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Many have recently become aware of interval
computations, but when such methods are
practical is the subject of continuing research.
Nonetheless, the ability of interval analysis to
computationally verify existence and
uniqueness of actual solutions near
approximate solutions obtained by traditional
methods, as well as to supply mathematically
rigorous bounds on these actual solutions for a
wide variety of problems, has not been fully
appreciated. We will ameliorate that in this
talk.
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Talk Outline

We will

• introduce the elements of interval
arithmetic,

• show how Newton Methods can be used to
verify solutions to both linear and
nonlinear problems,

• Mention successes in practical areas.
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What is Interval Arithmetic?

Interval arithmetic is based on defining the
four elementary arithmetic operations on
intervals. Let x = [x, x] and y = [y, y] be
intervals. Then, if op ∈ {+,−, ∗, /}, we define

x op y = {x op y | x ∈ x and y ∈ y} .

For example, x + y = [x + y, x + y]. In fact,
all four operations can be defined in terms of
addition, subtraction, multiplication, and
division of the endpoints of the intervals,
although multiplication and division may
require comparison of several results. The
result of these operations is an interval except
when we compute x/y and 0 ∈ y.
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Why Interval Arithmetic?

• With directed rounding, we can bound
roundoff error in the computations. We
can combine interval arithmetic with tools
such as fixed-point iteration theorems to

– automatically verify rigorous bounds,
from approximate solutions.

– automatically prove theorems.

• Interval arithmetic provides rigorous
bounds on the ranges of functions.
Posession of such bounds can be powerful,
especially in rigorous global optimization.
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An Example of Interval
Arithmetic

[−1, 2] ([3, 4] + [−5, 6])) = [−1, 2] ([−2, 10])
= [−10, 20],

whereas

[−1, 2][3, 4] + [−1, 2][−5, 6] = [−4, 8] + [−10, 12]
= [−14, 20]

Here,

[−14, 20] = {x | x = x1 + x2, x1 ∈ [−4, 8],
x2 ∈ [−10, 12]},

and [−14, 20] contains the range of xy + xz
for x ∈ [−1, 2], y ∈ [3, 4], and z ∈ [−5, 6].
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Interval Extensions of
Functions

Definition. If f is a continuous function of a
real variable, then an interval extension f is a
function from the set of intervals to the set of
intervals, such that, if x is an interval in the
domain of f,

{f (x) | x ∈ x} ⊂ f(x).

We also sometimes desire (and it is possible to
arrange)

x ⊂ y ⇒ f(x) ⊂ f(y).

• We may obtain such interval extensions of
a polynomial by replacing real operations
by corresponding interval operations. For
example, if p(x) = x2 − 4, then p([1, 2])
may be defined by

p([1, 2]) = ([1, 2])2 − 4 = ([1, 4])− [4, 4]
= [−3, 0].
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Interval Extensions of
Transcendental Functions

We may use the mean value theorem or
Taylor’s theorem. For example, say x is an
interval and a ∈ x. Then, for any y ∈ x, we
have

sin(y) = sin(a)+(y−a) cos(a)− (y − a)2

2
sin(c)

for some c between a and y. If a and y are
both within a range where the sine function is
non-negative, then we obtain

sin(y) ∈ sin(a) + (x− a) cos(a)− (x− a)2

2
.
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Interval Extensions of
Transcendental Functions

(continued)

Specifically, if x = [.1, .3] and we use a = .2,
we would obtain the “value”

sin([.1, .3]) ⊆ sin(.2) + [−.1, .1] cos(.1)

− ([−.1, .1]2)
2

⊆ [.0998, .0999]
+ [−.1, .1][.995, .996]
+ [−.005, 0]

= [−.0048, .1995]

• Sharper interval extensions may be
obtained in specific cases by using e.g.
monotonicity of the original function.
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Pitfalls to Naive Interval
Arithmetic

• For rigorous bounds on roundoff error, one
may be tempted to translate floating-point
computer codes by merely changing the
data types.

• Due to interval dependencies, such naive
development often is unsuccessful.

• Interval arithmetic is successful if it is
applied to appropriate tasks and with
appropriate algorithms.

– It provides rigorous results from the
computer arithmetic.

– It can actually result in significantly
faster algorithms.

• Researchers continue to make advances to
enlarge the domain in which interval
analysis can make computations rigorous
and reliable.
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Nonlinear Equations

Interval Newton Methods

Interval analysis can be used either to

• Construct rigorous bounds around an
approximate solution, in which an actual
solution must lie.

• Exhaustively search a region to find all
roots of a nonlinear system.

Verification is easier than exhaustive search.
However, both tasks are based on
computational existence / uniqueness
theorems.
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Computational Existence /
Uniqueness

A Simple Example

Take n = 1 and f (x) = x2 − 4, take
x = [1, 2.5], and take an initial guess x̌ = 1.75
Then, following the derivation of the classical
Newton method, any solutions x∗ of f (x) = 0
in x must obey

f (x∗)− f (x̌) = f ′(ξ)(x∗ − x̌), whence

x∗ = x̌− f (x̌)
f ′(ξ)

, whence

x∗ ∈ x̌− f (x̌)
f′(x)

,

where f′(x) is an interval extension to the
derivative f ′(x).

x̃ = x̌− f (x̌)
f′(x)

is called an interval Newton method.
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A Simple Example

(Continued)

In addition, if x̃ ⊂ x, connections of
interval arithmetic with classical fixed point
theory give that there is a unique solution
to f (x) = 0 in x, and hence in x̃.
In particular, for the example, the interval
Newton iteration equation becomes

x̃ = x̌− x̌2 − 4
2x

= 1.75− −.9375
[2, 5]

= 1.75− [.1875, .46875]
= [1.9375, 2.21875] ⊂ x,

so we may conclude that there is a unique root
of f in x.
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Computational Existence /
Uniqueness

Multivariate Problems

Computational existence / uniqueness works
the same way for multivariate problems, with
interval extensions to the Jacobi matrix, or,
more generally, Lipschitz matrices or slope
matrices replacing the interval derivative. We
now outline this is more detail.
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Multivariate Existence /
Uniqueness

Regularity

Lemma 1 Suppose f : x → Rn, where

x = ([x1, x1], . . . , [xn, xn]) ⊂ Rn

and A is a Lipschitz matrix, such as a
point-wise interval extension of the
Jacobian matrix of f over x . If A is
regular, then any root of f in x is unique.

Proof: Suppose x∗ ∈ x and x ∈ x have
f (x∗) = 0 and f (x) = 0. If A is a Lipschitz
matrix, then there is an A ∈ A such that

f (x∗)− f (x) = 0
= A(x∗)− A(x)
= A(x∗ − x).

If x∗ 6= x, then A would have a null vector,
contradicting the regularity of A.
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Multivariate Interval Newton
Methods

An interval Newton method is defined by an
iteration of the form

x̃ = N(f ; x, x̌) = x̌ + v, (1)

where
Σ(A,−f (x̌)) ⊂ v,

where A is a Lipschitz matrix for f over x
and Σ(A,−f (x̌)) is that set {x ∈ Rn} such
that there exists an A ∈ A with Ax = −f (x̌).

Theorem 2 Suppose x̃ is the image of x
under an interval Newton method. If
x̃ ⊆ x, it follows that there exists a unique
solution of f (x) = 0 within x.
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Interval Newton Methods

Illustration
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In this case, an interval Newton method proves
existence.
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On Interval Newton Methods

• Proof of the interval Newton existence /
uniqueness theorem proceeds from
properties of interval arithmetic and the
contraction mapping theorem, Miranda’s
theorem, or the Brouwer fixed point
theorem (depending on context and
particulars).

• Reasonable bounding sets v can be
obtained by various methods, such as the
preconditioned interval Gauss–Seidel
method or preconditioned interval
Gaussian elimination.

• Iteration of interval Newton methods leads
to a locally quadratically convergent
process.
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A Multivariate Interval Newton
Method Example

Interval Gauss–Seidel Method

Assume f (x) = (f1(x), . . . , fn(x)) is
continuously differentiable. Then the mean
value theorem gives

fi(xi) = fi(x¬i, x̌i) +
∂fi

∂xi
(x¬i, ξi)(xi − x̌i),

whence fi(x) = 0 provided

xi = x̌i − fi(x¬i, x̌i)
/∂fi

∂xi
(x¬i, ξi)

⊆ x̌i − fi(x¬i, x̌i)
/∂fi

∂xi
(x¬i, xi)

The above inclusion forms the Interval
Gauss–Seidel iteration equation.
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Underlying Mathematics to
Analyze the Interval
Gauss–Seidel Method

Miranda’s Theorem

Theorem 3 Suppose x ∈ IRn, and let the
faces of x be denoted by

xi = (x1, . . . , xi−1, xi, xi+1, . . . , xn)
T

xi = (x1, . . . , xi−1, xi, xi+1, . . . , xn)
T .

Let f = (f1, . . . , fn)T be a continuous
function defined on x. If

fi
u(xi)fi

u(xi) ≤ 0 (2)

for each i between 1 and n, then there is an
x ∈ x such that f (x) = 0.
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Interval Gauss–Seidel Method

Verification Properties

Do sequentially for 1 = 1 to n:

1. x̃i ← x̌i − fi(x¬i, x̌i)
/∂fi

∂xi
(x¬i, xi)

2. xi ← x̃i

Then:

1. If x̃i ⊆ xi after each step 1, then the
hypotheses of Miranda’s theorem are
satisfied, and, hence, there exists a solution
to f (x) = 0 within x.

2. If x̃i ⊆ xi after each step 1, then f′(x)
must be regular, and hence, the solution in
x is also unique.

Note: The system f (x) = 0 is usually
preconditioned by a point matrix Y to make
the Jacobi matrix Y f′(x) approximately
diagonal.
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Preconditioned Interval
Gauss–Seidel

An Example

f1(x1, x2) = x2
1 − 4x2,

f2(x1, x2) = x2
2 − 2x1 + 4x2,

and

x = (x1, x2)
T = ([−0.1, 0.1], [−0.1, 0.3])T .

x∗ = (0, 0)T , of f (x∗ = 0 is unique in x. Take
x̌ = (0, .1)T , so f (x̌) = (−.4, .41)T , and

f′(x) =








2x1 −4
−2 2x2 + 4









=








[−.2, .2] −4
−2 [3.8, 4.6]








.
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An Example

(Continued)

Take Y to be the inverse of the midpoint
matrix of f′(x):

Y = {m(f′(x))}−1 =








−.525 −.5
−.25 0








.

Then Y f′(x) =








[0.895, 1.105] [−.2, .2]
[−.05, .05] 1








,

Y f (x̌) = (.005, .1)T , and

x̃1 = 0− −.005 + [−.2, .2][−.2, .2]
[.895, 1.105]

⊆ [−.035, .045]
[.895, 1.105]

⊆ [−.0392, .0503]

⊂ x1 = [−.1, .1].

Similarly, x̃2 ⊂ x2, so there is a unique root of
f in x.
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Applications of Interval
Newton Existence/Uniqueness

• Global, exhaustive search for all solutions
to a nonlinear system of equations.

• Rigorous, tight bounds on solutions to
linear and nonlinear systems, given
solutions to approximate systems.

• Global optimization.

• Infallible step controls for continuation
methods.

• Computation of the topological degree.

• Verification of a particular value of the
topological degree.
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Finding All Roots

• In univariate problems, interval Newton
methods can be iterated with extended
interval arithmetic to always find all
roots.

• In multivariate problems, interval Newton
methods can be combined with generalized
bisection and binary search to always
find all roots.

• In both instances, failure modes are benign:

– Failure can only occur by exceeding the
computer’s resources or because of the
limited resolution of the floating-point
numbers.

– When failure occurs, the algorithms still
print a list of boxes within which all
roots must lie.
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Global Optimization
With interval methods, we can:

Find, with certainty, the global minimum of
the nonlinear objective function

φ(x) = φ(x1, x2, . . . , xn) (3)

where bounds xi and xi are known with
xi ≤ xi ≤ xi for 1 ≤ i ≤ n.

To do this, a branch-and-bound algorithm with the
following general features is used.

• A technique for partitioning a region into
subregions is combined with a technique for
computing a lower bound φ and an upper bound φ
of the objective function φ over a region x.

• The subboxes are placed in a list in order of
increasing φ.

• The list is purged of those boxes for which φ is
greater than φ for some other box in the list.

• An interval Newton method accelerates the
procedure by quickly and rigorously locating critical
points.
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Global Optimization

An Example

Suppose we are to minimize
f (x) = x2 − 2x + 1 (written in that way), and
the search region is x = [.5, 2].

• f ((.5 + 2)/2)) = f (1.25) = 0.0625, so the
best estimate of the minimum is 0.0625.

• Split [.5, 2] to [.5, 1.25] and [1.25, 2];
compute f[.5, 1.25] = [−1.25, 1.5625];
f (0.875) = 0.015625 < 0.0625, so 0.015625
is the new best estimate. Store [.5, 1.25] on
a list L.

• f([1.25, 2]) = [−1.4375, 2.5];
f (1.625) = .390625, so there is no new best
estimate. Store [1.25, 2] on L before
[.5, 1.25], since −1.4375 < −1.25.
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Optimization

(Continued)

• Continue such processing by popping the
first item from the list.

– if a lower bound on a box is bigger than
the best estimate, discard the box.

– Put a box on a final list if its diameter
is small.

• Interval Newton methods can be used to
accelerate the process.

• Traditional optimization codes are useful
to get good best estimates.
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Successes in Practical Areas

Summary

• Linear algebraic systems: A posteriori
error bounds (Korn and Ullrich).

• Computer-Aided design and computational
geometry (Snyder, Patrikalakis, Maekawa,
etc.)

• Chemical engineering models;
computational chemistry (Stadtherr and
his students)

• Rigorous proofs in computational dynamics
(Recent proof by Warwick Tucker that the
Lorenz equations have a strange attractor)

• Other mathematical proofs (Thomas Hales’
recent proof of the Kepler conjecture)

• Proof of feasibility of particle accelerator
design (Martin Berz and his students)

• Proof of bounds on asteroid orbits.
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Our Interval-Based Global
Optimization Software

GlobSol

• A Fortran 90 package

– well-tested.
– self-contained.

• Solves constrained and unconstrained
global optimization problems

• Separate program solves square algebraic
systems of equations.

• Utility programs for interval and point
evaluation, etc.

• Subroutine / module libraries for interval
arithmetic, automatic differentiation, etc.

• Publicly available free of charge
http://interval.louisiana.edu/GlobSol/download GlobSol.html

Verified Computations Intro. March 15, 2002 SLU Colloquium–29



Use of GlobSol

An Example

The following Fortran 90 program defines the
objective function

minimize φ(X) = −2 ∗ x2
1 − x2

2

subject to constraints

x2
1 + x2

2 − 1 ≤ 0
x2

1 − x2 ≤ 0
x2

1 − x2
2 = 0
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Use of GlobSol

An Example, continued

PROGRAM SIMPLE_MIXED_CONSTRAINTS
USE CODELIST_CREATION

PARAMETER (NN = 2)
TYPE(CDLVAR), DIMENSION(NN) :: X
TYPE(CDLLHS), DIMENSION(1):: PHI
TYPE(CDLINEQ), DIMENSION(2) :: G
TYPE(CDLEQ), DIMENSION(1) :: C

CALL INITIALIZE_CODELIST(X)

PHI(1) = -2*X(1)**2 - X(2)**2
G(1) = X(1)**2 + X(2)**2 - 1
G(2) = X(1)**2 - X(2)
C(1) = X(1)**2 - X(2)**2

CALL FINISH_CODELIST
END PROGRAM SIMPLE_MIXED_CONSTRAINTS
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GlobSol Example

(continued)

1. Running the above program produces an
internal representation, or code list.

2. The code list is then symbolically
differentiated.

3. The optimization code interprets the
derivative code list at run time to produce
floating point and interval evaluations of
the objective function, gradient, and
Hessian matrix.

4. A separate data file defines the initial
search box, the bound constraints, and the
initial guess, if any.

5. A configuration file GlobSol.CFG supplies
algorithm options, such as which interval
Newton method to use and how to
precondition the linear systems.
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GlobSol Example

The Data File

1D-5 ! General domain tolerance
0 1 ! Bounds on the first variable
0 1 ! Bounds on the second variable

F F ! X(1) has no bound constraints F F ! X(2) has
no bound constraints

Subsequent optional lines can give an initial guess point.
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GlobSol Example

Output File – abridged first part
Output from FIND_GLOBAL_MIN on 04/06/1999 at 08:03:52.
Version for the system is: March 20, 1999

Codelist file name is: MIXEDG.CDL
Box data file name is: MIXED.DT1

Initial box:
[ 0.0000E+00, 0.1000E+01 ] [ 0.0000E+00, 0.1000E+01 ]

BOUND_CONSTRAINT:
F F F F

---------------------------------------
CONFIGURATION VALUES:

EPS_DOMAIN: 0.1000E-04 MAXITR: 60000
DO_INTERVAL_NEWTON: T QUADRATIC: T FULL_SPACE: F
VERY_GOOD_INITIAL_GUESS:F
USE_SUBSIT:T
OUTPUT UNIT:7 PRINT_LENGTH:1
Default point optimizer was used.
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GlobSol Example

Output File – abridged second part
THERE WERE NO BOXES IN COMPLETED_LIST.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.:1
Box coordinates:
[ 0.7071E+00, 0.7071E+00 ] [ 0.7071E+00, 0.7071E+00 ]

PHI:
[ -0.1500E+01, -0.1500E+01 ]
Level: 3
Box contains the following approximate root:

0.7071E+00 0.7071E+00
OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT:
[ -0.1500E+01, -0.1500E+01 ]

U0:
[ 0.3852E+00, 0.3852E+00 ]

U:
[ 0.5777E+00, 0.5777E+00 ] [ 0.0000E+00, 0.1000E+01 ]

V:
[ 0.1926E+00, 0.1926E+00 ]

INEQ_CERT_FEASIBLE:
F T

NIN_POSS_BINDING:1

Number of bisections: 1 BEST_ESTIMATE: -0.1500E+01
Total number of boxes processed in loop: 4
Overall CPU time: 0.5000D-01
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