
Hybrid Interval Marching / Branch and Bound Method

for Parametrized Nonlinear Systems

R. BAKER KEARFOTT (rbk@louisiana.edu) and MIHYE KIM
(mxk0013@louisiana.edu)
U.L.Lafayette Box 4-1010, Lafayette, Louisiana, 70504-1010, U.S.A.

October 20, 2004

Abstract. The hybrid interval marching / branch and bound method for parametrized
nonlinear systems presented in this paper can find all the solution components
(curves) with mathematical certainty within a given search region of n-space. Kear-
fott and Xing introduced an interval step control method which improved on floating
point step controls with a mathematical guarantee that the predictor algorithm will
not jump from one path to another. But those methods did not try to detect all the
solution components (curves) in a search region, and also their algorithms depend
on heuristics to adjust box sizes. The algorithms for our hybrid interval marching
/ branch and bound method for parametrized nonlinear systems not only can find
all global solution components of n-dimensional parametric curves but also depend
on the geometry of a function rather than heuristics to set the box size. Snyder’s
implicit curve algorithm, which employs subdivision and global parameterizabability,
can find the global solution curves of nonlinear parametric equations, but his method
was just 2-dimensional. Our algorithm is designed to handle n-dimensional systems
of nonlinear parametric equations. We successfully ran our hybrid interval marching
/ branch and bound method for several test functions.

Keywords: interval marching method, branch and bound method, solution com-
ponents, interval step control method, predictor algorithm, global solution curves

AMS subject classification: 65G40, 65H10, 65H20

1. Introduction

We have implemented and run for the first time a hybrid interval
marching / branch and bound method to find all solution components
(curves) Sx to parametrized nonlinear systems in an n-dimensional
search region where Sx is,

Sx = {x = (z, λ) ∈ Rn × R | H(x) = 0 }, whereH : Rn+1 −→ Rn.

We introduce a branch and bound method for parametrized nonlinear
systems. We start the process by forming composite boxes and comple-
ment boxes1. These composite and complement boxes are designed to
guarantee that all components of Sx in the n-dimensional search region

1 Refer to Kearfott’s box complementation algorithms in [4, page 154].

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.1

2

have been found. First, we construct the composite boxes, which are
unions of solution boxes, and then construct the complement boxes
around them, and search each complement box for the presence of a
new point at which H(x) = 0, thus a new solution component. If a
new solution component is found, then we execute the interval step
control method again; otherwise, we bisect the box until we find a new
component of Sx.

Our work in this paper is different from previous work in the fol-
lowing ways. The interval step control method of Kearfott and Xing [1]
found only one component of the solution set Sx to the parametrized
nonlinear systems, whereas we rigorously find all components within a
given n-dimensional region.

Snyder [5] used only subdivision, and not marching, in his work
on implicit curve algorithms, which employs subdivision and global
parameterizabability of an interval (or a rectangle) through which a
solution curve passes. Also, his method was basically just 2-dimensional
while our method is n-dimensional.

Throughout the paper, boldface denotes intervals, lower case denotes
vectors, and upper case denotes matrices and functions.

1.1. The Mathematical Problem

The mathematical problem we are solving in this paper is: Given a
nonlinear parametric equation H : Rn × R→ Rn, we find, with math-
ematical certainty, H(x) = 0 within a search region of n-space, where
x = (z, λ) ∈ Rn×R is a regular point2 of H. Since the Jacobian matrix
H ′(x) is non-singular, ∃ a solution curve c(s) and a tangent vector or
a null vector ċ(s) with a specific direction, where arc length s ∈ I, and
I is an open interval around x.

Once we solve H(x) for x = (z, λ) by the interval predictor-corrector
method, we form (n+1) coordinate intervals centered at x, i.e., we form
an (n + 1)-dimensional box centered at x. This is to apply interval
arithmetic to verify the existence and the uniqueness of a solution
curve inside the box whose coordinate intervals are3 xi, by a validation
technique such as the interval Gauss-Seidel method4. A validation tool
like the interval Gauss-Seidel method plays a vital role in verifying the
existence and uniqueness of the solution component Sx in interval com-
putation. We perform the interval Gauss-Seidel method for k iterations,

2 x is a regular point of H if the Jacobian matrix H ′(z, λ) is of full rank n, where
z ∈ Rn and λ ∈ R.

3 xi is the interval variable of each i coordinate of a (n + 1)-dimensional box for
1 ≤ i ≤ n + 1.

4 Refer to the interval Gauss-Seidel method in [1].

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.2

3

for some positive integer k, until the error tolerance5 | x̃i−xi | ≤ 10−8.
Thus if the inclusion6 x̃i ⊂ int(xi) is7 successful for each i, then the
existence and the uniqueness of each solution coordinate xi in the box
xi is verified (Theorem 2).

Detailed explanations of our techniques are given in individual al-
gorithms, which are available from the author.

2. Summary of Our Hybrid Interval Marching / Branch and
Bound Method

The motivation for interval step control instead of previous floating
point algorithms is related to avoiding problems related to curve fol-
lowing. Earlier approximate step control methods work well for smooth
and isolated curves, but will jump from one path to another if there are
many paths near some points, or can erroneously reverse orientation if
rapid changes in curvature occur along the path [1]. Another limitation
of earlier marching methods is that they can skip some branches of
the intersection curve. Our present hybrid interval marching / branch
and bound method for parametrized nonlinear systems both guarantees
that the predictor algorithm will not jump from one path to another
and guarantees that all solution paths are then found. This is due to
the uniqueness guaranteed by the interval Gauss-Seidel method. Our
algorithms detect all solution components within the original region x
whenever there is more than one such curve.

Our algorithm is composed of five main parts:

1. Finding solution components (curves) Sx

2. Validating the solution components Sx by the interval Gauss-Seidel
method

3. Forming the composite boxes and the complement boxes

4. Finding points at which H(x) = 0 for the new components

5. Evaluating the complement boxes

The old method, which I modified, depended on heuristics of step
control [1]. Our improved method depends on the natural geometry of
the functions rather than heuristics. Instead of adjusting the stepsize
s, we use the local values of a given function H and a tangent line at

5 x̃i is the smallest possible interval which contains a solution point.
6 Refer to the definition of inclusion in Definition 1
7 int(xi) denotes the interior of the interval xi.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.3

4

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

4

5

6

7

H

X parameter
coordinate

non−parameter
coordinate

box centered at x
V

Figure 1. Choosing the parameter p as the largest coordinate of a null vector v

the corrector point x̃+ to calculate the proper shape vector η, where
shape vectors are non-parameter coordinate vectors, x¬p.

2.1. Setting the Box Coordinate Bounds

In constructing a box around a solution x̌, we calculate η from the
multi-variate one degree Taylor polynomial H. Thus we can form the
box following the local geometry of the function H.

We calculate the null vector v, which is orthogonal to the rows of
the Jacobi matrix of H at a solution point, x̌. The tangent line at x̌ is
in the direction of v, and we choose the largest coordinate of the null
vector (tangent vector) as the parameter coordinate. This will make
the iteration under the interval Gauss-Seidel method faster, because
the image x̃¬p of the non-parameter coordinates of x¬p will be smaller
in that case. This is clear from figure 1, since the solution curve is almost
parallel to the parameter coordinate, and it will make the convergence
of the sequence of the non-parameter coordinates x¬p(i) of the box x
such that the inclusion x̃i ⊂ int(xi) will happen easier. Note that
figure 1 shows that the box is constructed so that the image x̃i must
contain the entire curve.

In our method, we are using the geometry of a given function to
construct a box. We calculate x¬p from a multivariate degree one Tay-
lor polynomial. The multivariate degree one Taylor polynomial for the

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.4

5

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

X not p upper

X not p upper
in actual box

Increase from
X not p upper

H

X
p

X not p

S

Figure 2. Setting non-parameter coordinates of a box

function H is written as:

H(x) ≈ H(x̌) + H ′(x̌)(x− x̌) = 0. (1)

If we fix xp = xp, we get an n × n system of linear equations. Then,
from equation 1,

H(x̌) + H ′(x̌)(x− x̌)

= H(x̌) +
n+1∑

i=1

H ′(:, i)(x− x̌)

= H(x̌) + H ′(:, p)(xp − x̌p) +
n+1∑
i=1
i6=p

H ′(:, i)(x− x̌)

= H(x̌) + H ′(:, p)(xp − x̌p) + H ′
¬p(x− x̌)¬p (2)

= H(x̌) + H ′(:, p)(xp − x̌p) + H ′
¬px¬p −H ′

¬p(x̌)¬p = 0

Interchange the terms of equation 3 to get

H ′
¬px¬p = H ′

¬p(x̌)¬p −H(x̌)−H ′(:, p)(xp − x̌p) (3)

Now we solve Equation 3 for x¬p.
Figure 2 shows x̃¬p in a box formed by the setting box algorithms

after the above calculation.
Validation of existence and uniqueness of the solution set is ac-

complished by the interval Gauss-Seidel method. We start from x

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.5

6

and we replace x by x̃ only if each inclusion x̃i ⊂ int(xi) occurs.
If | x̃i − xi | ≤ 10−8 for 1 ≤ i ≤ n + 1, then we conclude by the
next theorem that the sequence of xi converges to x̃i and that the
verification is successful.

THEOREM 1. Theorem5.1.7 citeneumaierimse90 Assume F : Rn →
Rn be Lipschitz continuous on D ⊆ D0, and let A be a regular8 Lipschitz
set on D. If x̌ ∈ x ∈ D, then every x′ ∈ IR satisfying
N(x, x̌) := x̌−AHF (x̌) ⊆ x′
has the following properties:

i. Every zero x∗ ∈ x of F satisfies x∗ ∈ x′.

ii. If x′ ∩ x = 0 then F contains no zero in x.

iii. If x̌ ∈ int(x) and x′ ⊆ x then F contains a unique zero in x
(and hence in x′).

Thus the existence and the uniqueness of xi in xi is verified. We prove
that the conditions for the above theorem are eventually met for each
curve-enclosing box in our algorithm in Theorem 2 below.

In the implementation of the verification process, we have a new
advanced heuristic. If the different coordinate widths vary widely, (e.g.
w(xi−1) = 10∗w(xi+2)), it tends to cause more overestimation in inter-
val computation. We solved this problem by replacing the width of each
coordinate by max w(xi) (Figure 2). In our experiments, this method
significantly reduced problems rising from overestimation inherent in
interval computing. In particular, the method seems to improve the
chances that existence and uniqueness will be verified with a larger
box. This method is outlined below.

1. Let xi be each coordinate of a box ci centered at the corrector point
x of a parametric curve H(x) for 1 ≤ i ≤ n + 1.

2. (Execute the box setting algorithm and the interval Gauss-Seidel
method) Each coordinate width w(xi) is verified for 9 0 ∈ Hu(x).

3. If the inclusion x̃i ⊂ int(xi) is not verified, then replace each coor-
dinate width w(xi) with the maximum of w(xi) for all i. This will
make the verification of the existence and the uniqueness of the
solution x in x i.e., x̃i ⊂ int(xi) successful by reducing overestima-
tion.

8 A is regular if every matrix Ã ∈ A has rank n.
9 fu(x) is the range of f over x if f is a function defined over an interval x.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.6

7

For all parametric functions we tried (Chapter 5), the verification with
our method was successful. We intend to do further experiments, using
this heuristic, with different functions.

2.2. Setting the Predictor Step Size

We have only a few heuristics in our algorithms:

1. We doubled the previous stepsize s when the parameter p changed
(and thus the curve changes direction), or when the previous two
stepsizes increased during iteration.

2. We halved the stepsize when a box cb is not verified by the interval
Gauss-Seidel method.

Also we set the initial input stepsize to be 0.1, and at the beginning
of each subsequent step, we set the stepsize to be the average of the
stepsizes so far. Our program is designed so that the function itself will
choose the direction of the curve and stepsize.

2.3. On the Box Complementation Process

The application of the box complementation process to the hybrid
interval marching / branch and bound method for parametrized non-
linear systems is new. This process completes the process of finding
parametric curves in a given region by the interval step control method
of Kearfott and Xing [1]. In Kearfott and Xing’s paper in 1993 [1], they
found a parametric curve by the interval step control method. However,
they did not verify the existence or the nonexistence of the other curves
in the region outside the verified region (boxes) along the curve they
already found.

Our complementation process, tried for the first time in the context
of a parametrized system, made the following possible.

1. Finding a point at which H(x) = 0 (approximately) in the comple-
ment boxes, which in turn can initiate following a new curve.

2. Removing efficiently the part of the given search region through
which no curves pass.

3. Finding all solutions in the search region, and verifying that all
have been found.

We now present descriptions of the various boxes occurring in the
search algorithm and how they are formed.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.7

8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5
Inflated Boxes

Reduced
Boxes

Parametric
Curve

Figure 3. Reduced boxes and inflated boxes of the parametric curve for equation 16

1. reduced boxes rb: Take the verified box, and continue reducing its
size by iterating the interval Gauss-Seidel method until no further
reduction occurs. As soon as no reduction of size of a box occurs,
take the smallest one computed. This will be a reduced box rb. It
is ensured that the curve must pass through each reduced box rb

(Figure 3).

2. inflated boxes ib: Perform epsilon-inflation [4] to a constructed
box cb. No other curves should pass through each inflated box ib

(Figure 3).

3. composite reduced boxes cr: Form cr as a union of 10 rb (Figure 4).
Refer to Algorithm 2.

4. composite inflated boxes ci: Form ci as a union of 11 ib and take
the intersections along the non-parameter coordinates (Figure 4.).
Refer to Algorithm 2.

5. complement boxes cm: Form the list of complement boxes lc (Fig-
ure 5).

To see the sequence of box formation, look at Figure 6.

10 The conditions under which a new union of boxes is started are listed below.
11 The conditions under which a new intersection of boxes is started are listed

below.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.8

9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x(1)

x(
2)

composite reduced box
(inside box)

composite inflated box
(outside box)

a parametric
curve

Figure 4. Composite reduced boxes and composite inflated boxes for equation 16

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x(1)

x(
2)

complement
boxes

parametric
curves

Figure 5. Two curves and complement boxes for equation 16

Forming a new composite box is done under the following condi-
tions:

1. Whenever the parameter changes.

2. When the curve hits the edge of the range box b0 once.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.9

10

Inflated box

Reduced box

Composite
reduced box

Comoosite
inflated box

Complement
box

Constructed
box

Figure 6. Sequence of Different Box Formation

3. When the difference of the width of cr is greater than half of the
width of ci.

These boxes are formed to make the complementation process easier,
since we end up forming fewer complement boxes for the fewer original
boxes.

Once the list of complement boxes lc is formed, each complement
box is verified for the existence or the nonexistence of other curves.
Our algorithm can rigorously find all the curves in the given box b0.

Once more than one curve is found, we need to find a new point at
which H(x) = 0 to start a new iteration. We check each box in the
list of complement boxes, and test the box for solutions to H(x) = 0.
This is done by checking the intersection of each complement box and
all the composite inflated boxes ci for 1 ≤ i ≤ n for the existence of a
solution at which H(x) = 0.

If we cannot find a solution to H(x) = 0, then we bisect the boxes
until a certain stopping criterion is satisfied. If there are no more solu-
tions to H(x) = 0 at all, we have proved that there are no more curves
to follow.

3. Summary of Our Algorithms

The calling diagram for our Fortran implementation appears in Fig-
ure 7.

The hybrid interval marching / branch and bound method is a global
search, so our algorithm has an integer variable more count, which
counts the number of components (curves) found. Our algorithms first
find a point w at which H(w) ≈ 0. We then find a null vector v of

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.10

11

Main
Program

Calculate_H_D

Find_Null_Vector

Continuation_Step

Set_Box

New_Composite_Box

List_Boxes_Form

Take_From_List

Mean_Value_Ext

Calculate_H_I

Put_On_List

Verify_Uniqueness_Mpi

Bisect_Max_Smear

Caculate_H_D

DSVDC

Calculate_H

DSVDC

DGEFA

DGESL

calculate_H_D_I

Dense_Inverse_Midpoint

Calculate_H_I

DGEFA

DGESL

Cal_H_D_I_Han

Calculate_H_I

Calculate_Matvecmul

Calculate_H_D_I

DSVDC

Cal_H_D_I_Han

Calculate_H_I

Calculate_H_D_I

Verify_Uniqueness

Feasible_Point

Figure 7. Diagram of Programs

the n by n + 1 Jacobi matrix H ′(w). We take the largest coordinate of
v as the parameter coordinate p. The direction in which the curve is
followed is made consistent by making the sign of dot product of the
present null vector and the previous null vector positive.

We find the non-parameter coordinates x¬p of approximate solution
points along the curve by a predictor-corrector method. Then each
solution box x is formed around each solution point x¬p. Each such
solution box x is then verified with the interval Gauss-Seidel method
to contain a unique solution point x(xp) for each value of the parameter
coordinate xp within its bounds xp.

To carry out the branch and bound method, we form composite in-
flated and composite reduced boxes as we explained on page 7, and as is
illustrated in Figure 6. After forming the complement boxes (by taking
the complement of each composite inflated box with the original range
box, using the algorithm in [4, page 154]), we test each complement box
x for the presence of solutions of H(x) = 0. We use interval extensions
of the components of H over x to reject boxes x. We now present the
algorithms for forming the composite boxes and complement boxes.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.11

12

Figure 6 represents the sequence of forming different kinds of boxes in
our algorithms.

The algorithm for setting boxes, and the algorithm for forming
composite boxes are presented below.

ALGORITHM 1. Set a box around a corrector point

1. Input the corrector point x+, p, H ′(x+), and H(x+).

2. Solve equation 3 for x¬p.

3. (Once we get x¬p, we set up a box. Let κ be any positive integer
greater than 1 and let s be a steplength, i.e., the width of the pa-
rameter coordinate.)
If i = p, then set

xi = [x̌p − s/2, x̌p + s/2]
else

xi = [x̌¬p − κ(x¬p − x̌¬p), x̌¬p + κ(x¬p − x̌¬p)]
endif

4. Form a box x combining x¬p and xp.

ALGORITHM 2. Form composite boxes

1. Input an integer tag v, parameter p, reduced box rb, composite
reduced box cr, inflated box ib, and composite inflated box ci.

2. If integer tag v indicates composite reduced box cr is input, then
Do 1 ≤ i ≤ n + 1

cr ← min(cr, rb).
cr ← max(cr, rb).

enddo
else (If integer tag v indicates composite inflated box ci is input)

Do 1 ≤ i ≤ n + 1
ci ← max(ci, ib).
ci ← min(ci, ib).

enddo
endif

Additional details can be obtained from the author as a technical
report.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.12

13

4. Convergence Properties within Our Algorithm

As outlined in §2.1, we use the local geometry of the function H to
determine the widths of the non-parameter coordinates x¬p, construct-
ing the coordinates xi, 1 ≤ i ≤ n + 1 with the box-setting algorithm,
Algorithm 1. This algorithm then proves existence and uniqueness by
verifying:

x̃¬p ⊆ int(x¬p).

We now analyze when the above inclusion occurs, and show that, in
the absence of singularities, our box-setting algorithm and parameter
step control ensure that this condition always occurs. To prove the
convergence of int(x¬p) → x̃¬p (by repeated applications of the interval
Gauss-Seidel method), we need a definition and an assumption.

DEFINITION 1. If x̃i ⊆ int(xi), say we have inclusion for the i-th
coordinate.

DEFINITION 2. Let p be a parameter coordinate of an (n+1)-dimensional
box xi for i ≤ p ≤ n + 1. Then the shape vector in parameter direction
γ is defined as xp−xp, and the shape vector in non-parameter direction
η is defined as x¬p − x¬p.

ASSUMPTION 1. Let x be the (n + 1)-dimensional box. Let x̃ be the
image box of x under one step of the interval Gauss-Seidel method, and
let p be the parameter coordinate. Assume ∂H

∂x¬p
is nonsingular in the

box x, where ¬p means the p-th column is removed.

THEOREM 2. Let Assumption 1 hold and assume that the inverse
midpoint preconditioner is used in the interval Gauss-Seidel method.
Assume that H(x̌) is continuously differentiable at the point x̌, an ap-
proximation to the most recently computed point on the curve. Assume
that x̌ has been computed accurately enough to ensure that 0 ∈ H(x),
where x is a box such that x̌ ∈ x. Finally, assume that H ′(x) represents
a first- or higher-order interval extension of the Jacobi matrix H ′ over
the box x. Then, for small enough predictor stepsize s, the interval
Gauss-Seidel method must be successful, i.e., the main algorithm will
choose the parameter to be the coordinate of the null vector with largest
absolute value, then use the multivariate degree one Taylor polynomial
of H as in §2.1 above, to find x¬p and construct a box (as in Algorithm
1 above) so that the inclusion:

x̃¬p ⊆ int(x¬p)

will be successful.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.13

14

Proof. Since ∂H
∂x¬p

is nonsingular in x, ∃ a unique locally differentiable
curve xi = xi(xp), i = 1, . . . , p − 1, p + 1, . . . , n + 1 defined in some
neighborhood (x̌p, x̌p + γ) of x̌p (Implicit Function Theorem [3]) where
γ is xp − xp. In the box-setting algorithm (Algorithm 1), the box x̌ is
defined and constructed as:

x̌i =
{

xi if i = p,
x̌i otherwise.

Thus, x̌ ∈ x̌. Since 0 ∈ H(x̌) is assumed, 0 ∈ YiH(x0), where x =
(z, λ) is the inverse midpoint preconditioner matrix defined as Y =
[H ′¬p(x̌)]−1. The box-setting algorithm explains how we calculate x¬p.
The algorithm sets up a box such that x̌¬p ∈ x¬p. Then interval Gauss-
Seidel iteration finds x̃i:

x̃i = x̌¬p −
[
YiH(x̌) +

n+1∑
i=1
i6=p

(YiH
′
j)(xj − x̌j)

]/
YiH

′
i. (4)

Note that YiH i does not contain zero for small enough x¬p. Let
[a, a] be the numerator in 4 and let [b, b] be the denominator. Then,
since H ′ is a first or higher-order interval extension of H and since Yi

is the i-th row of the inverse of the midpoint matrix of H ′, the widths
of each component of H ′

i tend to zero as the widths of the component
of x tend to zero, and moreover, for sufficiently narrow x, b > 0, and,
in particular, for sufficiently narrow x, b > 1/2.

Thus, for all x with w(x) sufficiently small, we have

w(x̃i − x̌¬p) =
1
b
w([a, a]).

Thus, for all sufficiently small predictor step size s and taking account
of the fact that, due to our construction, the widths of x¬p get small
as the width of the predictor step size s gets small, we obtain

w(x̃i − x̌¬p) ≤ 2w([a, a]),

that is,

w(x̃i − x̌¬p) ≤ 2w
[
Y H(x̌) +

n+1∑
i=1
i6=p

(YiH
′
j)(x¬p − x̌¬p)

]
.

The mean value theorem implies that H ′(x) ⊂ H ′(x̌)+a1(1)n×(n+1)(x−
x̌) for some positive number a1, where (1)n×(n+1) is the n × (n + 1)
matrix with all components equal to 1. Furthermore, since H is continu-
ously differentiable, H is Lipschitz, which implies H(x̌) ⊂ a2(1)n×1(xp−

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.14

15

x̌p) for some positive number a2, where (1)n×1 stands for the n × 1
matrix with all components equal to 1. Then

w(x̃i − x̌i) ≤ 2w(Yia2(1)n×1(xp − x̌p) +

+ 2w(
n+1∑
i=1
i 6=p

[Yi(H ′(x̌) + a1(1)n×(n+1)(x− x̌)]¬p(x¬p − x̌¬p))

≤ 2w(Yia2(1)n×1(xp − x̌p) +

+ 2w(
n+1∑
i=1
i 6=p

[Yia1(1)n×(n+1)(x− x̌)]¬p
(x¬p − x̌¬p))

≤ a3(s + max[w(x¬p − x̌¬p)]2)

where a3 depends on a1, a2 and Yi, and where s is a predictor stepsize.
Then by the box-setting algorithm, we calculate w(x¬p − x̌¬p) as:

w(x¬p − x̌¬p) = w(x̌¬p + κ(x¬p − x̌¬p)− x̌¬p + κ(x¬p − x̌¬p))
= w(2κ(x¬p − x̌¬p)),

where κ is any positive integer greater than 1. Thus we are increasing
w(x¬p − x̌¬p) by multiplying by κ. Let w(x¬p − x̌¬p) = κηmax where
η is the shape vector for the non-parametric directions (Definition 2).
Then

κηmin ≤ w(x¬p − x̌¬p) = κηmax. (5)

Thus

w(x̃i − x̌i) ≤ a3(κ2ηmax
2 + γ)

≤ a3(κ2ηmax
2 + γ)κηmin

κηmin

≤ a3(κ2ηmax
2 + γ)w(xi − x̌i)
κηmin

(6)

Let q = max{| x̌− xi |, | x̌− xi |}. By the box-setting algorithm (Al-
gorithm 1) we get:

q = κηmax/2,

then

w(xi − x̌i)
q

≤ κηmax
κηmax

2

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.15

16

≤ 2κηmax

κηmax

≤ 2.

In inequality 6, we need that a3(κ2ηmax
2+γ)

κηmin
must approach 0 as the

width w(xi−x̌i) approaches 0. Because of the inequality 5, w(x̃i−x̌) →
0 means κηmax → 0 and κηmin → 0. In other words, w(x̃i − x̌) → 0
means ηmax → 0 and ηmin → 0.

Then as ηmax → 0 and ηmin → 0,

lim
ηmin→0

(lim
ηmax→0

a3(κ2ηmax
2 + γ)

κηmin
)

= lim
ηmin→0

(lim
ηmax→0

a3κ
2ηmax

2

κηmin
+

a3γ

κηmin
)

= lim
ηmin→0

(lim
ηmax→0

a3κ
(ηmax

2 − ηmin
2 + ηmin

2)
ηmin

+
a3γ

κηmin
)

= lim
ηmin→0

(lim
ηmax→0

a3κ
(ηmax + ηmin)(ηmax − ηmin) + ηmin

2

ηmin
+

a3γ

κηmin
)

= lim
ηmin→0

(lim
ηmax→0

a3κ

((ηmin
ηmin

+ ηmax

ηmin
ηmin
ηmin

)
(ηmax − ηmin) + ηmin

)
+

a3γ

κηmin
)

= lim
ηmin→0

(lim
ηmax→0

a3κ(−ηmin + ηmin) +
a3γ

κηmin
)

= lim
ηmin→0

(lim
ηmax→0

a3γ

κηmin
) (7)

One thing to notice is the width of the parameter coordinate w(xp −
xp) → 0, as ηmax → 0 because of the fact that ηmax is constructed in
terms of γ. This can be explained from Equation 7. We now recall from
§2.1 that

H ′
¬px¬p = H ′

¬p(x̌)¬p −H(x̌)−H ′(:, p)(xp − x̌p) (8)

Interchanging the terms and collecting terms in Equation 8 gives

H ′
¬p(x¬p − x̌¬p) = −H(x̌)−H ′(:, p)(xp − x̌p) (9)

As x¬p → x̌¬p, the right hand side of Equation 9 becomes 0, since
H(x̌) is approximately 0 at the approximate solution point x̌. Since
the Jacobi matrix H ′¬p is nonsingular, both sides of equation 9 may be

multiplied by
(
H ′¬p

)−1
, showing that x¬p → x̌¬p. Thus, the width of

γ = xp − x̌p goes to 0. Now, combining Equation 7 and the above, we
obtain

lim
ηmin→0

(lim
ηmax→0

(lim
γ→0

a3γ

κηmin
)) = lim

ηmin→0
(lim
ηmax→0

(lim
γ→0

a3

κ
)).

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.16

17

This leads to a condition under which the width of the image of
the Gauss-Seidel operator becomes small: For γ > 0, ηmax > 0, κ >
0, a3 > 0, we must have

a3

κ
≤ 1

2
, i.e., a3 ≤ κ

2
. (10)

If the above condition (10) is satisfied, then

w(x̃i − x̌i) ≤ q.

The fact that 0 is contained in the numerator of equation 4 leads to
the fact that x̌i is in both xi and x̃i, and a3 is independent of s. Thus
if γ is so small that it makes the condition above (10) valid, then

x̃i ⊆ int(xi) for all i 6= p.

5. Numerical Results

We tested the hybrid interval marching / branch and bound method
described in the previous sections on several functions. In all cases,
it succeeded. We tried the following functions: Brown’s almost linear
curve [1], the Layne Watson exponential cosine curve [1], and some
other implicit functions [5].

We implemented the method in Fortran 90. For interval computa-
tions, a computer software package which can calculate interval arith-
metic is essential. For these interval computations, we used INTLIB [26]
and INTERVAL ARITHMETIC [27]. For floating point matrix com-
putations in our program, the LINPACK routines (DSVDC, DGEFA,
and DGESL etc.) are utilized. The computer system we used for our
research was a Sun Ultra Sparc 1 140 MHZ with 64 MB memory.

Each test function tried in our experiments turned out to be a single
curve except for the parametric equation 16 [5], which is composed of six
separate curves in a given range ([-1.1,1.1],[-1.1,1.1]). In this function,
the first stepsize of each curve following s(1), except for the initial input
stepsize s0, is the cumulative average of stepsizes s from the previous
curve following.

The details of numerical results for the functions we have tried are
presented below.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.17

18

Table I. Iteration data for equation 11

n number of steps average stepsize number of complement boxes

2 201 2.5314 ×10−2 43

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

x(1)

x(2
)

5−3−03

Figure 8. A parametric curve for equation 11 in (x1, x2)–space

5.1. Numerical Results on 2× 3 dimensional parametric
equations

We tried a 2×3 dimensional system of parametric equations we devised.
The equation is

H(xi) =
(

x2
1 + (1

9)x2
2 + x2

3 − 1
x2

1 + x2
2 + x2

3 − 1

)
= 0. (11)

The Jacobi matrix of Equation 11 is

H ′(xi) =
(

2x1 (2
9)x2 2x3

1 1 1

)
(12)

The results are plotted in Table I. Figure 8 shows a plot of the curve
in (x1, x2)–space, while Figure 9 shows the curve in (x1, x3)–space.

After all the complement boxes cm, 43 of them, are constructed,
our search algorithm rejects all the complement boxes, confirming that
there are no curves in the list of complement boxes lc.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x(1)

x(3
)

Figure 9. A parametric curve for equation 11 in (x1, x3)–space

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.18

19

Table II. Iteration data for Brown’s almost linear curve in different
dimensions

n number of steps average stepsize number of complement boxes

2 128 1.9385 ×10−2 28

5 1091 5.3213 ×10−3 190

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x(1)

x(6
)

Figure 10. Brown’s almost linear curve in 5 × 6 dimensions

5.2. Numerical Results on Brown’s almost linear curve

Brown’s almost linear curve is defined as

fi(X) = xi + xn+1

(∑

1≤j≤n

xj − n− 1

)
, 1 ≤ i ≤ n− 1 (13)

and

fn(X) = (1− xn+1)xn + xn+1

(∏

1≤j≤n

xj − 1

)
. (14)

We tried different dimensional instances of Brown’s almost linear
curve. The results in Table II represent marching and search over the
box with xn+1 bounded between 0 and 1 and with x¬(n+1) allowed to
vary. With any initial points, our program will find a feasible starting
point. The results for dimension n=2 turned out to be compatible with
the results shown in [1]. Our results confirm the results from [1], in that
our results show that the stepsize does not increase with dimension.

Figure 10 shows the points on the Brown’s almost linear curve
plotted x1 versus x6, where x6 is xn+1, and x6 changes from 0 to 1.

After all the complement boxes cm , are constructed, our search
algorithm rejects all the complement boxes, confirming that there is
no curve in the list of complement boxes lc.

Since our program is intended mainly for graphical computations,
we did not try n > 5.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.19

20

Table III. Layne Watson exponential cosine curve in 2× 3 dimensions

n number of steps average stepsize number of complement boxes

2 318 3.5834 ×10−3 24

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x(1)

x(3
)

Figure 11. Layne Watson exponential cosine curve in 2 × 3 dimensions

5.3. Numerical Results on the Layne Watson exponential
cosine curve

The Layne Watson exponential cosine curve is defined as

fi(X) = xi − xn+1e
cos i(

∑
1≤j≤n

xj), 1 ≤ i ≤ n (15)

We tried the 2 × 3 dimensional instance of the Layne Watson expo-
nential cosine curve. The results in Table III represent marching and
search over the box with xn+1 bounded between 0 and 1 and with
x¬(n+1) allowed to vary. With any initial points, our program will find
a feasible starting point. Our results for dimension n = 2 turned out to
be compatible with the results shown in [1]. Figure 11 shows the points
on the Layne Watson Exponential Cosine Curve plotted x1 versus x3.
xn+1, which is, x3, changes from 0 to 1.

After all the complement boxes cm are constructed, our search
algorithm rejects all the complement boxes, 24 of them, confirming
that there is no curve in the list of complement boxes lc.

5.4. Numerical Results on a 1× 2 dimensional parametric
equation

We tried a 1 × 2 dimensional system of parametric equations [5]. The
equation is

H(x1, x2) = x2
1 + x2

2 + cos(2πx1) + sin(2πx2) + sin(2πx2
1) cos(2πx2

2)− 1
(16)

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.20

21

Table IV. Iteration data for 6 curves for equa-
tion 16

curve number of steps starting point x(1)

1 1442 (0.7966,0.8364)

2 644 (0.1916,-0.4662)

3 102 (0.7001,-0.0573)

4 89 (-0.4885,-1.0343)

5 36 (1.0598,0.7569)

6 38 (-1.0748,0.7761)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x(1)

x(
2)

Figure 12. 6 curves of the parametric equation 16

Our curve following algorithm confirms that the equation is com-
posed of six separate curves in a given range box b0 ([-1.1,1.1],[-1.1,1.1]).
The results of the iteration are in Table IV.

Table IV shows how the six curves behave. The average stepsize for
the function is 2.41 × 10−3. Figure 12 shows that the points on the
parametric equation 16 plotted x1 versus x2. The curves 3 to 6 hit the
edge of the range box b0([-1.1,1.1],[-1.1,1.1]) once, so the algorithm went
to the first point, and then followed the curve in the direction opposite
to the first direction.

Figure 13 shows the plot of the points of the curve and the comple-
ment boxes together on the same graph, after all 6 curves are found by
our algorithm.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.21

22

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x(1)

x(
2)

Figure 13. 6 curves and complement boxes for equation 16

Table V. Number of complement boxes
after each curve for equation 16

curve number of complement boxes

1 68

2 242

3 241

4 241

5 251

6 263

The CPU time for this particular iteration (for the parametric equa-
tion 16) is 50.95 seconds on a Sun Ultra Sparc 1 140 MHZ with 64
MB memory. We suspect that much of this time was spent in printing
operations.

Table V lists the number of complement boxes formed after each
curve following. Observe that table V shows that some complement
boxes cm are already rejected by our algorithm, once the list of com-
plement boxes lc for each curve is formed. Figure 14 is the plot of the
complement boxes only, after all 6 curves are found.

After all the complement boxes cm for all 6 curves are constructed,
our global search algorithm rejects all 263 complement boxes, confirm-
ing that there is no curve in the list of complement boxes lc.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.22

23

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x(1)

x(
2)

Figure 14. Complement boxes of the implicit curve for equation 16

References

1. R. BAKER KEARFOTT AND ZHAOYUN XING: An Interval Step Control
for Continuation Methods, joint with Z. Xing, SIAM J. Numer. Anal. 31 (3),
pp. 892-914 (1994).

2. R. BAKER KEARFOTT On Proving Existence of point at which H(Y) = 0s
in Equality Constrained Optimization Problems, Mathematical Programming
83 (1), pp. 89-100 (September, 1998).

3. EUGENE L. ALLGOWER and K. GEORG: Introduction to Numerical Con-
tinuation Methods, Colorado State University, 1990.

4. R. BAKER KEARFOTT: Rigorous Global Search, Kluwer, Dordrecht, 1996.
5. JOHN M. SNYDER: Interval Analysis For Computer Graphics, Siggraph 92,

26 (2): 121-130, 1992.
6. R. BAKER KEARFOTT AND ZHAOYUN XING: Rigorous Computation of

Surface Patch Intersection Curves, Preprint, 1993.
7. R. E. MOORE: Interval Analysis, Prentice Hall, New Jersey, 1966.
8. ELDON HANSEN: Global Optimization Using Interval Analysis, Marcel

Dekker, New York, 1992.
9. ARNOLD NEUMAIER: Interval Methods for Systems of Equations, Cam-

bridge University Press, 1990.
10. R. B. KEARFOTT: Interval Computations: Introduction, Uses, and Resources,

Euromath Bulletin, 2(1):95 112, 1996.
11. R. B. KEARFOTT: Preconditioners for the interval Gauss-Seidel method,

SIAM J. Numer. Anal., 27(3):804-822, June 1990.
12. R. B. KEARFOTT, C. HU, and M. NUVOA:A Review of Preconditioners for

the Interval Gauss-Seidel Method, Interval Computations, 1(1):59 85, 1991.
13. C. HU:Optimal Preconditioners for the Interval Newton Method, PhD Thesis,

University of Louisiana at Lafayette, 1990.

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.23

24

14. X. SHI:Intermediate Expression Preconditioning and Verification for Rigor-
ous Solution of Nonlinear Systems, PhD Thesis, University of Louisiana at
Lafayette, 1995.

15. D. RATZ:Automatische Ergebnisverifikation bei Globalen Optimier-
ungsproblemen, PhD Thesis, Universität of Karlsruhe, 1992.

16. G. ALEFELD and J. HERZBERGER: Introduction to Interval Computations,
Academic Press, New York, 1983.

17. J. GARGANTINI and P. HENRICI: Circular arithmetic and the determination
of polynomial zeros, Numer. Math., 18:305-320, 1972.

18. L. E. J. BROUWER: Über Abbildung von Mannigfaltigkeiten, Math. Ann.,
17:97-115, 1912.

19. C. MIRANDA: Un’ osservatione su un teorema di Brouwer., Bol, Un, Mat.
Ital., Series 2, 2:5-7, 1940.

20. H. BRÖNNIMANN, C. BURNIKEL, S. PION: Interval Arithmetic Yields Effi-
cient Dynamic Filter for Computational Geometry., In Proc. 14th Annu. ACM
Sympos. Compu. Geom., pages 165–174, 1998.

21. S. KRISHNAN, and D. MANOCHA: An Efficient Surface Intersection Al-
gorithm Based on Lower-Dimensional Formulation., ACM Transactions on
Graphics, Vol. 16, No. 1, January 1997, pages 74–106, 1997.

22. JOHN M. SNYDER: Interval Methods for Multi-Point Collisions between
Time-Dependent Curved Surfaces., Computer Graphics(SIGGRAPH’93 Pro-
ceedings), volumn 27, pages 321–334, 1993.

23. S. P. MUDUR, and, P. A. KOPARKAR: Interval Methods for Processing
Geometric Objects., IEEE Comput. Graphics and Appl., 4(2):7-17, 1984.

24. P. SCHRAMM: Intersection Problems of Parametric Surfaces in CAGD.,
Computing, 53:355-364, 1994.

25. T. W. SEDERBERG and S. R. PARRY:Comparison of Three Curve Intersec-
tion Algorithms., Comput. Aided Des., 18(1):58-63, 1986.

26. R. B. KEARFOTT: INTLIB, a portable FORTRAN 77 interval standard
function library., ACM Trans. Math. Software, 20(4):447-459, December 1994.

27. R. B. KEARFOTT: Algorithm 763(Interval Arithmetic), A (Fortran 90) Mod-
ule for an Interval Data Type. ACM Trans. Math. Software, 22(4):385-392,
December 1996.

Address for Offprints:
Mihye Kim,
103-C, St. Neri, Youngsville, LA, 70592
e-mail: mihyekim@yahoo.com

2004_10_25_corrected_Kluwer.tex; 4/11/2004; 6:56; p.24

