
Libraries, Tools, and Interactive Systems for Verified Computations 51

3.5 Summary

In this section, we have introduced new method to perform validated numerical
calculations for embedded applications.

Numerical validation tools have existed before, but none of those are specif-
ically designed for embedded applications, because they lack support for fixed
point representation. Our library tries to fill this gap. It is based on the use
of a new library that applies various known validation methods to fixed point
numbers.

This library is just the first piece of work towards a complete toolbox dedi-
cated to numerical validation of embedded applications.

4 GlobSol (R. Baker Kearfott)

4.1 Introduction

GlobSol began as a research code to study algorithms for verified Global Op-
timization. GlobSol grew out of INTBIS [23], a relatively simple FORTRAN-77
code and ACM Transactions on Mathematical Software algorithm for finding
all solutions, with validation, to nonlinear algebraic systems. For ease of ex-
perimentation, simple automatic differentiation, consistent with the relatively
small problems originally envisioned, was added, and a special technique for
bound constraints (originally tried in [16]) was implemented. We also provided
extensive capability for a technique we described in [15], a technique (discov-
ered independently and probably earlier by others) that has developed into the
field of “constraint propagation.” One of the first projects done within this en-
vironment was development of techniques for avoiding the “cluster” problem
([7], [22], [46]) that occurs in exhaustive search algorithms when the system
is ill-conditioned or singular near the global optimum. We also implemented
a technique for verifying feasible points [19] and thus included a capability for
handling general equality-constrained problems. (We added separate handling of
inequality-constrained problems later.) We studied and implemented extensions
to the idea of interval slopes and slope arithmetic (perhaps first appearing [25])
to non-smooth functions, as we explained in [17] and [18, Ch. 6].

During this development (roughly from 1993 to 1998), we referred to Glob-
Sol as INTOPT-90. A collected review of these and other techniques, some new
theoretical analyses, and a description of the structure of INTOPT-90 appears in
[18].

GlobSol took on its present form (and its present name) as part of a co-
operative research and development contract funded by Sun Microsystems and
directed by G. W. Walster (and with extensive participation of George Corliss).
The most significant advances during this phase of GlobSol’s development are
perhaps

– extensive testing and bug-removal (extremely important for software that
purports to validate),

52 R. Baker Kearfott, Markus Neher, Shin’ichi Oishi, and Fabien Rico

– polishing of the user interface,
– experimentation with GlobSol on a variety of practical problems, and
– polishing of the packaging, distribution, and installation process.

Although at first glance these advances may seem mundane, they are both a
significant part of the total effort and absolutely indispensable for widely-used,
lasting software.

We have recently provided some details of the above in the succinct review
[20]. Here, we very briefly review requirements for installation and use of GlobSol,
then focus on present weaknesses in GlobSol and how we are eliminating these
weaknesses.

4.2 Statement of the Problem GlobSol Treats

For reference below, we now formally state the type of problem GlobSol solves.
The general optimization problem is

minimize φ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,
where φ : R

n → R and ci, gi : R
n → R.

(2)

The sense in which GlobSol will solve problem (2) is

Given a box x = ([x1, x1], . . . [xn, xn]), find small boxes
x
∗ = ([x∗

1, x
∗
1], . . . [x

∗
n, xn]∗) such that any solutions of

minimize φ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,
where φ : R

n → R and ci, gi : R
n → R

are guaranteed to be within one of the x
∗ that has been found.

(3)

4.3 Installation and Use of GlobSol

The main requirements for GlobSol are

1. a standard-conforming Fortran 90 or Fortran 95 compiler, and
2. a “make” utility.

A Fortran compiler is required because the user defines the optimization problem
as a Fortran program. Even though GlobSol is compiled and linked only once
(and the user’s program is compiled and linked separately), the same version
of the same compiler must nonetheless be used for both building GlobSol and
compiling the user’s input.

GlobSol can be obtained as a “zip” file from
http://interval.louisiana.edu/GlobSol/download globsol.html

From there, one downloads a compressed file and an “unpack” script appropriate

Libraries, Tools, and Interactive Systems for Verified Computations 53

to the particular operating system and compiler. The scripts are for compilers
on various Unix/Linux and Microsoft systems. However, the makefile that builds
GlobSol has extensive in-line documentation, and can be changed as appropriate
for new compilers and systems.

Succinct instructions for installing GlobSol appear in
http://interval.louisiana.edu/GlobSol/install.html.

GlobSol has extensive configuration options, accessible by editing a configu-
ration file. GlobSol is run by supplying a command-line script. A simple example
is accessible by following the installation instructions. For more details, see [20],
or examine the various preprints related to GlobSol at
http://interval.louisiana.edu/preprints.html.

4.4 Improvements to GlobSol in Progress

GlobSol works relatively well for unconstrained problems, but performs weakly
when there are many equality constraints. There are several reasons for this. We
give these reasons, along with present work to overcome these problems, in the
following paragraphs.

Obtaining Upper Bounds on the Global Optimum First, GlobSol is weak
at finding an upper bound on the global optimum, when constrained optimization
is used. For unconstrained optimization, GlobSol (and other interval branch
and bound algorithms) can obtain an upper bound on the global optimum by
evaluating the objective function at any point x̌ (and using outwardly rounded
interval arithmetic in the evaluation, for mathematical rigor); the closer x̌ is
to an actual global optimizing point x∗, the sharper the upper bound on the
global optimum. For constrained problems, there is a complication as outlined
in [18, §5.2.4]: the interval evaluation needs to be taken over a small box in which
a feasible point has been proven to lie. However, the same principle holds for
constrained problems.

For unconstrained problems, GlobSol uses a simple steepest descent proce-
dure followed by the MINPACK-1 routine HYBRJ1 [33] to find a critical point of
the Fritz–John equations, to increase the chances that x̌ is near a global opti-
mizer. The MINPACK routines are freely available through NETLIB
(http://www.netlib.org/), and can thus be distributed with GlobSol. In con-
trast, until recently, good routines that find approximations x̌ to local optimizers
of constrained problems have been proprietary, and cannot be distributed with
GlobSol. Since GlobSol is meant to be self-contained, we have instead provided
our own routine that employs a generalized-inverse-based Newton method to
project onto the feasible set [21]. As a consequence, in the constrained case,
GlobSol finds rigorous upper bounds for the global optimizer, but may not find
a reasonably sharp upper bound until late in the search process. For some ap-
plications, this is not a problem, but it can have a disastrous effect on efficiency
in others.

54 R. Baker Kearfott, Markus Neher, Shin’ichi Oishi, and Fabien Rico

Recently, Wächter’s quality Fortran code Ipopt for constrained optimization
(see http://www-124.ibm.com/developerworks/opensource/coin/ and [50])
has become available under the Common Public License. (See
http://www.opensource.org/licenses/cpl.php.) This code should provide
approximate feasible points x̌ that are highly likely to be near global optimizers,
thus enabling GlobSol to compute sharp upper bounds on global optimizers in
the constrained case. We have recently interfaced Ipopt with GlobSol, and we
are formulating experiments to analyze performance improvements.

Obtaining Lower Bounds on the Range over Large Regions A good
upper bound on the global optimum is generally combined in global search al-
gorithms with good lower bounds on the range of the objective function over
subregions x of the search space. If the lower bound of the objective over x is
larger than the upper bound on the global optimum, then the subregion x can
be rejected as not containing any global optima. In principle, a simple interval
evaluation (occasionally replaced by a mean value extension) of the objective
over x provides the required lower bound. Such a simple interval evaluation is
what is currently implemented in GlobSol.

However, since such an evaluation does not take account of the constraints,
it can have an enormous overestimation. As an example, consider the nonlinear
minimax problem:

min
x

max
1≤i≤m

|fi(x)|, fi : R
n → R, x ∈ R

n, m ≥ n. (4)

To date, we have had limited success in solving realistic problems of this type
directly using GlobSol’s non-smooth slope extensions. Alternately, we can con-
vert the problem to a to a smooth problem with Lemaréchal’s technique [29] as
follows:

minx∈Rn v

such that

{

fi(x) ≤ v

−fi(x) ≤ v

}

, 1 ≤ i ≤ m.
(5)

In (5), we have introduced a single additional slack variable v, which becomes
the value of the objective function. If v is treated as an arbitrary additional
independent variable, then GlobSol presently employs constraint propagation
to narrow the range of v when a subset of the region for the variables x is
given. However, this process does not take account of the coupling between the
constraints, and has not enabled GlobSol to solve minimax problems efficiently.
Furthermore, interval Newton methods applied to the Lagrange multiplier (or
Fritz–John) system associated with (5) over large regions have not adequately
accelerated the search process within GlobSol for realistic minimax problems.

In contrast, Floudas [10], Sahinidis [47] and their respective groups have
used convex or linear relaxations of problem (2) to significant advantage in non-
verified global optimization software. For example, to obtain a lower bound on
an objective function over a region x, the objective φ in problem (2) is replaced
by a convex (or linear) objective that is known to be less than or equal to

Libraries, Tools, and Interactive Systems for Verified Computations 55

the actual objective over x. Each left member gi of the inequality constraints is
similarly replaced by a convex (or linear) underestimator. Likewise, each equality
constraint ci(x) = 0 is replaced by the two inequality constraints ci(x) ≤ 0 and
−ci(x) ≤ 0, and then underestimated. The optimum of the resulting convex (or
linear) program then is less than or equal to the global optimum of the original
problem (2).

Experimenting with Sahinidis’ BARON [44] software, we have been able to
successfully find global optima of minimax problems of the form (4). Apparently,
the reasons these techniques are successful where the others are not are because

1. they take account of the coupling between the constraints, and
2. the resulting relaxations (i.e. the derived simpler problems) have solutions,

and these solutions are easy to obtain.

The computations with convex linear underestimators can be made rigorous
with the following procedure:

1. Compute a relaxed (simplified) convex or linear problem over x.
2. Compute the solution to the convex or linear problem with a floating-point

solver that gives an approximate solution x̌.
3. Use x̌ with the validation technique in [13] to provide a rigorous lower bound

on the solution to the relaxed (and hence on the solution to the original)
problem over x.

We are presently experimenting with this procedure, and will eventually incor-
porate it into GlobSol for minimax procedures.

Although each group develops different techniques, both Floudas [10] and
Sahinidis [47] develop methods by which these underestimators can be computed
automatically (with automatic-differentiation-like technology; see [10] and [47]);
such techniques (and others) could eventually be incorporated into GlobSol.

Efficiency of GlobSol’s Automatic Differentiation, List Processing, etc.

As outlined in [18, §1.4 and §2.2], GlobSol interprets an internal representation of
the objective and constraints, termed a “code list”, to compute point and interval
values of the objective, constraint residuals, Jacobi and Hessian matrices, etc.
This internal representation was designed with simplicity in mind, under the
assumption that problems GlobSol would solve are relatively small and would
not be limited by inefficiencies in function evaluation. However, for a number of
problems, evaluation of the code list could speed computation.

Experiments by Corliss et al. under the Sun project have indicated that,
for some problems, converting the code list to Fortran code then compiling it
gave a noticeable performance improvement, but did not make a difference in
the practicality of solving particular problems. On the other hand, operations
for evaluating every constraint and the objective are included in a single code
list, and all of these operations are performed whenever a particular objective or
constraint value is needed at a new point (or interval) of evaluation. Separating
the operations could benefit particular problems.

56 R. Baker Kearfott, Markus Neher, Shin’ichi Oishi, and Fabien Rico

Another area of possible efficiency gains in GlobSol is in its list processing.
In the global search, regions x are repeatedly bisected into x

(1) and x
(2); x

(1)

is processed further, while x
(2) is stored in a linked list structure. Memory is

allocated whenever a box is stored on the list, and is freed whenever a box
is removed. For some problems, a more sophisticated allocation / deallocation
scheme would greatly improve performance.

Although, with time, we intend to implement these GlobSol improvements,
we do not place them at as high a priority as algorithmic improvements, such as
use of convex underestimators. In our view, fundamental algorithmic improve-
ments will advance both the practicality of GlobSol and the fundamental state
of the art in verified global optimization more.

4.5 Simplification of GlobSol

At present, there are many optional algorithm paths in GlobSol, some of which
are not used. This is a result of the original research nature of GlobSol. Eventu-
ally, some of these paths (along with supporting code) can be eliminated.

Other improvements in this general category include updating GlobSol’s in-
stallation scripts.

4.6 Summary

In this section, we have described GlobSol, validated global optimization soft-
ware for Fortran. GlobSol represents a little over a decade of work on algorithms
and implementations. GlobSol is unusual among such packages in being openly
available and self-contained. Although GlobSol has weaknesses for certain kinds
of constrained problems, we are excited about alternate algorithms, as yet un-
tried in a validated context, that promise to remove many of these weaknesses.

5 ACETAF (Markus Neher)

5.1 Introduction and Overview

S. Oishi and S. M. Rump have developed a new verification method called round-

ing mode controlled verification, and have applied this method to simultaneous
linear equations [41]. It has been shown in [41] that the total cost of calculating
an approximate solution of a system of n-dimensional simultaneous linear equa-
tions and of calculating a rigorous error bound is 4/3 n3 flops. Let us consider
a computing system which conforms to the IEEE 754 floating point standard.
Let A and B be n × n matrices whose elements are IEEE 754 double precision
numbers. Then, we have shown [41] that an inclusion of a product of A and B

can be calculated by

setround(down);

L = A * B;

setround(up);

U = A * B;

