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• We will show actual computations, to
illustrate the relationship between
traditional interval Newton methods and
degree theory.

• We will illustrate how the computations
can succeed or break down in non-smooth
problems.
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The General Question

Let F (x) = 0 represent a system of n
equations in n unknowns, and suppose x̌ is a
numerical approximation to a solution x∗,
F (x∗) = 0. We wish to compute bounds

x = (x1, x2, . . . , xn)
= ([x1, x1], [x2, x2], . . . , [xn, xn],

such that x̌ is the center of x, and such that x
is guaranteed to contain a solution x∗ to
F (x) = 0. That is,

Given F : x → Rn, where x ∈ IRn,
rigorously verify:

• there exists a x∗ ∈ x such that
F (x∗) = 0.

(1)

Here, IRn represents the set of interval
n-vectors.
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Interval Newton Methods

The Traditional Setting

If the Jacobi matrix F ′(x∗) is non-singular and
continuous in x, then we can use an interval
Newton method:

x̃ = N(F ; x, x̌) = x̌ + v,

where
Σ(A,−F (x̌)) ⊂ v,

where A is a Lipschitz matrix for F over x,

and where Σ(A,−F (x̌))
= {x ∈ Rn | ∃A ∈ A with AX = −F (x̌)} .

We have:

Theorem 1 (see Neumaier’s book) Suppose
x̃ = N(F ; x, x̌) is the image of x and x̌
under an interval Newton method. If
x̃ ⊆ x, it follows that there exists a unique
solution of F (x) = 0 within x.
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Modifications for Singular /
Non-Smooth Systems

The Topological Degree

• We can verify existence of solutions to
F (x) = 0 within x, even when
det(F ′(x∗)) = 0.

• We do this with the topological degree
d(F, x, 0) of F over x.

• If det(F ′(x)) 6= 0 when F (x) = 0 , then

d(F, x, 0) = ∑

x∈int(x),
F (x)=0

sgn(det(F ′(x))).

• The integer d(F, x, 0) is continuous in F
and depends only on values of F on the
boundary ∂x, so F ′ may be singular or
non-smooth in the interior int(x).

• d(F, x, 0) 6= 0 ⇒ F (x) = 0 has a solution
in x∗ ∈ x.
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Modifications for Singular /
Non-Smooth Systems

The Theorem Used in the Algorithms

• The boundary of x consists of:

xk ≡ (x1, . . . , xk−1, xk, xk+1, . . . , xn)
T ,

xk ≡ (x1, . . . , xk−1, xk, xk+1, . . . , xn)
T ,

where k = 1, . . . , n.

• For fixed `, 1 ≤ ` ≤ n, define
F¬`(x) =
(f1(x), . . . , f`−1(x), f`+1(x), . . . , fn(x))T .

• For this `, define K0(s) as that subset of
{k|k ∈ {1, . . . , n}} such that F¬` = 0 has
solutions on xk and sgn(f`) = s at these
solutions; similarly define K0(s) such that
F¬` = 0 has solutions on xk and
sgn(f`) = s at these solutions, where
s ∈ {−1, +1}.
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The Theorem Used in the
Algorithms (continued)

Theorem 2 If F is continuous, F 6= 0 on
∂x, and there is an `, 1 ≤ ` ≤ n, such that:
(1) F¬` 6= 0 on ∂xk or ∂xk, k = 1, . . . , n;
(2) det(F ′

¬`) 6= 0 whenever F¬` = 0 on ∂x.
Then

d(F, x, 0) = (−1)`−1s
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Simplifications to Make It
Practical

In our methods, we

1. precondition F ;

2. choose the coordinate widths w(xk),
1 ≤ k ≤ n to have F¬`(xk) 6= 0 and
F¬`(xk) 6= 0 for all k except k = n− p to
k = n, where p is the dimension of the null
space. This eliminates most terms in
Theorem 2.

3. We then use a p-dimensional search on the
remaining several faces of x to find the
solutions of F¬` = 0.

4. In certain instances, we use a heuristic to
guess the value of d(F, x, 0).
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Simplifications to Make It
Practical

The Preconditioner

We use incomplete LU factorization (with full
pivoting) to put the Jacobi matrix into the
form

Y F ′(x∗) ≈

































1 0 . . . 0 ∗
0 1 0 . . . 0 ∗
... ... . . . ... ...
0 . . . 0 1 ∗
0 . . . 0 0 0

































(for the case where the rank defect is 1).
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An Example

f1(x) = x1 + x2 + x3,
f2(x) = −x2 + x3

3,
f3(x) = x2 + x3

3,

with

x = ([−0.02, 0.02], [−0.01, 0.01], [−0.01, 0.01])T .

F′(x) =

















1 1 1
0 −1 [0, .0003]
0 1 [0, .0003]

















, Y =

















1 0 −1
0 −1 0
0 1 1

















.

We thus have

Y F′(x) =

















1 0 [0.9997, 1]
0 1 [−0.0003, 0]
0 0 [0, 0.0006]

















,

Y F (x) ≈

















x1 + x3 − x3
3

x2 − x3
3

2x3
3

















.
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An Example (continued)

• We will find solutions to F¬3 = 0 on the
boundary of x at which sgn(f3) = +1.

• We choose the widths of x appropriately,
then we use mean value extensions to show

– f1 6= 0 on x1 and x1 and
– f2 6= 0 on x2 and x2.

• We then proceed with the interval
Gauss–Seidel method on x3 and x3.
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An Example (continued)

• No solutions on x1:

(Y F )1(x1) ⊆ (Y F )1(0, 0, 0) + 1 · (−0.02)
+[0.9997, 1] · [−0.01, 0.01]

⊆ [−0.03,−0.01].

• Similarly, on x1: (Y f )1(x1) ⊆ [.01, .03].

• We thus have verified (Y F )¬3 6= 0 on
x1 = (−0.02, [−0.01, 0.01], [−0.01, 0.01])T

and
x1 = (+0.002, [−0.01, 0.01], [−0.01, 0.01])T .

• Similarly, we use mean value extensions for
(Y f )2 on x2 and x2 to verify that
(Y F )¬3 6= 0 on x2 and x2.
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An Example (continued)

Verifying solutions on x3 and x3

For x3:

• Plug in x3 = −0.01 and apply the interval
Gauss–Seidel method. Setting

{Mean Value Extension for (Y F )1} = 0

gives

(Y F )1(0, 0,−.01) + 1 · (x1 − 0)
+ 0 · x2

+ [0.9997, 1](0) = 0;

solving this for x1 gives

x1 ∈ 0− {(Y F )1(0, 0,−0.01)
−([−0.01,−0.009997] · 0)} /1

= 0.009999.

• Similarly, x2 ∈ [−10−6,−10−6].
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An Example (continued)

Verifying solutions on x3 and x3

• Thus,

x ∈ ([0.009999], [−10−6], [−0.01])T = x(1).

• An interval evaluation of F (x(1)) gives

Y F (x) ∈
(

[0, 0], [0, 0], [−2× 10−6,−2× 10−6]
)T

• Since (Y F )3 < 0, this solution can be
ignored.

• Similar computations on x3 give a single
point x(1) at which (Y F )3(x(1)) > 0 and
at which which

det








∂(Y F )¬3

∂x1∂x2
(x1)








> 0

• Combining these facts into the sum in the
theorem gives a topological degree
d(Y F, x, 0) = 1.
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An Example (continued)

Summary

• d(Y F, x, 0) = 1 proves existence of a
solution in x.

• This result has been proven with
2 ∗ (n− 1) mean-value-extension
evaluations of (n− 1) components of F and
with two incomplete Gauss–Seidel sweeps.

• Can the same process succeed when the
components of F are non-smooth?
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The Principles Behind Our
Degree Computation

• For the interval Gauss–Seidel method, we
“solve” the preconditioned variable for the
i-th variable in the i-th equation.

• Success depends on the magnitude of the
off-diagonal elements being larger than the
mignitude of the diagonal elements of
Y F′(x).

• In degree computation, we fix the last
variables, eliminating the uncontrolled
widths in the last column of Y F′(x).
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A Non-Smooth Example
Define

f1(x) = x1 + x2 + x3,

f2(x) =














−x2 + x3
3 if x2 ≥ 0,

−5x2 + x3
3 if x2 < 0,

f3(x) =














x2 + x3
3 if x2 ≥ 0,

0.1x2 + x3
3 if x2 < 0,

and take
x =

([−0.02, 0.02], [−0.01, 0.01], [−0.01, 0.01])T .

Then
Y F′(x) =

















1 [−0.666, 0.666] [1.0000, 1.0001]
0 [ 0.333, 1.666] [−0.0001, 0]
0 [−0.816, 0.816] [0, 0.000355]

















.

• In this case, the off-diagonal entries of Y F′

(excluding the last column) are sufficiently
small and narrow to allow the verification
process to succeed: d(Y F, x, 0) = 1.
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A Second Non-Smooth
Example

f1(x) =














x1 + x2 + x3 if x2 ≥ 0,
x1 + 10x2 + x3 if x2 < 0,

f2(x) = same as in the previous example,
f3(x) = same as in the previous example.

In this case,
Y F′(x) =

















1 [−8.166, 8.166] [1.0000, 1.00055]
0 [ 0.333, 1.666] [−0.0001, 0]
0 [−0.816, 0.816] [0, 0.000355]

















,

and the off-diagonal entries (excluding the last
column) are not sufficiently small and narrow
to allow the verification process to succeed.

• Details of these two examples can be found
in
http://interval.louisiana.edu/

preprints/nonsmooth degree.pdf
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Additional Thoughts

• In these algorithms, the effect of the lack of
smoothness is similar to the effect of
non-smoothness on traditional interval
Gauss–Seidel methods for verification of
non-singular zeros.

• The degree d(F, x, 0) depends only on the
values F on the boundary of x.

– The formula in the theorem also only
involves values on the boundary.

– In principle, there is no problem
applying the theorem for successful
verification, as long as F is smooth on
the boundary.
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Additional Thoughts
(continued)

• In practice, non-smoothness inside x
makes simplifications as we have illustrated
impossible in general.

• Direct application of the theorem involves
(2n) global optimization problems.

• For details, see
http://interval.louisiana.edu/

preprints/nonsmooth degree.pdf

• Our fast method may work anyway (as
illustrated with our first non-smooth
example).

• There may be other simplifications, for
particular non-smooth cases, that we
haven’t yet discovered.

These transparencies will be available from
http://interval.louisiana.edu/

preprints.html
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