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Abstract. Based originally on work of McCormick, a number of recent global optimization
algorithms have relied on replacing an original nonconvex nonlinear program by convex or linear
relaxations. Such linear relaxations can be generated automatically through an automatic differ-
entiation process. This process decomposes the objective and constraints (if any) into convex and
nonconvex unary and binary operations. The convex operations can be approximated arbitrarily well
by appending additional constraints, while the domain must somehow be subdivided (in an overall
branch and bound process or in some other local process) to handle nonconvex constraints. In gen-
eral, a problem can be hard if even a single nonconvex term appears. However, certain nonconvex
terms lead to easier-to-solve problems than others.

In this paper, we present a symbolic preprocessing step that provides a measure of the intrinsic
difficulty of a problem. Based on this step, one of two methods can be chosen to relax nonconvex
terms.
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1. Introduction.

1.1. The General Global Optimization Problem. Our general global opti-
mization problem can be stated as

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,
where ϕ : x → R and ci, gi : x → R, and where x ⊂ Rn is
the hyperrectangle (box) defined by

xi ≤ xi ≤ xi, 1 ≤ i ≤ n,
where the xi and xi are constant bounds.

(1.1)

We will call this problem a general nonlinear programming problem, abbreviated
“general NLP” or “NLP”.

1.2. Deterministic Branch and Bound Methods. In deterministic branch
and bound methods for finding global minima, an initial region x(0) is adaptively
subdivided into subregions x of the form in (1.1), while an upper bound ϕ to the
global optimum of ϕ is maintained (say, by evaluating ϕ at a succession of feasible
points). A lower bound ϕ(x) on the optimum of ϕ over the subregion x is then
computed. If ϕ(x) > ϕ, then x is rejected; otherwise, other techniques are used to
reduce, eliminate, or subdivide x. For a relatively early explanation of this common
technique, see [13]. For more recent explanations in which convex underestimators
are employed, see for example [3], [15]. For explanations focusing on validation but
restricted to traditional interval arithmetic-based techniques, see [6] or [7, Ch. 5].
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The effectiveness of the above technique depends on the quality of the upper
bound ϕ and the lower bound ϕ(x). The upper bound ϕ may be obtained by various
techniques, such as by locating a feasible point (or local optimum) x̌, then evaluating
ϕ at x̌. A naive way obtaining ϕ(x) is to simply evaluate ϕ with interval arithmetic
over x, and use the lower bound of the value ϕ(x). However, ϕ(x) so obtained takes
no account of the constraints, and (since the feasible portion of x, although possibly
non-empty, may be much smaller than x itself) the lower bound ϕ(x) may not be
sharp enough to be of use. More effective techniques appear to be those that solve
coupled systems that take account of both objective and constraints. Convex and
linear underestimators are used in a common variant of such techniques.

1.3. Convex Underestimators and Overestimators. Convex underestima-
tors and overestimators are a primary tool to replace problem (1.1) by a simpler
problem, the global optimum of which is less than or equal to the global optimum of
(1.1). For example, if ϕ is replaced by a quadratic or piecewise linear function ϕ(`)

such that ϕ(`)(x) ≤ ϕ(x) for x ∈ x, then the resulting problem has global optimum
that underestimates the global optimum of (1.1). Similarly, if m1 = 0 (i.e. if there are
no equality constraints) and, in addition to replacing ϕ by ϕ(q), each gi replaced by a
linear function g

(`)
i such that g

(`)
i (x) ≤ gi(x) for x ∈ x, then the resulting quadratic or

linear program, termed a relaxation of (1.1), has optimum that is less than or equal to
the optimum of (1.1). (If there are equality constraints, then each equality constraint
can be replaced, at least in principle, by two linear inequality constraints.)

1.3.1. An Arithmetic on Underestimators and Overestimators. Con-
straints or objective functions that represent simple binary operations (addition, sub-
traction, multiplication, and division), or unary operations (standard functions such
as y = ex or y = xn) can be bounded below or above on a particular interval by linear
relations. For instance, if g

1
is a linear underestimator for g1 and g

2
is a linear under-

estimator for g2, then a linear underestimator for g1 + g2 is g
1

+ g
2
. Thus, addition

of two linear underestimators can be defined simply by addition of the corresponding
linear coefficients. Similarly, if g

1
is a linear underestimator for g1 and −g

2
is a linear

underestimator for −g2, then g
1

+−g
2

is a linear underestimator for g1 − g2. Linear
underestimators for multiplication are somewhat more involved, but can similarly be
obtained operationally. For convex functions such at eg, for g ∈ [a, b], a linear under-
estimator is the tangent line at any point c ∈ [a, b], while for concave functions g, the
best possible linear underestimator is the secant line connecting (a, g(a)) (b, g(b)). If
[a, b] is too wide to get sharp underestimators and overestimators, then [a, b] may be
subdivided, and linear underestimators can be supplied for each subinterval.

In actually generating a linear program whose solution underestimates the so-
lution of (1.1), we replace an expression g by a new intermediate variable v for the
underestimator wherever the expression g occurs; we then append the constraint v ≥ g
for the linear underestimator to the set of constraints. In case multiple linear con-
straints are used for more accuracy, we introduce multiple variables vi and wi and
corresponding multiple constraints.

An arithmetic can be used to automatically compute underestimators given by
expressions or computer programs. The original idea for such an arithmetic goes
back to McCormick. Such an arithmetic may employ operator overloading or similar
technology, such as explained, say, in [14] [7, §1.4] or in the proceedings [1], [2] or
[5]. A framework for such automatic computation is given in [15, §4.1]. In such an
arithmetic, given underestimators for expressions g1 and g2, formulas are implemented
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for computing underestimators of g1 + g2, g1 ∗ g2, and g1/g2, as well as for comput-
ing underestimators of powers, exponentials, logarithms, and other such functions
encountered in practice.

Many of the ideas for such an arithmetic appear in work of McCormick [10, 11, 12].
Significant portions of the books [3] and [15] are devoted to techniques for deriving
underestimators and overestimators as we have just described, and for implementing
automatic computation of these. For example, [15, Chapter 3] contains techniques
for computing underestimators of sums of products, and [15, Chapter 4] summarizes
rules for automatic computation of underestimators, based on convex envelopes and
linear underestimations. The techniques in [15] are embodied in the highly successful
software package BARON.

Gatzke, Tolsma, and Barton [4] have implemented automated generation of both
linear underestimating techniques as in [15] and convex underestimating techniques
as in [3] in their DAEPACK system.

1.4. Our View of the Process. In this work, to aid our analysis of the difficulty
of particular problems, we view the process slightly differently. In particular, we first
generate a list of operations (known as a code list or tape among experts in automatic
differentiation), and we assign an equality constraint to each operation, leading to an
equivalent expanded NLP. We may then analyze each such equality constraint in the
equivalent expanded NLP to determine if we may replace the equality constraint by
a “≤” constraint or a “≥” constraint, to obtain an equivalent relaxed expanded NLP.

In a third step, we replace the nonlinear operations in the constraints in the
equivalent relaxed expanded NLP by linear underestimators or linear overestimators.
For nonlinear operations and equality constraints, both underestimators and overes-
timators are required, while only underestimators are required for “≤” constraints,
and only overestimators are required for “≥” constraints. We call the resulting linear
program a linear underestimating relaxation. This four stage scheme is diagrammed
in Figure 1.1.

Original NLP

Equivalent expanded NLP

Equivalent relaxed expanded NLP

Linear relaxation

equivalent

equivalent

just a relaxation we subdivide to make
accurate

Fig. 1.1. Our four stages in analyzing a linear relaxation of an NLP

For underestimators of convex operations or overestimators of concave operations,
additional constraints can be appended in the linear underestimating relaxation to
sharpen the approximation. However, in overestimations of convex operations or
underestimations of concave operations, the linear underestimating relaxation cannot
be made to more sharply underestimate the original problem by appending additional
linear constraints; in these cases, in general, the domain must be subdivided, and
a linear underestimating relaxation must be solved over each subproblem. In our
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procedure, we will explicitly identify those operations requiring solution of linear
underestimating relaxations over subregions to obtain increased accuracy. We will
also identify which (and how many) variables to subdivide to achieve the increased
accuracy. The number of such variables gives the dimension of the subspace in which
tessellation must occur, and thus gives a measure of how much effort needs to be
expended to accurately approximate a solution.

1.5. Organization of This Work. In §2, we give a simple example that is
used throughout the rest of the paper to illustrate the concepts. In §3, we define and
illustrate our concept of expanded NLP and equivalent relaxed expanded NLP, and
we give a theorem that shows how we may replace equality constraints by inequality
constraints in the expanded NLP to obtain an equivalent relaxed expanded NLP. In §4
we give details on refining convex and concave constraints, while in §5, we describe our
algorithm structure for an automatic analysis. The results of an automatic analysis
appears in §6. We give conclusions and a brief outline of ongoing work in §7.

2. An Illustrative Example. Consider
Example 1. Minimize

ϕ(x) = (x1 + x2 − 1)2 − (
x2

1 + x2
2 − 1

)2

for x1 ∈ [−1, 1] and x2 ∈ [−1, 1].
Example 1, a small unconstrained problem except for bound constraints, is easily

solved by GlobSol [8], a traditional interval branch-and-bound method. However, it
is nonconvex, and can be used to illustrate underlying concepts in this work. To
generate a linear relaxation of this problem, we first assign intermediate variables
to intermediate operations, thus generating a code list. (This can be done within a
compiler or by operator overloading.) Such a code list is seen in the second column
of Table 2.1.

Table 2.1
A code list, interval enclosures, and expanded NLP for Example 1.

] Operation Enclosures Constraints Convexity
1 v3 ← x1 + x2 [−2, 2] x1 + x2 − v3 = 0 linear
2 v4 ← v3 − 1 [−3, 1] v3 − 1− v4 = 0 linear
3 v5 ← v2

4 [0, 9] v2
4 − v5 ≤ 0 convex

4 v6 ← x2
1 [0, 1] v2

1 − v6 = 0 both
5 v7 ← x2

2 [0, 1] v2
2 − v7 = 0 both

6 v8 ← v6 + v7 [0, 2] v6 + v7 − v8 = 0 linear
7 v9 ← v8 − 1 [−1, 1] v8 − 1− v9 = 0 linear
8 v10 ← −v2

9 [−1, 0] −v2
9 − v10 ≤ 0 nonconvex

9 v11 ← v5 + v10 [−1, 9] v5 + v10 − v11 ≤ 0 linear

The third column of Table 2.1 contains enclosures for the corresponding inter-
mediate variables, based on x1 ∈ [−1, 1] and x2 ∈ [−1, 1]. (Here, we obtained these
enclosures with traditional interval evaluations of the corresponding operations.) For
example, the enclosure [−1, 9] in the last row represents bounds on the objective for
x1 ∈ [−1, 1] and x2 ∈ [−1, 1].

We explain the fourth and fifth columns of Table 2.1 below.
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3. The Expanded NLP and the Equivalent Relaxed Expanded NLP. If
we replace each operation in the code list by an equality constraint, we obtain an
equivalent NLP, in the sense that the optimum and optimizing values of the inde-
pendent variables for the resulting NLP are the same as the optimum and optimizing
values of the original NLP.

Definition 3.1. Given the original NLP (1.1), the expanded NLP is that
NLP obtained by replacing the objective and constraints by corresponding intermedi-
ate variables for the individual operations and assigning equality constraints to the
intermediate variables.

In Example 1, an expanded NLP can be defined from the operations in Table 2.1,
to obtain

minimize v11

subject to v1 + v2 − v3 = 0,
v3 − 1− v4 = 0
v2
4 − v5 = 0

v2
1 − v6 = 0

v2
2 − v7 = 0

v6 + v7 − v8 = 0
v8 − 1− v9 = 0
−v2

9 − v10 = 0
v5 + v10 − v11 = 0
v1 ∈ [−1, 1], v2 ∈ [−1, 1].

(3.1)

As an intermediate step in producing a linear relaxation of the original NLP,
we replace as many of the equality constraints as possible in the expanded NLP by
inequality constraints subject to the resulting problem being equivalent to the original
one. We do this according to the following definition and theorem.

Definition 3.2. Suppose we have an expanded NLP as in Definition 3.1, and
we replace as many of the equality constraints as possible in the expanded NLP by
inequality constraints, according to the following rules.

1. Unless the objective consists of an independent variable only, the top-level
operation ϕ = vk = f(vq, vr) or ϕ = f(vq) (corresponding to the bottom of
the code list and evaluation of the objective) may be replaced by an inequality
constraint of the form f ≤ vk. (In Table 2.1, ϕ corresponds to v11, and
f(vq, vr) = v5 + v10.)

2. In constrained problems, operations corresponding to ci(x) = 0 or gi(x) ≤ 0
are placed unaltered into the constraint set. For example, if gi were defined
by intermediate variable vk in the code list, then the constraint vk ≤ 0 would
be placed into the set of constraints.

3. (Recursive conditions) If a binary operation vi = fi(v`, vm) or a unary op-
eration vi = f(v`) computes a value vi that enters only as an argument to
operations vj = fj(vi, ·) or vj = fj(vi), such that for every j, fj is monotonic
in vi, then:
(a) if, for those j for which fj is monotonically increasing with respect to vi,

operation fj corresponds to an inequality constraint of the form fj ≤ vj,
and, for those j for which fj is monotonically decreasing with respect
to vi, operation fj corresponds to an inequality constraint of the form
fj ≥ vj, then vi may correspond to an inequality constraint of the form
fi ≤ vi.
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(b) if, for those j, for which fj is monotonically increasing with respect to vi,
operation fj corresponds to an inequality constraint of the form fj ≥ vj,
and, for those j for which fj is monotonically decreasing with respect
to vi, operation fj corresponds to an inequality constraint of the form
fj ≤ vj, then vi may correspond to an inequality constraint of the form
fi ≥ vi.

4. All other operations correspond to equality constraints.
Then the resulting NLP is called an equivalent relaxed expanded NLP for the
original NLP (1.1).

The fourth column of Table 2.1 shows the constraints corresponding to the equiv-
alent relaxed expanded NLP corresponding to the code list in the second column of
Table 2.1.

Theorem 3.3. The equivalent relaxed expanded NLP of Definition 3.2 is equiv-
alent to the expanded NLP of Definition 3.1 in the sense that:

1. The optimum of the equivalent relaxed expanded NLP is the same as the
optimum of the expanded NLP.

2. The set of optimizing points of the equivalent relaxed expanded NLP contains
the set of optimizing points of the expanded NLP.

3. Under a “strict monotonicity” condition described in the proof of this theorem,
the sets of optimizing points of the equivalent relaxed expanded NLP and of
the expanded NLP are the same.

Thus, since the expanded NLP is equivalent to the original NLP, the equivalent relaxed
expanded NLP is equivalent to the original NLP in the same sense.

Before we prove Theorem 3.3, we use Example 1 to illustrate the process defined in
Definition 3.2. Although a computer can easily label each operation as corresponding
to equality or inequality by a backwards traversal of the code list, we illustrate the
process with a computational graph. The computational graph corresponding to the
code list in Table 2.1 appears in Figure 3.1. To label each node in the graph, we
traverse the graph from the bottom up. The bottom node is labelled as “≤”. We
then check the nodes immediately above nodes already checked to see if they satisfy
the recursive condition 3 of Definition 3.2. Any node that fails to satisfy the recursive
condition is labelled an equality constraint, and all nodes above that node in the
computational graph are labelled equality constraints. Figure 3.1 illustrates the result
of this process.

Using Definition 3.2 (and comparing with Figure 3.1 and to the fourth column of
Table 2.1), the equivalent relaxed expanded NLP for Example 1 is

minimize v11

subject to v1 + v2 − v3 = 0,
v3 − 1− v4 = 0
v2
4 − v5 ≤ 0

v2
1 − v6 = 0

v2
2 − v7 = 0

v6 + v7 − v8 = 0
v8 − 1− v9 = 0
−v2

9 − v10 ≤ 0
v5 + v10 − v11 ≤ 0
v1 ∈ [−1, 1], v2 ∈ [−1, 1].

(3.2)

Similarly, the proof of Theorem 3.3 proceeds by induction on the nodes of the
computational graph, starting at the bottom.
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Fig. 3.1. The computational graph corresponding to the code list in Table 2.1

Proof of Theorem 3.3
Assume first that the only change made to the expanded NLP is replacement of

the equality constraint vfinal = f by an inequality constraint f ≤ vfinal according to
rule 1, and suppose that the resulting NLP is not equivalent to the original expanded
NLP. Then, since the resulting NLP is a relaxation of the original NLP, the resulting
NLP must have an optimizer that is not in the feasible set of the original NLP.
However, the only way this can be is if the inequality constraint f ≤ vfinal is strict.
However, we may then reduce vfinal and remain in the feasible set, contradicting the
assumption that vfinal represented an optimum.

Now suppose that we start with a problem P that is equivalent to the expanded
NLP from application of some of the rules in Definition 3.2, and suppose we obtain
a new problem Pnew from P by applying rule 3a to P, that is, by replacing fi = vi

by fi ≤ vi. Then, arguing as above, any optimizer of Pnew that is not an optimizer
of P would need to correspond to the strict inequality fi < vi. But then, we could
decrease vi until vi = fi, and each constraint in which vi occurred would remain
feasible. Thus, the optimum of Pnew would have to correspond to the optimum of
P, and the optimizing points of P are optimizing points of Pnew.

For the stronger assertion about the optimizing sets, suppose that each fj related
to any fi that occurs in rule 3a or rule 3b is either strictly increasing or strictly
decreasing, and that each intermediate computation is part of either the objective
or a constraint. (By this last condition, we mean that there are no “dead ends” in
the computation, i.e. there are no bottom nodes in the computational graph that
correspond neither to an objective nor a constraint.) Then, by decreasing vi, each fj

either decreases or increases, and we can decrease or increase the corresponding vj ’s
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without affecting the feasibility of the problem. We can, in turn, decrease or increase
variables depending on those vj ’s that we have so adjusted, until we adjust a variable
vk upon which no other variables depend. Due to the “no dead ends” assumption,
this variable vk represents, without loss of generality, either the objective value ϕ or a
constraint value or g. (It cannot represent an equality constraint c = 0, since then the
constraint we have relaxed could not have been replaced by an inequality in the first
place.) If this variable vk represents the objective: vk ≤ ϕ, then ϕ can be decreased;
this would, however, contradict the assumption that we started with an optimizer of
Pnew. On the other hand, if vk represented a constraint g ≤ 0, then our adjustments
will have decreased g, which means the adjusted point is further inside the interior of
the feasible region of g; in turn, this means that the point must have been feasible for
P, contradicting our assumption.

A similar argument holds if we start with a problem P that is equivalent to the
expanded NLP from application of some of the rules in Definition 3.2, and we obtain
a new problem Pnew from P by applying rule 3b to P. This proves the theorem.

NLP’s whose code list generates many equality constraints corresponding to non-
linear operations are more difficult to solve, in a sense to be made explicit below. This
is because, to relax a nonlinear equality constraint, we obtain both a convex opera-
tion and a concave (nonconvex) operation, and a more expensive kind of branching
appears necessary for nonconvex operations.

The actual solution to the original NLP of Example 1 (as bounded by GlobSol) is
x1, x2 ∈ [0.269593, 0.269595], ϕ(x) ∈ [−0.51805866866,−0.51805866865]. When the
approximate solver IPOPT [16] is given the equivalent relaxed expanded NLP (3.2),
IPOPT happens to return values within these bounds.

4. Relaxations. We may replace each convex and nonconvex constraint in an
expanded NLP by a linear relaxation. In validated computations, we also generally
replace each linear equality constraint by a pair of linear inequality constraints that
tightly contain the linear constraint, but take account of roundoff error in computing
the coefficients. In both validated and non-validated computations, we replace each
nonlinear equality constraint by a pair of inequality constraints; in this case, if the
original nonlinear equality constraint was convex, we obtain both a convex and a
concave constraint.

Table 4.1 illustrates a possible set of relaxations for the expanded NLP of Ta-
ble 2.1.

In the fourth column of Table 4.1, the underestimates for the convex terms v2
4 ,

x2
1, and x2

2 correspond to the tangent lines to the operations at the midpoint of the
enclosure interval; for example, the expression (4.5)2 + 9(v4 − 4.5) in the third row
corresponds to the tangent line to v2

4 at v4 = 4.5. The nonconvex operations (−v2
9 ,

−v2
1 , and −v2

2) are underestimated by the secant line connecting the end points of
the graph. If the expanded NLP is replaced by “minimize v11 subject to x1 ∈ [−1, 1],
x2 ∈ [−1, 1], and subject to each of the constraints in column 4,” then the solution
to the resulting linear program, which we call an expanded LP, underestimates the
solution to the original NLP. When we gave IPOPT the expanded LP corresponding
to Table 4.1, IPOPT obtained (x1, x2) ≈ (0.3894, 0.3894), ϕ = −1, an underestimator
that is no better than the traditional interval evaluation of the objective over the box.

4.1. Refining Convex Constraints. As explained in [15, §4.2] and elsewhere,
the nonlinear convex operations can be approximated more closely in the linear relax-
ation by appending more constraints corresponding to additional tangent lines. For
example, in the nonlinear convex operation v5 ← v2

4 in Example 1, in addition to the
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Table 4.1
A linear relaxation corresponding to the expanded NLP in Table 1.

] Operation Enclosures Under/Over Estimators Convexity
1 v3 ← x1 + x2 [−2, 2] x1 + x2 − v3 = 0 linear
2 v4 ← v3 − 1 [−3, 1] v3 − 1− v4 = 0 linear
3 v5 ← v2

4 [0, 9] (4.5)2 + 9(v4 − 4.5)− v5 ≤ 0 convex
4 v6 ← x2

1 [0, 1] (0.5)2 + 1(v1 − 0.5)− v6 ≤ 0 convex
v1 − v6 ≥ 0 nonconvex

5 v7 ← x2
2 [0, 1] (0.5)2 + 1(v2 − 0.5)− v7 ≤ 0 convex

v2 − v7 ≥ 0 nonconvex
6 v8 ← v6 + v7 [0, 2] v6 + v7 − v8 = 0 linear
7 v9 ← v8 − 1 [−1, 1] v8 − 1− v9 = 0 linear
8 v10 ← −v2

9 [−1, 0] −1− v10 ≤ 0 nonconvex
9 v11 ← v5 + v10 [−1, 9] v5 + v10 − v11 ≤ 0 linear

constraint v5 ≥ (4.5)2 + 9(v4 − 4.5) (corresponding to the tangent line at v4 = 4.5),
we may add the constraint v5 ≥ (2.25)2 +4.5(v4−2.25) (corresponding to the tangent
line at v4 = 2.25) and the constraint v5 ≥ (6.75)2 + 13.5(v4 − 6.75) (corresponding to
the tangent line at v4 = 6.755), and any other similar tangent line. By spacing the
tangent lines sufficiently close together, the corresponding convex constraint can be
approximated arbitrary closely.

If there were no nonconvex operations in the code list, then all convex opera-
tions could be approximated arbitrarily closely by spacing tangent lines sufficiently
close together. This process involves subdivision in a single variable for each convex
nonlinear constraint, so the number of constraints in a linear programming relaxation
whose solution approximated the solution to the original nonlinear program to a given
accuracy would seem to be, essentially, linear in the number of operations in the code
list.

4.2. Refining Nonconvex Constraints. However, the relaxations for noncon-
vex operations cannot be refined by appending additional constraints in the same way.
Two possibilities come to mind:

• We may subdivide the original variables x1 and x2 to reduce the width of
the enclosure for the domain of the operation corresponding to the noncon-
vex constraint, and thus reduce the slack in the linear underestimator for
the nonconvex constraint. For example, if we bisected both x1 and x2, for
Example 1, we would obtain four sub-domains. We would obtain under-
estimates for the solution of the original problem over the sub-domains as
underestimates to the corresponding linear relaxations; an underestimate for
the original problem over the original domain would consist of the minimum
of the four underestimates over the sub-domains.

• Alternately, we may subdivide the domain of the operation corresponding
to the nonconvex constraint directly into two or more sub-intervals (or sub-
boxes in the case of multiplication), and form relaxations corresponding to
each of these sub-intervals or sub-boxes. For example, we could subdivide
v9 in Table 4.1 into [−1, 0] and [0, 1]. We then underestimate −v2

9 over each
separate sub-interval by its secant line. If we use this secant line, along with
the original bounds x1 ∈ [−1, 1], x2 ∈ [−1, 1], we obtain a relaxation of the
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problem we would get by restricting x1 and x2 to those values leading to
a range of v9 in the selected subinterval (such as one of [−1, 0] or [0, 1]).
Thus, the minimum of the solutions to the relaxations so obtained will be an
underestimate to the solution of the original nonlinear programming problem.

For example, consider, for the purpose of examining a single nonconvex operation, us-
ing the exact constraints in the expanded NLP of Table 2.1 except for that correspond-
ing to operation 8, which we maintain as −1−v10 ≤ 0 as in Table 4.1. IPOPT gives an
approximate solution (x1, x2) ≈ (0.5, 0.5), ϕ ≈ −1 to this problem. We now subdivide
v9 into v9 ∈ [−1, 0] and v9 ∈ [0, 1]. The relaxation of v10 ≥ −v2

9 over [−1, 0] corre-
sponding to the secant line through the end points is v10 ≥ v9. Replacing v10 ≥ −1
(valid over [−1, 1]) by this and using a corresponding bound constraint on v9, but
otherwise keeping the same convex program, IPOPT gives an approximate solution
(x1, x2) ≈ (0.3333, 0.3333), ϕ ≈ −0.6667. Now replacing v10 ≥ −v2

9 over [0, 1] by the
relaxation corresponding to the secant line through the end points, namely v10 ≥ −v9,
and using a corresponding bound constraint on v9, IPOPT gives (x1, x2) ≈ (1, 0.6823),
ϕ ≈ 9 × 10−5. Thus, an underestimate for the solution to the original NLP, based
on these linear relaxations, is approximately min

{−0.6667, 9× 10−5
}

= −0.6667, a
tighter estimate than that obtained by solving only a single problem, but obtained
by subdividing in one variable only. A similar phenomenon would be seen if, instead
of using exact inequalities for the convex operations, we used a sufficient number of
linear underestimators.

5. Our Preprocessing Algorithms. If there are only one or two nonconvex
operations in the code list, but these nonconvex operations depend on many, if not
all, of the dependent variables, then it is probably advantageous to use the second
subdivision process (subdividing directly on the intermediate variables entering the
nonconvex constraints). However, if there are many nonconvex constraints, all de-
pending on the same small number of independent variables, then it is probably ad-
vantageous to do a traditional branch-and-bound within the subspace of independent
variables corresponding to the nonconvex constraints. The problem will be “hard”
if there are both a large number of nonconvex constraints and a large number of in-
dependent variables enter into these nonconvex constraints; otherwise, the problem
is easily solvable by either branching and bounding on directly on the intermediate
variables entering the few convex constraints or by branching and bounding on the
few independent variables entering the nonconvex constraints.

With these considerations in mind, we have structured our preprocessing algo-
rithms in the following order.

1. We first create the code list.
2. Evaluate the code list with interval arithmetic to obtain bounds on the inter-

mediate variables1.
3. Using Theorem 3.3, and the bounds from Step 2 start at the bottom of

the computational graph to label each node in the computational graph as
corresponding to an inequality or an equality constraint.

4. Using the ranges from step 2, the labellings from step 3, and considerations
from §4 (e.g. whether the function is convex or concave and whether an over-
estimate, underestimate, or both is required), label each node as requiring
solution of problems on subdomains to obtain tighter approximations via lin-
ear programs or as requiring only appending of additional constraints to a

1Constraint propagation may be used at this point.
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single problem over the original domain.
5. For those nodes in the computational graph requiring solution of problems

over subdomains, trace up the computational graph to identify upon which
independent variables the result depends.

Implementation of steps 3 and 3 require a case-by-case consideration of the individual
operations (exponential, odd, even, or real powers, etc.).

6. Experiments. We have programmed each of the steps in §5 within the Glob-
Sol module structure, testing our programs with Example 1 and various other small
problems with certain properties. For a reasonably simple but realistic test problem,
we have tried the following problem, originally from [17].

Example 2. Minimize

max
1≤i≤m

|fi(x)‖ , where

fi(x) = x1e
x3ti + x2e

x4ti − 1
1 + ti

,

ti = −0.5 + (i− 1)/(m− 1), 1 ≤ i ≤ m

We transformed this non-smooth problem to a smooth problem with Lemaréchal’s
conditions [9], to obtain:

minimize v

subject tofi(x)− v ≤ 0, 1 ≤ i ≤ m

−fi(x)− v ≤ 0, 1 ≤ i ≤ m

To test the preprocessing, we took m = 21, we took xi ∈ [−5, 5] for 1 ≤ i ≤ 4 and
v ∈ [−100, 100]. The resulting output had 221 blocks, each of the form:
Row. no., OP, CONSTRAINT_TYPE, NEEDS_SUBPROBLEM

1 A_X EQUAL_V F
2 EXP EQUAL_V T
3 X_TIMES_Y EQUAL_V T
4 A_X EQUAL_V F
5 EXP EQUAL_V T
6 X_TIMES_Y EQUAL_V T
7 X_PLUS_Y EQUAL_V F
8 X_PLUS_B EQUAL_V F
9 X_MINUS_Y LESS_OR_EQ_V F
10 MINUS_X LESS_OR_EQ_V F
11 X_MINUS_Y LESS_OR_EQ_V F

Row number, corresponding independent variables:
2 3
3 1 3
5 4
6 2 4

In rows 2 and 5 (and corresponding rows in the remaining 20 blocks), the dependence
was only on variables 3 and 4. In rows 3 and 6 (and corresponding rows in the
remaining 20 blocks), the binary operation is a multiplication. However (cf. eg. [3,
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p. 45 ff.]), a multiplication can be both underestimated and overestimated arbitrarily
closely by subdividing in only one of the two variables. Hence, this analysis reveals
that we only need subdivide in variables 3 and 4 to obtain linear programs that
approximate the original NLP arbitrarily closely. This can be interpreted to mean
that, with branch-and-bound based on linear underestimators and overestimators, the
problem is inherently two-dimensional rather than four-dimensional.

In this case, the alternative would be to subdivide each of the intermediate vari-
ables corresponding to code list rows 2, 3, 5, 6, etc. Since this would result in subdi-
vision in an 84-dimensional space, this alternative is clearly not appropriate for this
problem.

7. Conclusions and Future Work. We have presented an analysis of nonlinear
programming problems that leads to a way of automatically determining the difficulty
of the problem. We have implemented the resulting symbolic preprocessing and have
tried it on a somewhat interesting problem.

Much work remains to be done. We intend to incorporate the preprocessing
into an actual branch and bound algorithm. (There is an advantage to doing the
preprocessing at run-time, since the labels on the computational graph depend on
the ranges of the intermediate variables, and graphs may be more advantageously
labelled over subdomains.) In this context, we are working on our version of linear
programming formulations and solution.

Finally, use of linear programs to approximate the original NLP may not work
as well as other techniques, such as use of interval Newton methods, etc. for some
problems. General purpose software will probably perform best if hybrid combinations
of various techniques are astutely implemented.
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