
Validated Probing with Linear Relaxations

R. Baker Kearfott (rbk@louisiana.edu)

Abstract. During branch and bound search in deterministic global optimization,
adaptive subdivision is used to produce subregions x, which are then eliminated,
shown to contain an optimal point, reduced in size, or further subdivided. The
various techniques used to reduce or eliminate a subregion x determine the efficiency
and practicality of the algorithm. Ryoo and Sahinidis have proposed a “probing”
technique, involving the dual variables of a linear relaxation, to reduce the size
of subregions x. This technique, combined with others, has been successful in the
BARON global optimization software.

Here, we show how the Ryoo and Sahinidis technique can be used in a validated
context, without significant performance penalty. Our validation technique involves
a mathematically rigorous regularization process and use of an interval Newton
method on the Kuhn-Tucker conditions (complementarity conditions). This allows
us to obtain rigorous bounds on dual variables.

We compare the process, implemented within our GlobSol environment, to an
algorithm using LP relaxations but no “probing,” on a standard test set. The results
indicate that use of the “probing” technique does not significantly benefit the overall
branch and bound process, although there is evidence that GlobSol’s performance
can depend crucially on the problem formulation and on values of heuristically
set algorithm parameters. In any case, the regularization process we propose here,
a relatively simple technique that results in a rigorous relaxation, is potentially
of wider use in validated computations, where validated bounds on selected dual
variables are desired.

Keywords: nonconvex optimization, global optimization, linear relaxation, probing,
validated computing, interval analysis

1. Introduction

Our general global optimization problem can be stated as

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . , m2,
where ϕ : x → R and ci, gi : x → R, and where
x ⊂ Rn is the hyperrectangle (box) defined by

xi ≤ xi ≤ xi, 1 ≤ i ≤ n,
where the xi and xi are constant bounds.

(1)

We will call this problem a general nonlinear programming problem,
abbreviated “general NLP” or “NLP”.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.1

2 R. B. Kearfott

Perhaps beginning with Falk and Soland (Falk and Soland, 1969;
Soland, 1971), deterministic branch and bound methods for global op-
timization have been studied extensively over the last several decades.
For an introduction and further references, see, for example, (Tawar-
malani and Sahinidis, 2002) or (Hansen, 1992). In these methods, an
initial region x(0) is adaptively subdivided into subregions x of the
form in (1), while various techniques are used to reduce, eliminate, or
subdivide x. For a relatively early explanation of this common search
scheme, see (Pardalos and Rosen, 1987). For more recent explana-
tions in which convex underestimators are employed, see for example
(Floudas, 2000), (Tawarmalani and Sahinidis, 2002). For explanations
focusing on validation but restricted to traditional interval arithmetic-
based techniques, see (Hansen, 1992) or (Kearfott, 1996, Ch. 5).

Sahinidis et al have implemented a particularly successful branch
and bound method in their BARON software (Tawarmalani and Sahini-
dis, 2002). This software has compared favorably to other branch and
bound schemes in recent benchmarking tests (Neumaier et al., 2004).
One possible reason is the use of linear relaxations (Tawarmalani and
Sahinidis, 2002), while another is “probing.”

If exact arithmetic were used in the algorithms employed in the
BARON package and if the solutions to the linear relaxations produced
during the computation were exact, then BARON would give the exact
global optimum. However, floating point arithmetic is used, and state-
of-the-art LP solvers, although good, are fallible, so BARON can fail
to give correct global optimum or global optimizers in certain cases.
Nonetheless, it is our contention that the crucial algorithms that give
BARON its efficiency and practicality can be modified to be validated
(that is, to rigorously take account of roundoff errors and algorithmic
errors in the approximate problems), thus enabling software that is
competitive with BARON in its present form but gives results that
are correct with mathematical rigor. In (Kearfott, 2004), we studied a
rigorous implementation of linear relaxations. In this paper, we study
how probing can be implemented in a validated way, as well as present
empirical results with validated probing.

1.1. Linear Relaxations

Convex relaxations go back to McCormick (McCormick, 1976) or be-
fore, while Tawarmalani and Sahinidis (tawarmalani and Sahinidis,
2004) introduced linear relaxations.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.2

Validated Probing 3

DEFINITION 1. A linear relaxation of problem (1) is a linear program
of the form

minimize aT
ϕx + bϕ

subject to aT
ci

x ≤ bci
, i = 1, . . . ,m1,

aT
ci

x ≤ bci , i = 1, . . . ,m1,
aT

gi
x ≤ bgi , i = 1, . . . , m2,

xi ≤ xi ≤ xi, 1 ≤ i ≤ n,
where aT

ϕx + bϕ ≤ ϕ(x), aT
ci

x− bci
≤ ci(x),

aT
ci

x− bci ≤ −ci(x), and aT
gi

x− bgi ≤ gi(x),
for x ∈ x.

(2)

Thus, any optimum of a linear relaxation (2) of (1) is less than or
equal to an optimum of the original nonlinear program (1). Further-
more, through various subdivision processes, and provided the widths of
particular components of x are sufficiently small, linear relaxations can
be constructed that approximate the original problem (1) arbitrarily
closely. For our view of this process, see (Kearfott and Hongthong,
2003).

1.2. On Probing

Ryoo and Sahinidis introduced probing in (Ryoo and Sahinidis, 1995),
with further explanation in (Tawarmalani and Sahinidis, 2002). The
following theorem summarizes Test 1 and Test 2 in (Ryoo and Sahinidis,
1995):

THEOREM 1. (a simple consequence of theorems in (Ryoo and Sahini-
dis, 1995)) Suppose L is any underestimate for the global optimum of
the original nonlinear programming problem (1) (for example, L can be
a rigorous lower bound on the solution to the relaxation (2)), suppose
U is a known upper bound for a solution to the original problem (1).
Both of the following are true:

1. Assume that, for some i, the solution of the relaxed linear problem
(2) corresponds to an active lower bound constraint xi − xi ≤ 0,
suppose the corresponding Lagrange multiplier at the solution is
y

i
> 0, and define

x
(`)
i = xi − (U − L)/y

i
.

If xi < x
(`)
i , then all global optimizers in the original nonlinear

problem (1) are also optimizers of the problem obtained by replacing
[xi, xi] by [x(`)

i , xi].

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.3

4 R. B. Kearfott

2. Assume that, for some i, the solution of the relaxed linear problem
(2) corresponds to an active upper bound constraint xi − xi ≤ 0,
suppose the corresponding Lagrange multiplier at the solution is
yi < 0, and define

x
(u)
i = xi − (U − L)/yi.

If xi > x
(u)
i , then all global optimizers in the original nonlinear

problem (1) are also optimizers of the problem obtained by replacing
[xi, xi] by [xi, x

(u)
i].

Sahinidis et al have implemented the tests in Theorem 1 with success
in the BARON software package, using CPLEX (ILOG, 2003) to solve
the linear programming problems and find the dual variables y

i
and

yi. However, these results are not at present validated in BARON.
Neumaier and Shcherbina (Neumaier and Shcherbina, 2004), as well as
Jansson (Jansson, 2004) have shown how to validate the optimum to
the relaxation (2), given approximate values of the dual variables, but
validation of the domain narrowing processes in Theorem 1 requires
validated values of the dual variable themselves. We show how to do
that in this work.

Ryoo and Sahinidis have two additional related procedures, Test 3
and Test 4 of (Ryoo and Sahinidis, 1995), to use the dual variables
for cases when bound constraints are not active at the solution. This
is what Ryoo and Sahinidis called “probing,” since those procedures
involve artificially setting variables on their bounds and computing
corresponding dual variables. Although these procedures are related to
the procedure we explain in Theorem 1, we have so far only constructed
validated procedures for the case when bound constraints are naturally
active at their solutions. Abusing the original terminology somewhat,
we nonetheless refer to validated procedures based on Theorem 1 as
validated probing.

1.3. Interval Newton Methods

Theory of interval Newton methods appears in various places, including
(Neumaier, 1990) and in our work (Kearfott, 1996, §1.5 and §6.2.2).
Suppose f : Rn → Rn. Then an interval Newton operator is of the form

ũ = N(f ;u, ǔ) = ǔ + v, (3)

where v is an interval vector that contains all solutions v to point sys-
tems Jv = −f(ǔ), for J ∈ f ′(u), where f ′(u) is an interval extension

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.4

Validated Probing 5

to the Jacobi matrix1 of f over u. Then N(f ; u, ǔ) ⊂ u implies there
exists a unique solution to f(u) = 0 within u that must lie within ũ.

DEFINITION 2. If an interval Newton method as above uses a Lip-
schitz set as defined in (Neumaier, 1990) for the interval derivative ma-
trix2, then we say the interval Newton method is existence and unique-
ness validating, or simply a “validating interval Newton method.” If we
apply an existence and uniqueness validating interval Newton method,
and ũ ⊂ u, we say that the interval Newton method has validated
existence and uniqueness for f in u.

In fact, examining basic properties of interval arithmetic, we see that
it is not necessary for each component ũi ⊂ ui if we are only interested
in bounds on some components, as we clarify here:

THEOREM 2. Suppose we partition the coordinate indices {i}n
i=1 into

two sets I and I¬, and suppose an existence and uniqueness validating
interval Newton method is applied, with the result that ũi ⊂ ui for each
i ∈ I. Then, for each set of coordinates uj ∈ uj, j ∈ I¬, there is a
unique set of coordinates ui ∈ ũi, i ∈ I such that f(u) = 0.

Theorem 2 can be useful when the validating interval Newton method
is an interval Gauss–Seidel method, in which ũ is computed componen-
twise, and in our context, where I will contain indices corresponding
only to those dual variables yi belonging to bound constraints thought
to be active at optimality. We clarify this in §2 below.

1.4. Expanded Systems

In practice, we apply linear relaxations to an equivalent derived sys-
tem in which each constraint and the objective contain at most one
arithmetic operation or standard function evaluation3. We obtain this
system through a common process, such as we illustrate in (Kearfott,
1996, Ch. 7). We give a further example of this process in §3 below.

In addition to using a decomposition into elementary operations,
we simplify further into an “equivalent relaxed expanded NLP,” as we
have explained in (Kearfott and Hongthong, 2003).

Conceptually, the validation processes we describe in this work would
apply equally well to the original system (1) and to the equivalent

1 In some contexts, we can use an interval slope matrix. Here, however, we use
an interval Jacobi matrix for simplicity.

2 A common component-wise interval extension of the Jacobi matrix for the
system provides such a Lipschitz set.

3 The derived system and the processes we use to obtain it in not unique to
our own work, not even in this context. For example, many of the developments in
(Tawarmalani and Sahinidis, 2002) are based on such a derived system.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.5

6 R. B. Kearfott

relaxed expanded NLP. However, in practice (and in the illustrative
example in §3), we apply these processes to the equivalent relaxed
expanded system. In any case, the equivalent relaxed expanded NLP
has an extremely sparse constraint matrix (with at most three nonzero
entries per row), and this sparsity should be exploited in any imple-
mentation.

2. Validating the Dual Variables

We observe first that, in part 1 of Theorem 1, to avoid losing global
optimizers, we may underestimate x

(`)
i . Also, since y

i
> 0 and −(U −

L) < 0, underestimating y
i

decreases x
(`)
i , so, in the context of part 1

of Theorem 1, we need to find validated lower bounds for such dual
variables y

i
. Similarly, in the context of part 2 of Theorem 1, we need

to find validated upper bounds on dual variables yi to ensure that no
optima are lost due to roundoff.

To see how we can bound the dual variables y
i
or yi, we rewrite the

relaxed problem (2) as

minimize dT x
subject to Ax ≤ b,

(4)

where A is an m by n matrix, with m ≥ n. The dual problem to (4) is
now

maximize bT y
subject to AT y = d,

y ≤ 0.
(5)

With this notation, validated use of Theorem 1 requires lower and upper
bounds on the dual variables y. We will use the complementarity con-
ditions relating the primal (4) and dual (5) to provide validated lower
and upper bounds on the system. In particular, forming the Kuhn-
Tucker (Lagrange multiplier) system corresponding to the primal (4),
we obtain the system

AT y − d = 0
yi (Ai,:x− bi) = 0, 1 ≤ i ≤ m,

(6)

whose Jacobi matrix is of the form

H(x, y) =

0 AT

y1A1,:
...

ymAm,:

A1,:x− b1 0
. . .

0 Am,:x− bm

 . (7)

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.6

Validated Probing 7

The function f : Rm+n → Rm+n to be used in the interval New-
ton method for validation will have its first n components equal to
the n components of AT y − d and its next m components equal to
yi (Ai,:x− bi), 1 ≤ i ≤ m. However, with the methods we use to form
the relaxation (2) of (1), the Jacobi matrix H is typically singular,
precluding usual application of an interval Newton method. We now
explain how we modify the system (6) to obtain a suitable non-singular
system.

It is well-known (and can be seen from the second set of m equations
in (6)), the Lagrange multipliers yi and the residuals obey a comple-
mentarity condition; in particular, if the i-th constraint Ai,:x ≤ bi is
inactive at a solution, (i.e. if strict inequality holds at the optimum of
(4)) then the corresponding dual variable (Lagrange multiplier) yi is
equal to zero. Examining the Jacobi matrix (7) reveals, however, that,
if there are redundant constraints, such as when we replace an equality
constraint by two inequality constraints, there may be i for which both
yi = 0 and Ai,:x − bi = 0, in which case H will be singular, and the
interval Newton method will fail to validate. Also, in such cases, the
matrix AT will not be of full rank, ensuring that H will be singular and
usual validation with interval Newton methods will not be possible.

Indeed, typically, m > n, and m− n of the constraints are inactive
at the solution, while only the dual variables ŷ corresponding to the
n active constraints are nonzero. If we could correctly identify these
from approximately computed dual values, then we could simply form
an n × n system of equations ÂT ŷ = d by omitting those rows of A
corresponding to inactive constraints, and use the system ÂT ŷ = d
directly in a validating interval Newton method. However, we cannot
be certain that constraints we identify as inactive from dual variables
we identify as only being approximately equal to zero are actually zero.

However, if we form a related optimization problem by omitting any
m − n constraints, the resulting problem is also a relaxation (since
the feasible set of the derived problem contains the feasible set of the
original problem). Thus, we may omit any m − n rows of A in the
Kuhn-Tucker system (6), then use the resulting reduced system in a
validating interval Newton method to obtain lower and upper bounds
y

i
and yi on dual variables corresponding to active bound constraints;

we may then use the bounds y
i

and yi, so obtained in Theorem 1,
to rigorously narrow the uncertainty interval on components xi to the
solution of our original nonlinear program (1), regardless of whether we
have correctly identified the inactive constraints from the approximate
solution.

Although use of the reduced system leads to rigorous results even
if we have not correctly identified the inactive constraints, if we have

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.7

8 R. B. Kearfott

correctly identified our inactive constraints from the approximate so-
lution, then we can expect the validating interval Newton method to
succeed in providing reasonable lower and upper bounds on the dual
variables. First, the reduced linear relaxation will then be equivalent to
the original linear relaxation. Second, examining (7) in that case, we
see, if we construct bounds x and y about an approximate solution to
the reduced problem, the corresponding interval extension of the Jacobi
matrix is a 2n by 2n matrix that has approximately the form

H(x, y) ≈

0 AT

y1A1,:
...

ynAn,:

0

 .

If A ∈ Rn×n is nonsingular (i.e. if the active constraints are indepen-
dent) and the yi are sufficiently narrow and nonzero, then H(x,y) will
be non-singular.

DEFINITION 3. Take any linear relaxation of the form (4), suppose
we have computed approximate dual variables {yi}m

i=1, and, using any
criterion, we have identified m−n of these yi to correspond to inactive
constraints4. Suppose we modify the original problem by omitting m−n
such constraints, and also omitting any variables that occur only in
those constraints we have omitted5. We will refer to any problem so
obtained as a regularized linear relaxation.

The regularized linear relaxation is unbounded if there is a variable
that appears with a non-zero coefficient that does not occur in any
constraints (explicit or bound constraints).

3. An Illustrative Example

We exhibit:

1. the decomposition into elementary operations,

2. the equivalent relaxed expanded NLP,
4 Two ways of identifying inactive constraints are to judge |yi| to be small or to

judge Ai,:x− bi to be strictly negative.
5 If, after omitting constraints which are inactive, the resulting problem has a

variable that occurs only in the objective, and not in the remaining constraints, this
is an indication that the original problem is unbounded. In such cases, our validation
process for the dual variables is not expected to succeed.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.8

Validated Probing 9

3. the original linear relaxation,

4. approximate primal and dual variables,

5. a regularized linear relaxation,

6. the result of applying an interval Newton method to the regularized
linear relaxation,

7. and the result of applying the technique in Theorem 1,

for the following.

EXAMPLE 1.
minimize x1 + x2

subject to x1 − x2 − 1 ≤ 0,
2x1−2x2−2 ≤ 0,
x1 ≥ 0.

(8)

Decomposing6 into elementary operations using techniques with the
“code list,” a particular compiler gives the following (non-unique) de-
composition on the left, then techniques from (Kearfott and Hongth-
ong, 2003) give the following equivalent relaxed expanded NLP on the
right:

minimize x3

subject to x3 = x1 + x2

x4 = x1 − x2

x5 = x4 − 1
x6 = 2x1

x7 = 2x2

x8 = x6 − x7

x9 = x8 − 2
x5 ≤ 0
x9 ≤ 0
x1 ≥ 0

minimize x3

subject to x3 ≤ x1 + x2

x4 ≤ x1 − x2

x5 ≤ x4 − 1
x6 ≤ 2x1

x7 ≥ 2x2

x8 ≤ x6 − x7

x9 ≤ x8 − 2
x5 ≤ 0
x9 ≤ 0
x1 ≥ 0

(9)

Since the original problem was linear, equivalent relaxed expanded
NLP7 is the already a linear relaxation. When we place this linear

6 a process we review in (Kearfott, 1996), and we further explain in this context
in (Kearfott and Hongthong, 2003).

7 formed as explained in (Tawarmalani and Sahinidis, 2002) and in our works
(Hongthong and Kearfott, 2004) and (Kearfott and Hongthong, 2003)

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.9

10 R. B. Kearfott

relaxation into the form (4), we obtain

d =
(

0 0 1 0 0 0 0 0 0
)T

,

A =

1 1 −1 0 0 0 0 0 0
1 −1 0 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
2 0 0 0 0 −1 0 0 0
0 −2 0 0 0 0 1 0 0
0 0 0 0 0 1 −1 −1 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0 0

,

b =
(

0 0 1 0 0 0 2 0 0 0
)T

.

(10)

We used the SLATEC routine DSPLP to find approximate primal and
dual solutions to (4) and (5) with A, b, and d as in (10), obtaining
approximate primal and dual values:

x ≈

0
−0.1× 101

−0.1× 101

0.1× 101

0
−0.2× 10−307

−0.2× 101

0.2× 101

−0.2× 10−13

, y ≈

−0.1× 101

−0.1× 101

−0.1× 101

0
0
0
0

−0.1× 101

0
−0.2× 101

, Ax− b ≈

0
0
0
0
0
0
0
0
0
0

.

In this unusual singular problem, all of the constraints appear to be
active at the approximate solution. However, examining the approxi-
mate dual variables y, we surmise that constraints 1, 2, 3, and 8 are
active, as well as constraint 10 (corresponding to the bound constraint
on x1), while constraints 4, 5, 6, 7, and 9 are can be considered to be
inactive. Using this criterion, we eliminate constraints 4, 5, 6, 7, and 9,
and observe that, now, only variables 1, 2, 3, 4, and 5 occur. We thus
obtain the regularized linear relaxation

minimize d̃T x
subject to Ãx ≤ b̃,

(11)

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.10

Validated Probing 11

where

d̃ =
(

0 0 1 0 0
)T

,

Ã =

1 1 −1 0 0
1 −1 0 −1 0
0 0 0 1 −1
0 0 0 0 1

−1 0 0 0 0

, and

b̃ =
(

0 0 1 0 0
)T

.

(12)

If we are lucky, then this regularized linear relaxation will be equiv-
alent to the original linear relaxation (4). However, regardless of how
we choose which constraints to delete (and hence, regardless of how
accurate the approximate solution to the linear program (4) is), the
regularized relaxed problem (11) is a relaxation of the original problem,
and a validated solution to it will provide rigorous lower and upper
bounds on the Lagrange multipliers for Theorem 1. Furthermore, if
the constraints that remain correspond to non-zero dual variables, it is
likely that the interval Newton method will succeed in validating upper
and lower bounds for them.

Actually, when we use DSPLP to approximately solve the regular-
ized problem with objective and constraints given by (12), we obtain
approximate values xregularized for the primal variables and yregularized

for the dual variables of:

xregularized ≈

0
−0.1× 101

−0.1× 101

0.1× 101

0

, yregularized ≈

−0.1× 101

−0.1× 101

−0.1× 101

−0.1× 101

−0.2× 101

. (13)

Although it is not crucial for the validation step, in this case the
approximate solution to the regularized relaxed problem corresponds
to the approximate solution to the original linear relaxation, and the
regularized relaxed problem is probably equivalent to the original linear
relaxation.

Plugging in the computed approximations xregularized and yregularized,
the Jacobi matrix H(x, y) as in (7) for the regularized system is ap-

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.11

12 R. B. Kearfott

proximately:

Hregularized ≈

0

1 1 0 0 −1
1 −1 0 0 0

−1 0 0 0 0
0 −1 1 0 0
0 0 −1 1 0

−1 −1 1 0 0
−1 1 0 1 0

0 0 0 −1 1
0 0 0 0 −1

−2 0 0 0 0

diag(≈ 0)

, (14)

and the condition number κ(Hregularized) ≈ 9.6, a favorable value when
applying an interval Newton method.

In this example, although small, one sees the advisability of imple-
menting an interval Newton method that exploits sparsity. We imple-
mented an existence and uniqueness validating interval Newton method
based on computing and storing the inverse midpoint preconditioner
one row at a time8, and applying each preconditioner row as it is
computed in a step of an interval Gauss–Seidel method.

In this example, the only coordinate of interest is the last one, corre-
sponding to the dual variable ỹ5 = u10 for the bound constraint x1 > 0
(and x1 is the only component for which this particular regularized
relaxed system can be applied). Thus, for Theorem 2, we may have
I = 10, and the only condition that needs to be satisfied to obtain
valid lower and upper bounds on the dual variable for x1 is ũ10 ⊂ u10.

To apply our interval Newton method to our example, we construct
a box u with center at ǔ = (xT

regularized, y
T

regularized)T and whose i-
th coordinate width is set (heuristically) to (1 + |ǔi|)√εd, where εd =
10−10 is the tolerance to which we expect ǔ to be accurate. Using the
regularized system, we do up to two sweeps of an interval Gauss–Seidel
method, quitting if ũi ⊂ ui for every i ∈ I. After a single sweep, we
obtained a rigorous enclosure for the dual variable corresponding to the
bound constraint9:

y5 ∈ [−2.00000000000000267,
−1.99999999999999733].

8 We used the Harwell Fortran subroutines MA28AD and MA28CD for this
purpose.

9 and indeed, we obtained rigorous enclosures for all of the primal and dual
variables of the regularized problem.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.12

Validated Probing 13

At this point, if these computations were embedded in an actual val-
idated optimization code10, we would use part 1 of Theorem 1, eval-
uating x1 − (U − L)/y

5
with interval arithmetic (or else with upward

directed rounding) to rigorously take account of roundoff error in this
final computation.

4. On the Implementation

Care needs to be taken in the implementation to be assured of correct-
ness. For example, in Theorem 1, in part 1, the Lagrange multiplier
yi should be negative. It may so happen, however, that there is rank-
deficiency in the system, and the exact dual variable yi for the solution
to the regularized linear relaxation is zero. In that case, y

i
< 0, and

x
(`)
i > xi is an incorrect conclusion. Various such pitfalls are to be

avoided in validated code.
If we apply the process to each sub-box x̃ in the branch and bound

search tree, then Theorem 1 dictates that L and U be lower and upper
bounds over the sub-box x̃, rather than the original box. The lower
bound can be computed as a validated solution to the linear relaxation,
while the upper bound can be obtained with a straightforward interval
evaluation.

5. Tests Within a Validated Global Optimization Code

We implemented the validated probing process as described above within
our GlobSol validated global optimization system. In particular, we
used an experimental version of GlobSol, as we describe in (Kearfott,
2004), in which we have implemented rigorous linear relaxations. As
in (Kearfott, 2004), we used the “tiny” problems from the Library 1
set in (Neumaier et al., 2004) as test problems. In contrast to (Kear-
fott, 2004), we compiled our experimental version of GlobSol with the
NAG Fortran 95 compiler, release 5.0, without optimization, on a dual
2.8 GHz AMD Opteron processor11 running Linux (SuSe distribution
9.1), with 4 gigabytes of memory. We applied the “probing” process
described above to each box processed in the global search process,
after applying constraint propagation and the linear relaxations (as

10 For this simple example, the original optimization problem is linear, and x1 and
x1 are already known fairly accurately.

11 The actual computations were not done in parallel, but the system load was
such that, at all times. the GlobSol program had total resources of at least one
processor.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.13

14 R. B. Kearfott

described in (Kearfott, 2004), but before applying the interval Newton
method.

In an initial experiment, we tried example ex14 1 1 from (Neumaier
et al., 2004), an example for which linear relaxations had a decisive
effect on performance. In this problem, which could complete with 59
boxes total processed, the probing procedure was called 106 times; in
85 of those calls, the probing procedure encountered no active bound
constraints in the reduced problem (and hence no relevant Lagrange
multipliers could be computed), there were no explicit constraints in
one problem12, and the process failed to reduce any coordinate widths
in any of the other times the probing process was applied.

The procedure could be of more utility in other problems, in which
bound constraints tend to be active more often. To see this, we applied
the technique to all of the “tiny” problems from the Library 1 test set
for which we had implemented validated linear relaxations all necessary
operations13. We allowed a maximum of 100,000 boxes or 7200 seconds
of CPU time for completion in all cases, and we marked cases that could
not complete in that time as “not OK”. The results are in Table I.

In no case did the probing process make a difference in whether or
not the process successfully completed within the given resource limits.
Thus, we list only one column, labeled “OK” to show whether or not
the branch and bound process completed. The remaining columns are
as follows:

Column 3, labeled “#B-w,” gives the number of boxes processed with
the probing process.

Column 4, labeled “#B-wo,” gives the number of boxes processed with-
out the probing process.

Column 5, labeled “CPU-w,” gives the total processor time when the
probing process is used.

Column 6, labeled “CPU-wo,” gives the total processor time when the
probing process is not used.

Column 7, labeled “CPU wo/w,” gives the ratio of processor times with-
out to with probing.

Column 8, labeled “B wo/w,” gives the ratio of total number of boxes
processed without the probing process to with the probing process.

12 The SLATEC routine DSPLP, the linear programming solver we used, could
only handle cases with explicit constraints

13 We had not yet implemented linear relaxations for the trigonometric functions
and quotients.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.14

Validated Probing 15

Table I. Results with and without probing

Problem OK? #B-w #B-wo CPU-w CPU-wo CPU wo/w B wo/w #succ.

dispatch Yes 13 13 0.51 0.51 1.0 1.0 0

ex14 1 1 Yes 1775 1791 100.98 102.75 1.0 1.0 6

ex14 1 2 No 67172 68743 7200.56 7200.59 1.0 1.0 0

ex14 1 3 Yes 564 564 5.98 4.76 0.8 1.0 0

ex14 1 5 Yes 100 100 3.23 3.1 1.0 1.0 0

ex14 1 9 Yes 102 102 0.92 0.87 0.9 1.0 0

ex14 2 1 No 54005 54899 7200.37 7200.45 1.0 1.0 0

ex14 2 2 Yes 2220 2220 121.67 117.02 1.0 1.0 0

ex14 2 3 No 44121 45516 7201.15 7201.29 1.0 1.0 0

ex14 2 5 Yes 1890 1890 107.74 103.61 1.0 1.0 0

ex2 1 1 Yes 234 234 1.25 1.21 1.0 1.0 0

ex2 1 2 Yes 173 173 0.8 0.77 1.0 1.0 0

ex2 1 4 Yes 222 222 2.93 2.75 0.9 1.0 0

ex3 1 1 No 94039 100000 7204.15 6829.19 0.9 1.1 1

ex3 1 2 Yes 78 78 0.52 0.51 1.0 1.0 0

ex3 1 3 Yes 253 253 0.84 0.82 1.0 1.0 0

ex3 1 4 Yes 37 37 0.56 0.49 0.9 1.0 0

ex4 1 2 Yes 6 6 0.43 0.35 0.8 1.0 0

ex4 1 4 Yes 7 7 0.01 0.01 1.0 1.0 0

ex4 1 5 Yes 39 39 0.11 0.1 0.9 1.0 0

ex4 1 6 Yes 5 5 0.02 0.02 1.0 1.0 0

ex4 1 7 Yes 4 4 0.01 0.01 1.0 1.0 0

ex4 1 8 Yes 5 5 0.01 0.01 1.0 1.0 0

ex4 1 9 Yes 38 38 0.16 0.14 0.9 1.0 0

ex5 4 2 Yes 511 511 25.8 23.46 0.9 1.0 1

ex6 1 2 Yes 122 122 2.76 2.7 1.0 1.0 0

ex7 2 1 No 14264 14507 7201.44 7201.15 1.0 1.0 0

ex7 2 5 Yes 153 153 3.47 3.45 1.0 1.0 0

ex7 2 6 Yes 36 36 0.21 0.17 0.8 1.0 1

ex7 3 1 Yes 97 97 7.73 7.59 1.0 1.0 0

ex7 3 3 Yes 55 55 1.8 1.78 1.0 1.0 0

ex8 1 3 No 100000 100000 2719.08 2464.62 0.9 1.0 0

ex8 1 4 Yes 28 28 0.11 0.11 1.0 1.0 0

ex8 1 5 Yes 131 131 0.93 0.89 1.0 1.0 0

ex8 1 6 Yes 36 36 0.44 0.37 0.8 1.0 0

ex8 1 7 No 100000 100000 4394.23 3951.33 0.9 1.0 0

ex9 2 4 No 56105 100000 7284.87 4680.5 0.6 1.8 2011

ex9 2 5 No 79322 80311 7212.43 7212.31 1.0 1.0 0

ex9 2 8 Yes 8 8 0.02 0.02 1.0 1.0 0

house No 59257 59273 7204.24 7204.24 1.0 1.0 0

least Yes 1440 1440 69.46 66.39 1.0 1.0 0

mhw4d Yes 240 240 4.81 4.77 1.0 1.0 0

nemhaus Yes 0 0 0 0 – – 0

rbrock Yes 4 4 0 0 – 1.0 0

sample Yes 27734 43 535.77 3.79 0.0 0.0 0

wall Yes 117 117 4.55 4.51 1.0 1.0 0

Column 9, labelled “#succ.,” gives the total number of times a coordi-
nate bound was reduced in the probing process.

As can be seen from Table I, the actual probing process had very lit-
tle effect on the overall algorithm, and indeed, only changed coordinate
bounds in problems ex3 1 1, ex5 4 2, ex7 2 6, and ex9 2 4.

In ex9 2 4, the branch and bound process did not complete without
probing without processing more than 100,000 boxes, whereas, with the

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.15

16 R. B. Kearfott

process, the branch and bound could not complete within 7200 seconds
of processor time. That example is:

min {(0.5x5 − 1)(x5 − 2) + (0.5x6 − 1)(x6 − 2)}
subject to:
−x4 + x7 + 1 = 0, −x3 + x5 + x7 = 0, x2 − x6 = 0,

x1 − x5 = 0, x5 + x6 − x8 = 0, x2x4 = 0,
x1x3 = 0.

Unverified symbolic computation (with Mathematica) reveals a unique
isolated global minimum of 0 at x5 = 1, x6 = 2, but GlobSol failed to
validate a single feasible point, and thus failed to obtain a validated
upper bound for a global optimum. We traced the failure for this prob-
lem to a heuristic parameter α in the global search that determined
when computation of an approximate feasible point or optimizer was at-
tempted14. Changing this parameter so an approximate optimizer was
sought in every box processed in the branch and bound algorithm and
changing the problem to not include bound constraints with GlobSol’s
“peeling” process15 , we obtained this unique solution as follows:

boxes CPU # probe succ.

without “probing” 45 2.1 —
with “probing” 45 2.0 0

Thus, “probing” as we have implemented it does not even appear to
contribute to the success of the overall algorithm, even for ex9 2 4.
However, examination of the results of this test set provides evidence
that the validated “probing” process as we implemented it is rigorous.

One possible reason “probing” was not effective is that we applied
it after using the original linear relaxation directly16, replacing the
objective by xi and −xi to compute new lower and upper bounds on
each variable xi. This direct recomputation uses the same model of
the original problem as probing, and may be related mathematically to
probing.

14 In this test set, this difficulty was unique to problem ex9 2 4.
15 We obtained similar results, with 229 boxes processed rather than 45, when the

initial coordinate bounds were handled as bound constraints with “peeling”.
16 as explained in (Tawarmalani and Sahinidis, 2002), etc.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.16

Validated Probing 17

6. Summary and Future Work

We have described a simple technique to further relax a linear relax-
ation of a nonlinear program, in such a way that validated bounds
on dual variables of the second relaxation can often be computed.
We illustrated this technique with a simple example. We implemented
the technique within the branch and bound algorithm in our GlobSol
software, and tried the algorithm on a standard test set. The results
revealed a sensitivity of GlobSol’s ability to complete efficiently, in at
least one problem, to the setting of a heuristic algorithm parameter,
but also revealed no advantage to doing the “probing” within our
environment.

Future work may involve trying the “true” probing procedures as
described in Test 3 and Test 4 of (Ryoo and Sahinidis, 1995), although
we first need to understand how Test 3 and Test 4 work in a vali-
dated context. We may also wish to further clarify the mathematical
relationship between the “probing” process and computing new lower
and upper bounds on the variables directly from the original linear
relaxation. Finally, further study of heuristic parameter settings, for
particular problems, within GlobSol is probably useful.

References

Falk, J. E. and R. M. Soland: 1969, ‘An Algorithm for Separable Nonconvex
Programming Problems’. Manage. Sci. 11, 287–311.

Floudas, C. A.: 2000, Deterministic Global Optimization: Theory, Algorithms and
Applications. Dordrecht, Netherlands: Kluwer.

Hansen, E. R.: 1992, Global Optimization Using Interval Analysis. New York: Marcel
Dekker, Inc.

Hongthong, S. and R. B. Kearfott: 2004, ‘Rigorous Linear Overestimators and Un-
derestimators’. preprint,
http://interval.louisiana.edu/preprints/estimates of powers.pdf.

ILOG: 2003, ‘Cplex 9.0 User Guide’. http://www.gams.com/solvers/cplex.pdf.
Jansson, C.: 2004, ‘A Rigorous Lower Bound for the Optimal Value of Convex

Optimization Problems’. J. Global Optim. 28(1), 121–137.
Kearfott, R. B.: 1996, Rigorous Global Search: Continuous Problems. Dordrecht,

Netherlands: Kluwer.
Kearfott, R. B.: 2004, ‘Empirical Comparisons of Linear Relaxations and Alternate

Techniques in Validated Deterministic Global Optimization’. preprint,
http://interval.louisiana.edu/preprints/

validated global optimization search comparisons.pdf.
Kearfott, R. B. and S. Hongthong: 2003, ‘A Preprocessing Heuristic for Determining

the Difficulty of and Selecting a Solution Strategy for Nonconvex Optimization’.
preprint, http://interval.louisiana.edu/preprints/
2003 symbolic analysis of GO.pdf.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.17

18 R. B. Kearfott

McCormick, G. P.: 1976, ‘Computability of Global Solutions to Factorable Noncon-
vex Programs’. Math. Prog. 10(2), 147–175.

Neumaier, A.: 1990, Interval Methods for Systems of Equations. Cambridge,
England: Cambridge University Press.

Neumaier, A. and O. Shcherbina: 2004, ‘Safe Bounds in Linear and Mixed-Integer
Programming’. Math. Prog. 99(2), 283–296.
http://www.mat.univie.ac.at/∼neum/ms/mip.pdf.

Neumaier, A., O. Shcherbina, W. Huyer, and T. Vink’o: 2004, ‘A Comparison of
Complete Global Optimization Solvers’. preprint,.

Pardalos, P. M. and J. B. Rosen: 1987, Constrained Global Optimization: Algo-
rithms and Applications, Lecture Notes in Computer Science no. 268. New York:
Springer-Verlag.

Ryoo, H. S. and N. V. Sahinidis: 1995, ‘Global Optimization of Nonconvex NLPs
and MINLPs with Applications in Process Design’. Computers and Chemical
Engineering 19(5), 551–566.

Soland, R. M.: 1971, ‘An Algorithm for Separable Nonconvex Programming
Problems II: Nonconvex Constraints’. Manage. Sci. 17, 759–773.

Tawarmalani, M. and N. V. Sahinidis: 2002, Convexification and Global Optimization
in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,
and Applications. Dordrecht, Netherlands: Kluwer.

tawarmalani, M. and N. V. Sahinidis: 2004, ‘Global Optimization of mMixed-Integer
Nonlinear Programs: A Theoretical and Computational Study’. Math. Prog.
99(3), 563–591.

2004_probing_and_Lagrange_multipliers.tex; 11/03/2005; 14:06; p.18

