers ui = 0.) Denote by H the Jacobi matrix of the Fritz John
gradient (3.4) (or Kuhn–Tucker system) with respect to the primal variables x, let
{Gi,:}m1+ma

i=1 denote the exact gradients of the active inequality and equality con-
straints at x∗. Select a maximal linearly independent subset G of these so that, with-
out loss of generality, we may assume m = m1 + ma ≤ n, and denote by G ∈ Rm×n

the matrix whose i-th row is Gi,: ∈ G. If m = n and the constraint gradients are
linearly independent, then the projected Hessian matrix is 0, and x∗ must correspond
to a local minimum. Otherwise, let {Z:,i}n−m

i=1 be a basis for the null space of G, and
let Z ∈ Rn−m×n be that matrix whose i-th column is Z:,i, so the projected Hessian
matrix is

HP = ZT JxZ,(3.5)

where Jx is the Jacobi matrix with respect to the variables x of the expression (3.4),
and we need to verify that HP is positive definite.

To take account of roundoff errors to mathematically rigorously show HP is pos-
itive definite, is suffices to have
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1. proof that the chosen set G of constraint gradients is linearly independent,
that is, proof that the matrix G is of full rank m (needed for subsequent
validations);

2. validated bounds on the components of Jx;
3. validated bounds on the components of the columns of Z;
4. proof that the set of constraint gradients chosen for the matrix G spans the

space spanned by all active constraints; and
5. proof that the matrix HP , formed with the rigorous bounds on Jx and Z, is

positive definite.
Since the exact solution X† to the Fritz John equations (3.3) is not known precisely,
but since iteration of the interval Newton method will give us a small box X† within
which there will exist a unique such solution, we will need to verify the above prop-
erties over the box X† (whose x-coordinates are x†), rather than at a computed
approximation to X†. We now explain how to verify each of the above properties in
this context.

3.3.1. Verification of linear independence. Verification that G is of full rank
will proceed simply by

Algorithm 1. (verifying that G ∈ Rm×n, m ≤ n, is of rank m)
INPUT: the narrow bounds x† corresponding to the x-coordinates of the critical
point and an interval evaluation G(x†) corresponding to the ranges of the constraint
gradients over x†.
OUTPUT: either “rank validated” or “rank not validated”.

1. Compute an approximate Moore–Penrose pseudo-inverse Y of the matrix of
midpoints of GT (x†) using common floating-point arithmetic.

2. Form Υ = Y GT (x†) using interval arithmetic.
3. IF inf Υi,i >

∑m
j=1,j 6=i sup |Υi,j | for each i between 1 and m,

THEN RETURN “rank validated”
ELSE RETURN “rank not validated”.

END Algorithm 1

3.3.2. Validated Bounds on the Components of the Kuhn–Tucker Ja-
cobi Matrix. Computing validated bounds on the components of Jx can be done
simply by evaluating Jx(X†) using interval arithmetic.

3.3.3. Validated Bounds on the Basis Vectors for the Null Space of the
Constraints. Provided the widths of X† are sufficiently small, computing validated
bounds on the components of Z can be done as we have explained in [12] for point
matrices, as follows.

Algorithm 2. (Compute bounds on a null space basis for the constraints.)
INPUT: An interval matrix G(x†) ∈ IRm×n whose rows are interval evaluations of
the gradients of the active constraints over x†.
OUTPUT: Either (i) a set of interval vectors Z :,i 1 ≤ i ≤ n − m, such that, for
each G ∈ G(x†), there is a Z:,i ∈ Z :,i for 1 ≤ i ≤ n −m with {Z:,i}n−m

i=1 forming an
orthonormal basis for the null space of G, or (ii) “not validated”.

1. Find the midpoint matrix Ǧ of G(x†).
2. As in step 1 of the method in [12], find an approximate basis

Ž = [Ž:,1, . . . , Ž:,n−m] to the null space of Ǧ, using a traditional method, such
as an LU or QR factorization or a singular value decomposition.

3. Construct a small box Z about Ž as in step 2 of the method in [12]. However,
the widths of the box should be constructed in this case to take account of the
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non-zero widths of G(x†).
4. As in step 3 of the method in [12], apply an interval Newton method to the

n(n −m) by n(n −m) system G(x†)Z = 0, ZT Z = I, with starting box Z
and base point Ž.

5. If the previous step has resulted in proof that a basis Z exists in Z, then
iterate the interval Newton method to obtain bounds Z that are as small as
possible for the matrix G(x†).

END Algorithm 2
The method of [12] requires that each matrix in G(x†) be of full rank, which will

happen if the constraint gradients are continuous, usual interval extensions are used,
and the constraint gradients are linearly independent at the solution x†. However,
if M constraints have been identified as possibly active at the solution in x†, and it
is suspected (by computations with a floating point algorithm) that the gradients of
these constraints are linearly dependent at the solution, it is in general not possible to
prove that a linearly independent set of m ≤ n of them spans the space of active con-
straints, unless m = n. To see this, suppose it happens that n = 2, suppose that two
constraints are active at the solution, and suppose the gradients of these constraints
appear to be both approximately (1, 0). A floating point algorithm will give evidence
that, to within a specified tolerance, the two computed approximations to the gradi-
ents are nearly equal to (1, 0). However, even if the approximately computed gradients
are both exactly equal to (1, 0), a standard interval technique will begin by construct-
ing boxes g(1) = ([1− ε1, 1 + ε1], [−ε2, ε2]) and g(2) = ([1− ε3, 1 + ε3], [−ε4, ε4]) to
take account of possible errors in the floating point computations. It is clear that
any two such boxes with non-zero widths will contain vectors that are not linearly
dependent. Thus, our algorithms will fail in this case. (Linear dependence of this
type probably needs to be detected symbolically, in preprocessing steps.)

3.3.4. Verifying that the Selected Set of Active Constraint Gradients
Spans the Space Spanned by the Gradients of All Active Constraints. This
is done by simply selecting all “possibly active” constraints. That is, we evaluate
each component gi(x†) using interval arithmetic, discarding only those gi for which
gi(x†) < 0 from the list of active constraints. This guarantees that no active con-
straints are overlooked.

3.3.5. Verifying that the Projected Hessian Matrix is Positive Definite.
Once we obtain bounds Jx(X†) for the Jacobi matrix of (3.4) and once we obtain a
matrix Z ∈ IRn×(n−m) whose columns bound a basis for the null space of the active
constraints at x†, we may form a bound

HP = ZT Jx(X†)Z(3.6)

for the projected Hessian matrix. The exact matrix, contained within HP , is symmet-
ric, so it is sufficient to prove that all symmetric matrices in HP are positive definite.
For this purpose, we can use the following theorem due to Rohn and Neumaier.

Theorem 3.3. ([23, 17, 19]) Suppose H is a symmetric interval matrix, and
suppose there is a symmetric matrix H0 ∈ H that is positive definite. If, in addition,
each symmetric matrix H ∈ H is non-singular, it follows that each symmetric matrix
H ∈ H is positive definite.

With Theorem 3.3, the following algorithm will verify that the projected Hessian
matrix is positive definite.

Algorithm 3. (Showing that the projected Hessian matrix at the solution is
positive definite)
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INPUT: the matrix HP formed as in (3.6).
OUTPUT: either “positive definiteness verified” or “positive definiteness not verified.”

1. Compute a symmetric floating point approximation ȞP to the matrix of mid-
points of elements of HP , making sure ȞP is symmetric and ȞP ∈ HP .

2. Use a floating point routine to compute approximate eigenvalues λ1 ≤ λ2 . . . ≤
λn−m and corresponding approximate orthonormal eigenvectors {U:,i}n−m

i=1 of
Ȟ.

3. IF λ1 ≤ 0 THEN RETURN “positive definiteness not verified.”
4. Construct small intervals λi centered on each λi and small boxes U :,i centered

on each U:,i.
5. Apply an interval Newton method n −m times to the system Ȟu − λu = 0,

uT u = 1 of n − m + 1 equations in n − m + 1 unknowns5, with base point
(λi, U:,i) and initial box (λi,U :,i), 1 ≤ i ≤ m − n to provide verified bounds
on each of the λi.

6. IF the interval Newton method in step 5 fails to validate bounds on any of the
λi THEN RETURN “positive definiteness not validated”.

7. IF the smallest lower bound on any of the λi is non-positive, THEN RETURN
“positive definiteness not validated”.

8. Compute an approximate inverse Y to ȞP , then form Υ = Y HP .
9. IF inf Υi,i >

∑n−m
j=1,j 6=i sup |Υi,j | for each i between 1 and n−m,

THEN RETURN “positive definiteness validated”
ELSE RETURN “positive definiteness not validated”.

END Algorithm 3

3.4. Slope Matrices. We use the technique first appearing in [6], and later
recommended in [5] (and see [8, §1.3.2] for a review) to form the slope matrices. In
particular, in evaluating the slope matrices for (3.3), the values for the components
of u and v can be points, except in the last row (the normalization equation).

When slope matrices are used instead of interval derivative matrices, an interval
Newton method can prove existence, but not uniqueness. However, a technique in
[24] can be used to prove uniqueness in a larger box. In particular, let S(F, X, X̌)
represent a slope matrix6 for F over the box X with respect to points X̌ ∈ X̌, and
let X̌ ∈ X̌. Then:

1. if the hypotheses of Theorem 3.1 hold for A = S(F, X̌, X̌), then there exists
a solution of F (X) = 0 in X̌;

2. if, in addition, the hypotheses of Theorem 3.1 hold for A = S(F, X, X̌) for
some X with X̌ ⊆ X, then the solution of F (X) = 0 in X̌ is unique within
X.

4. The Overall Algorithms.

4.1. Overall Algorithm Goals. The basic idea is to prove uniqueness of a
critical point in the entire space within a box with widths of the non-convex coordi-
nates that are as large as possible, but with the widths of the convex coordinates set
small (to avoid overestimation with interval dependency), but large enough to make
it likely that their corresponding image under the Gauss–Seidel operator is inside
their original bounds. For this latter condition to be likely, the widths of the convex
coordinates should be scaled according to the widths of the non-convex coordinates.

5This system has appeared at various places in the literature, probably first in [15]
6A slope matrix is a matrix that contains a slope set in the sense defined on [18, p. 202].
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Once a box is found in which uniqueness can be verified, convexity implies that the
solution is unique within a box in which the convex coordinates have an extent that
is arbitrarily wide.

Our algorithms result in:
1. a small box x∗ within which a critical point of the Fritz John system is proven

to exist,
2. a large box x , x∗ ⊆ x , such that there is a unique local minimizer for

Problem (1.1) within x .

4.2. The Main Algorithm. The following algorithm uses Theorem 3.1 to con-
struct a box satisfying Assumptions 1 and 2 of Theorem 2.3.

Algorithm 4. (Scaling the convex coordinates, return a small box in which
existence of a critical point to the Kuhn–Tucker system for Problem (1.1) is proven
and a larger box in which uniqueness of that critical point is proven.)
INPUT:

α. a current sub-box x,
β. a list P = {ij}np

j=1, 1 ≤ ij ≤ n of “parameter coordinates,” such that Prob-
lem (1.1) is convex with respect to the variable set Q = {i}n

i=1 \P.
OUTPUT:

α. Either “existence validated” or “existence not validated.” If “existence val-
idated,” then also output a small box x∗ ∈ IRn, in which there exists a
solution to the Kuhn–Tucker equations.

β. Either “uniqueness validated” or “uniqueness not validated.” If “uniqueness
validated,” then also output a large box x ∈ IRn, within which uniqueness
is proven.

1. Compute the midpoint x̂ of x.
2. Use a state-of-the-art nonlinear programming solver with starting point x̂ to

compute an approximate local optimizer X̌ to Problem (1.1), as well as cor-
responding Lagrange multipliers ǔ and v̌ for the constraints, that is, to return
X̌ = (x̌, ǔ, v̌).

3. IF the optimization was unsuccessful or if interval evaluations of the con-
straints over a small box constructed about x̌ certify that one or more con-
straints is infeasible over that box THEN RETURN with “existence not ver-
ified”.

4. (Verify existence with an interval Newton method)
(a) Construct a small box X around X̌ with fixed, small coordinate widths

ε.
(b) Apply an interval Newton method (Algorithm 5 below), with base “box”

and base point both equal to X̌, and containing box equal to X and
parameter set empty, to verify existence of a solution to the Kuhn–Tucker
equations.

(c) IF Algorithm 5 returned “not validated”
THEN

RETURN “existence not validated”.
ELSE

(Produce as small box a box as possible within which a solution ex-
ists.)
DO
i. Execute Algorithm 5 with containing box X†, base box and base

point both equal to the midpoint of X†, and parameter set empty.
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ii. IF Algorithm 5 returns “false” for “progress” THEN EXIT DO
iii. X† ← X∗, where X∗ is the image returned by Algorithm 5.
END DO

END IF
(d) Identify candidate active constraints at X†, as explained in §3.3.4.

IF the number of possibly active constraints exceeds n THEN RETURN
with “existence not validated”.

(e) Use Algorithm 1, where G(x†) is the matrix whose i-th column is an
interval enclosure for the gradient of the i-th candidate active constraint
over x†.
IF linear independence could not be validated THEN RETURN with “ex-
istence not validated”.

(f) Use Algorithm 2 to compute bounds on the vectors Z in the nullspace of
G(x†).

(g) Use Formula 3.6 to compute an interval enclosure HP (X†) for the pro-
jected Hessian matrix over X†

(h) Use Algorithm 3 to verify that the projected Hessian matrix HP is pos-
itive definite.
IF positive definiteness could not be validated
THEN

RETURN with “existence not validated”.
ELSE

Set x∗ to be the x-coordinates of X†, and set “existence validated”.
END IF

5. (Compute as large a box as possible within which a solution is unique.)
(a) i. xi ← X†

i for 1 ≤ i ≤ n;
ii. X ← X†.

(b) ι ← 1.
(c) (Inflate the non-convex coordinates.)

DO
i. For ε the same as in the existence step 4a, set

A. Xi ← Xi − 2ιε for 1 ≤ i ≤ M .
B. Xi ← Xi + 2ιε for 1 ≤ i ≤ M .

ii. Execute Algorithm 5 with base box X†, base point X† equal to the
midpoint of X†, and containing box X .

iii. IF Algorithm 5 returned7 “validated”
THEN
A. “uniqueness validated” ← “true”.
B. xi ← Xi for 1 ≤ i ≤ n.
ELSE
A. IF ι = 1 THEN “uniqueness validated” ← “false”.
B. EXITstep 5c.
END IF

iv. X ← X ; x ← (X1 , . . . , Xn).
END DO

(d) ι ← ι + 1.
6. (Verify assumption 4 of Theorem 2.3)

7This validates the uniqueness part of Assumption 2 of Theorem 2.3.
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(a) verified ← “false”.
(b) DO WHILE (not verified)

i. Execute Algorithm 5 with base box and containing box both equal to
X , base point equal to the midpoint of X†, and parameter set P
equal to the non-convex coordinates.

ii. IF Algorithm 5 returned “validated”, THEN
A. Set xi ← xi for i ∈ Q = {i}n

i=1 \P.
B. RETURN
ELSE
A. Replace Xi by an interval with the same midpoint and half its

width, for i ∈ P.
B. IF X†

i 6⊂ Xi for any i ∈ P THEN
RETURN

END IF
END IF

END DO
END Algorithm 4

Note 1. If step 5 of Algorithm 4 completes with “uniqueness validated” “true”,
then the large box X contains a unique local optimum of Problem (1.1) that, further-
more, must lie within the smaller box X†. Algorithm 4 is likely to complete this step.
The last step, step 6 of Algorithm 4, is to verify that the convex coordinates can be
replaced by their entire extents. Because assumption 4 of Theorem 2.3 is not general,
this step may not complete. However, even if step 6 does not complete, Algorithm 4
will still return a box in which uniqueness has been proven, albeit one in which the
parameter coordinates not be very wide.

As explained in [24], the following algorithm can prove existence within X when
the “center” box X† is a point, and uniqueness within both X† and X ⊇ X† when
X† has coordinates with nonzero widths, provided existence has already been proven
within X†

Algorithm 5. (Our interval Newton method)
INPUT:

α. a base point (or base box) X†, a point X† ∈ X†, a containing box X , and
a set P of parameter coordinates.

β. a tolerance ε for determining whether or not the interval Gauss–Seidel method
reduced the relative widths of any of the coordinates.

OUTPUT:
α. Either “validated” or “not validated”.
β. “progress” if the relative width of at least one coordinate, when intersected

with its original value, is decreased by at least ε, and “no progress” if none
of the relative widths are so decreased.

γ. An image box X∗.
1. (Compute a slope enclosure.)

(a) Evaluate a slope extension S(F, X ,X†) to the Kuhn–Tucker system for
Problem (1.1), “centered” at the box X†. To obtain a slope extension
appropriate for validation for Problem (1.1)P , replace S(F, X , X†) by
S̃(F, X ,X†) by ignoring rows (but not columns) of S(F, X , X†) corre-
sponding to indices in P.

(b) Evaluate an approximate inverse Y of the midpoint matrix of the matrix
obtained from S̃(F, X , X†) by ignoring the columns of S̃(F, X , X†)
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corresponding to indices in P.
(c) Compute the Kuhn–Tucker residuals F (X̌) for Problem (1.1); obtain

the Kuhn–Tucker residuals F̃ (X̌) for Problem (1.1)P by ignoring rows
corresponding to partial derivatives with respect to coordinates whose
indices are in P.

2. (Validate existence or uniqueness)
(a) Apply the interval Gauss–Seidel method to the preconditioned system

Y S̃(F, X , X†)(X −X†) = −Y F̃ (X†) to obtain images X̃i, 1 ≤ i ≤ M ,
i 6∈ P. (Note that all M coordinates appear in X and X†, but not in
the image X̃ under this step.)

(b) IF X̃i 6⊂ Xi for some i between 1 and M ,
THEN “validated” ← “false”.
ELSE “validated” ← “true”.
END IF

(c) Set the coordinates of X∗ to be the intersections of corresponding coor-
dinates of X̃ and X .

END Algorithm 5

5. Numerical Experiments.

5.1. The Computational Environment. We implemented Algorithm 4 with-
in our GlobSol [9] environment, on a dual 3.2GHz Pentium-4 based machine with 2
gigabytes of memory, running Microsoft Windows XP, and using the Compaq Visual
Fortran compiler version 6.6, with optimization level 0. We implemented Algorithm 4
both in a “stand-alone” mode and embedded in our GlobSol algorithm. We used a
version of the solver IPOPT [26] from early 2003 to compute the approximate local
optimum in step 2 of Algorithm 4.

5.2. Embedding within GlobSol. In addition to trying Algorithm 4 in iso-
lation, we embedded it into our overall branch and bound algorithm (GlobSol) to
determine a possible impact on efficiency.

5.2.1. GlobSol’s Algorithm. We have published GlobSol’s overall algorithm
in [9] and [10]. We repeat the algorithm here for clarity.

Algorithm 6. (GlobSol’s global search algorithm, [9, 10])
INPUT: A list L of boxes x to be searched.
OUTPUT: A list U of small boxes and a list C of boxes verified to contain feasible
points, such that any global mimimizer must lie in a box in U or C.
DO WHILE (L is non-empty)

1. Remove a box x from the list L.
2. IF x is sufficiently small THEN

(a) Analyze x to validate feasible points, possibly widening the coordinate
widths (ε-inflation) to a wider box within which uniqueness of a critical
point can be proven.

(b) Place x on either U or C.
(c) Apply the complementation process of [8, p. 154].
(d) CYCLE

END IF
3. (Constraint Propagation)

(a) Use constraint propagation to possibly narrow the coordinate widths of
the box x.
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(b) IF constraint propagation has shown that x cannot contain solutions
THEN CYCLE

4. Compute a linear relaxation of the problem (as in [10]) to obtain possibly
sharper lower bounds on the global optimum and to possibly reduce the widths
of the coordinate vectors or eliminate x totally from the search.

5. (Interval Newton)
(a) Perform an interval Newton method to possibly narrow the coordinate

widths of the box x.
(b) IF the interval Newton method has shown that x cannot contain solutions

THEN CYCLE
6. IF the coordinate widths of x are now sufficiently narrow THEN

(a) Analyze x to validate feasible points, possibly widening the coordinate
widths (ε-inflation) to a wider box within which uniqueness of a critical
point can be proven.

(b) Place x on either U or C.
(c) Apply the complementation process of [8, p. 154].
(d) CYCLE

7. (Subdivide)
(a) Choose a coordinate index k to bisect (i.e. to replace [xk, xk] by [xk, (xk+

xk)/2] and [(xk + xk)/2, xk]).
(b) Bisect x along its k-th coordinate, forming two new boxes; place these

boxes on the list L.
(c) CYCLE

END DO END Algorithm 6

In the actual software, the list L input to Algorithm 6 is obtained as follows:
1. Begin with an initial box x.
2. Using a generalized Newton method based on a pseudo inverse and using the

midpoint of x as a starting point, obtain an approximate feasible point x̂.
3. Construct a small box x̂ about x̂.
4. Using, say, techniques from [11], prove existence of an actual feasible point

within x̂.
5. Take the complement of x̂ in x to form the list L input to Algorithm 6.

We take the complement of a box in a box using a modification of Algorithm 10, [8,
p. 155] in which the coordinates are ordered in order of decreasing width. Similarly,
we use Algorithm 11 (p. 156, ibid.) to take the complement of a box in a list.

5.2.2. Modifications to GlobSol. We inserted a call to Algorithm 4 between
steps 6 and 7 of GlobSol’s overall search algorithm (Algorithm 6), passing the current
box x and the list Q obtained from forming the LP relaxations, and took the following
actions after return:

IF “existence validated” and if y ∈ C then x∗ 6∈ y,
THEN

1. Evaluate the objective ϕ over x∗ to possibly obtain a lower upper bound
on the global optimum of Problem 1.1 to use in rejecting subregions for
which the lower bound on ϕ is higher.

2. IF “uniqueness validated”
THEN y ← x
ELSE y ← x∗

END IF
3. Form a list T by taking the complement of x in x.
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4. Replace L by the complement of y in L.
5. Replace U by the complement of y in U .
6. Append to U the complement of y in C.
7. Insert the boxes in T into L.
8. Take the first box from L, put it into x, and continue GlobSol’s overall

algorithm.
END IF

We note that, if existence is validated but uniqueness is not, then x∗ can have
very small widths, and the complementation process may be ineffective. However, we
have observed that it is rare for uniqueness not to be validated when existence is.

5.3. The Test Problems. We have used essentially the same problems we em-
ployed in [13], [10] and [11]. In particular, our initial test problem, originally appearing
in [22] and used as a test problem in [27], is

minx∈Rn x5

such that





x4 −
(
x1t

2
i + x2ti + x3

)2 −√ti − x5 ≤ 0

−
{

x4 −
(
x1t

2
i + x2ti + x3

)2 −√ti

}
− x5 ≤ 0



 ,

1 ≤ i ≤ m, where ti = 0.25 + 0.75(i− 1)/(m− 1).

(5.1)

This problem represents a minimax fit to
√

t with a function of the form p(t) =
x4 −

(
x1t

2
i + x2ti + x3

)2, with m equally spaced data points in [0.25, 1].
We tried this problem with m = 5 and m = 21. We used ε = 10−9 in step 4a and

step 5c of Algorithm 4 for m = 5, and we used ε = 10−7 for the m = 21 case.
We also tried Example 2 from [2]. We will not give the details of this example

here, although computer code to evaluate this example is available from the authors
upon request.

Finally, as in [13], [10], and [11], we tried those problems from the Neumaier–
Shcherbina “Tiny-1” test set [21] which were translated into the GlobSol format
properly, for which GlobSol had supporting routines, and for which the approximate
solver (IPOPT) did not produce exceptions that stopped processing. In all of these
problems, we used ε = 10−7 in step 4a and step 5c of Algorithm 4. The exact way
in which the problems were posed to the global optimizer can significantly affect the
solution process; source files completely defining the way these problems are posed8

are available from the author upon request.
When Algorithm 4 was embedded in the GlobSol algorithm (Algorithm 6), in all

cases ε was set to 10 times the parameter EPS DOMAIN used to determine when a box
in GlobSol is too small to bisect further.

5.4. Results in Isolation. We first tried Algorithm 4 in isolation on Prob-
lem (5.1) with m = 5, with initial box x = ([0, 5], [0, 5], [0, 5], [0, 5], [0, 100]), and with
non-convex coordinates (automatically computed) P = {1, 2, 3}. The approximate
solver IPOPT immediately computed the solution

x ≈ [−.08573, .4953,−1.118, 1.502, .002459]

and Lagrange multipliers9

λ ≈ [.1395, 0, 0, .3037, 0, 0, .3605, 0, 0, .1963]

8These source files were generated automatically through processes mentioned in [21].
9These are readily translated into Fritz John multipliers for our algorithm by ignoring the ones

that are zero, then normalizing.
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in step 2 of Algorithm 4. Existence of a solution to the Kuhn–Tucker equations was
easily validated in step 4b, and step 4c narrowed the solution box to a box contained
in

(
[−0.0875315743735,−0.0875315743733],
[ 0.4953160762506, 0.4953160762510],
[−1.1183520808537,−1.1183520808529],
[ 1.5024469273532, 1.5024469273555],
[ 0.002459356937602, 0.002459356937606]

)
.

The remaining validation sub-steps of step 4 completed successfully, then the infla-
tion process in step 5c proceeded up to ι = 17 successful inflations. Validation of
Assumption 4 of Theorem 2.3 (step 6 of Algorithm 4) then completed successfully,
and Algorithm 4 returned a box10

(
[−0.08760,−0.08746], [0.4952, 0.4954], [−1.119,−1.118], [0, 5], [0, 100]

)

in which the solution was proven to be unique.
Results with m = 21, as with m = 5, all validation steps proceeded successfully,

starting with the same initial box and non-convex coordinates as with m = 5. How-
ever, only five inflation steps (rather than 17 as in the case of m = 5) were possible;
the final solution box was

(
[−0.08801551466897,−0.08801551466884],
[ 0.4954443098477, 0.4954443098481],
[−1.1186219560517,−1.1186219560509],
[ 1.5031597385732, 1.5031597385750],
[ 0.0026359734973670, 0.0026359734973695]

)
,

and the inflated box (in which the solution was proven to be unique), rounded out in
the last digit we display here, was

(
[−.088019,−.088012], [0.495441, 0.495448], [−1.11863,−1.11861], [0, 5], [0, 100]

)
.

When we applied Algorithm 4 to the Epperly–Pistikopoulos Example 2 with initial
box

(
[5, 10], [5, 10], [5, 10], [0, 180], [0, 80], [0, 200], [0, 80], [0, 220],
[0, 80], [0, 250], [0, 80], [0, 180], [0, 100], [0, 200], [0, 100], [0, 220],
[0, 100], [0, 250], [0, 100], [0, 180], [0, 120], [0, 200], [0, 130], [0, 220],
[0, 130], [0, 250], [0, 130], [0, 180], [0, 150], [0, 200], [0, 150], [0, 230],
[0, 150], [0, 250], [0, 150], [3, 8]

)
,

IPOPT immediately computed a correct approximate solution in step 2 of Algo-
rithm 4, but the existence validation step, step 4b failed. In fact, the midpoint matrix
Y −1 in the interval Newton method (Algorithm 5) had a condition number on the
order of 1017, singular to working precision. This leads us to believe that, for this
problem, the Fritz John system is singular at the solutions, even when inactive con-
straints are removed from the system, and the algorithms in this paper in their present
form are inapplicable.

10here, for a more comprehensible display, we have rounded the actual end points out to four
significant figures.
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5.5. Results within GlobSol. We ran GlobSol’s overall search algorithm, mod-
ified as indicated in §5.2.2 above, on problem (5.1) (“OET5”) with starting box
x = ([−5, 5], [−5, 5], [−5, 5], [−5, 5], [−100, 100]), with both m = 5 and m = 21. For
both m = 5 and m = 21, uniqueness-containing boxes with the two solutions to the
problem within x were obtained immediately when GlobSol (Algorithm 6) passed
Algorithm 4 the top two boxes in its list L. For example, in the case of m = 21,
we obtained the following boxes (with coordinates rounded out to 4 digits) in which
uniqueness of a local optimum is proven:

(
[ 0.08800, 0.08803], [−0.4955,−0.4953], [1.118, 1.120], [−5, 5], [−100, 100]

)
and(

[−0.08803,−0.08800], [ 0.4953, 0.4955], [1.118, 1.120], [−5, 5], [−100, 100]
)
.

Each subsequent call to Algorithm 4 within GlobSol yielded a successful construction,
but all of these constructions corresponded to one of the initial two boxes. In these
initial experiments, tried two variants: The first variant involved bisecting (step 7
of Algorithm 6) in all coordinates, and the second involved bisecting only in the
non-convex coordinates P, as we did in [13]. For both m = 5 and m = 21, the final
output list C of boxes with verified feasible points consisted precisely of the two narrow
solution boxes, and the list U of small unresolved boxes was empty. (That is, GlobSol
was completely successful in obtaining narrow boxes containing all solutions.)

Efficiency results for Problem 5.1 appear in Table 5.1. In both tables in this
section, the column labelled “n” gives the number of variables, “nr gives the number
of non-convex variables, m1 gives the number of equality constraints, and m2 gives the
number of inequality constraints. The column labelled “V?” has “T” if if Algorithm 4
was used in GlobSol’s overall algorithm, and has “F” if Algorithm 4 was not used.
The column labelled “B?” has “T” if only the non-convex coordinates were chosen
for bisection in GlobSol’s overall algorithm (i.e. in step 7 of Algorithm 6), and has
“F” if GlobSol was allowed to choose any coordinate (convex or non-convex) for
bisection. The column labelled “# boxes” gives the total number of boxes processed in
Algorithm 6. The column labelled “CPU” gives the total processor time Algorithm 6
used to terminate. The column labelled “CPUV ” is the total processor time taken
in Algorithm 4. (The processor times are rounded to the nearest second.) The
final column, labelled “OK?” has “0” if the overall algorithm completed within the
specified time and total number of box limits (20, 000 seconds for “OET5” and 1 hour
per problem for each problem from the Neumaier–Shcherbina test set), and “−1”
if the algorithm did not complete within those limits. As seen in Table 5.1, the

Table 5.1
Results for Problem 5.1 (OET5) with and without subspace analysis and Algorithm 4

n nr m1 m2 V? B? # boxes CPU CPUV OK?
5 — 0 10 F F 20541 1261 0 0
5 3 0 10 T F 10812 664 223 0
5 3 0 10 T T 4779 395 103 0
5 — 0 42 F F 15688 20000 0 -1
5 3 0 42 T T 5749 2767 192 0

experiments with m = 5 hinted that it is more efficient to allow GlobSol to select only
coordinates with indices from the set P of non-convex coordinates to bisect. For this
reason, in all subsequent experiments, we bisected only in the non-convex coordinates
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whenever we used Algorithm 4. (Bisecting only in the convex coordinated, but not
using Algorithm 4 does not seem to be effective, from experiments we reported in
[10].)

In Table 5.2, we see that the technique successfully validated optima in 21 out of 32
problems. (The columns sub-labelled “y” correspond to results with Algorithm 4, and
the columns labelled “n” correspond to results without Algorithm 4.) Furthermore, we

Table 5.2
Results from the Neumaier–Shcherbina test set with and without Algorithm 4

Problem n nr m1 m2 # boxes CPU CPUV NV OK?
y n y n y n

dispatch 4 3 1 1 19 18 0.6 0.3 0.2 1 0 0
ex14.1.1 3 2 0 4 119 59 2.6 1.6 0.3 0 0 0
ex14.1.2 6 3 1 8 66840 33073 3601.4 3601.4 877.8 0 -1 -1
ex14.1.5 6 4 4 2 164 77 2.3 3.0 0.0 1 0 0
ex14.1.9 2 1 0 2 30 41 0.6 0.4 0.2 3 0 0
ex14.2.2 4 3 1 4 505 522 22.7 17.0 2.8 0 0 0
ex14.2.5 4 3 1 4 476 493 27.9 17.7 3.0 0 0 0
ex2.1.2 6 5 0 2 168 168 2.5 1.9 0.0 0 0 0
ex3.1.3 6 6 0 6 291 291 66.3 1.9 63.9 0 0 0
ex3.1.4 3 3 0 3 35 35 2.0 0.6 1.1 0 0 0
ex4.1.2 1 1 0 0 8 79 0.8 4.0 0.3 1 0 0
ex4.1.4 1 1 0 0 13 120 6.2 0.1 6.2 1 0 0
ex4.1.5 2 2 0 0 50 148 0.5 0.4 0.3 12 0 0
ex4.1.6 1 1 0 0 5 168 0.0 0.2 0.0 2 0 0
ex4.1.7 1 1 0 0 4 56 0.0 0.1 0.0 2 0 0
ex4.1.8 2 1 1 0 4 9 0.0 0.0 0.0 1 0 0
ex4.1.9 2 1 0 2 27 55 0.4 0.4 0.1 2 0 0
ex5.4.2 8 5 0 6 8110 1155 3612.1 108.7 2916.9 0 -1 0
ex7.2.6 3 3 0 1 58 58 39.8 0.4 39.2 0 0 0
ex7.3.1 4 3 0 7 33 62 0.4 4.1 0.0 1 0 0
ex7.3.2 4 2 0 7 12 12 0.1 0.2 0.0 1 0 0
ex7.3.3 5 1 2 6 23 41 0.4 3.2 0.1 1 0 0
ex8.1.3 2 2 0 0 6948 173362 3600.3 3600.1 438.8 4491 -1 -1
ex8.1.4 2 2 0 0 48 64 0.5 0.2 0.2 14 0 0
ex8.1.5 2 2 0 0 144 282 8.3 1.0 7.3 30 0 0
ex8.1.6 2 2 0 0 9 56 0.3 0.5 0.1 2 0 0
ex9.2.4 8 4 7 0 37802 87840 3656.0 3731.8 2233.9 2 -1 -1
ex9.2.5 8 5 7 0 26361 81590 3642.7 3633.2 2038.5 4 -1 -1
ex9.2.8 3 0 2 0 8 8 0.1 0.1 0.0 0 0 0
mhw4d 5 3 3 0 166 333 7.1 17.1 1.8 6 0 0
rbrock 2 1 0 0 2 28 0.0 0.1 0.0 1 0 0

31 148482 380303 18305 14751 8633 4579 -5 -4

see that the technique reduced the total number of boxes processed for most problems,
but the reduction in overall number of boxes processed is hard to interpret because
these numbers are highly weighted towards the problems that could not finish in an
hour of processor time. Reductions in numbers of boxes processed occurred even for
those problems, such as ex8.1.5 and ex8.1.6, that do not have convex subspaces.
The total processing time was more when Algorithm 4 was used, and this can be
attributed totally to the time spent in the validation process. This is due to the fact
that Algorithm 4 is invoked every time a box has not been fathomed in the branch and
bound algorithm. However, we have observed that, typically, all of the local optima
are found and validated within the first few boxes processed in the branch and bound,
and subsequent invocations repeat the process unnecessarily. Good heuristics could
thus avoid much of this excess computation.

For the problems that finished, the total number of boxes processed was more
with Algorithm 4 than without for problems ex14.1.1, ex14.1.5, and ex5.4.2. (The
latter is the only problem that did not finish with Algorithm 4 but finished without
it.) This can be explained for these problems from the fact that, when Algorithm 4
was used for this test set, we allowed GlobSol to bisect only in the convex coordinates,
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which can be less efficient when it is difficult to extend regions to be eliminated in
the direction of the convex coordinates (such as when Algorithm 4 is not functioning
well).

Algorithm 4 was unable to validate a global optimum for eleven of these problems.
We list the reasons for failure in Table 5.3.

Table 5.3
Failures to validate with Algorithm 4

Problem Step in which Failed Reason / Comments

ex14.1.1
4(b) (Existence of a solution to the
K/T system)

The K/T system is apparently singular at the solu-
tion.

ex14.1.2
4(b) (Existence of a solution to the
K/T system)

The K/T system is singular at the solution, possibly
because of linearly dependent constraints there.

ex14.2.2
4(b) (Existence of a solution to the
K/T system)

The K/T system is singular at the solution, possibly
because of linearly dependent constraints there.

ex14.2.5
4(b) (Existence of a solution to the
K/T system)

The K/T system is singular at the solution, possibly
because of linearly dependent constraints there.

ex2.1.2 Validation process was never called.

ex3.1.3 4(a) The approximate solver (IPOPT) was never success-
ful.

ex4.1.2
4(b) (Existence of a solution to the
K/T system)

The K/T system is singular at the solution, possibly
because of linearly dependent constraints there.

ex5.4.2 4(a) The approximate solver (IPOPT) was never success-
ful.

ex7.2.6 4(a) The approximate solver (IPOPT) was never success-
ful.

ex9.2.8 Validation process was never called.

6. Conclusions. Condition 4 of Theorem 2.3 is strong (not satisfied, say, for
constrained systems where there are n active constraints at the local optimum) and
more difficult to verify in practice than the other items. However, the procedures in
this paper can be used, without expansion of the convex coordinates, in the general
case, assuming there are no convex coordinates. To our knowledge, this is the first time
these techniques have been carefully analyzed together, to provide rigorous automatic
validation of local optima when approximate optima are computed as stationary points
of the Kuhn–Tucker system.

The numerical results provide evidence that the procedure can be practical when
astutely woven into a branch and bound algorithm. The procedure can lead to higher
efficiency in validated branch and bound algorithms. In any case, the procedures lead
to higher-quality answers, in the sense that the answers are narrow boxes that have
been proven to contain local optima (rather than boxes with no such proof).
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