On Existence and Uniqueness Verification for Non-Smooth Functions

by
R. Baker Kearfott rbk@louisiana.edu Department of Mathematics, University of Louisiana at Lafayette

- We will show actual computations, to illustrate the relationship between traditional interval Newton methods and degree theory.
- We will illustrate how the computations can succeed or break down in non-smooth problems.

Credits: My former student, Jianwei Dian, who supplied both inspiration and perspiration.

Non-Smooth Root Verification

The General Question

Let $F(x)=0$ represent a system of n equations in n unknowns, and suppose \check{x} is a numerical approximation to a solution x^{*}, $F\left(x^{*}\right)=0$. We wish to compute bounds

$$
\begin{aligned}
\boldsymbol{x} & =\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right) \\
& =\left(\left[\underline{x}_{1}, \bar{x}_{1}\right],\left[\underline{x}_{2}, \bar{x}_{2}\right], \ldots,\left[\underline{x}_{n}, \bar{x}_{n}\right],\right.
\end{aligned}
$$

such that \check{x} is the center of \boldsymbol{x}, and such that \boldsymbol{x} is guaranteed to contain a solution x^{*} to $F(x)=0$. That is,

Given $F: \boldsymbol{x} \rightarrow \mathbb{R}^{n}$, where $\boldsymbol{x} \in \mathbb{R}^{n}$, rigorously verify:

- there exists a $x^{*} \in \boldsymbol{x}$ such that $F\left(x^{*}\right)=0$.

Here, \mathbb{R}^{n} represents the set of interval n-vectors.

Interval Newton Methods

The Traditional Setting

If the Jacobi matrix $F^{\prime}\left(x^{*}\right)$ is non-singular and continuous in \boldsymbol{x}, then we can use an interval Newton method:

$$
\tilde{\boldsymbol{x}}=\boldsymbol{N}(F ; \boldsymbol{x}, \check{x})=\check{x}+\boldsymbol{v},
$$

where

$$
\Sigma(\boldsymbol{A},-F(\check{x})) \subset \boldsymbol{v}
$$

where \boldsymbol{A} is a Lipschitz matrix for F over \boldsymbol{x}, and where $\Sigma(\boldsymbol{A},-F(\check{x}))$

$$
=\left\{x \in \mathbb{R}^{n} \mid \exists A \in \boldsymbol{A} \text { with } A X=-F(\check{x})\right\}
$$

We have:
Theorem 1 (see Neumaier's book) Suppose $\tilde{\boldsymbol{x}}=\boldsymbol{N}(F ; \boldsymbol{x}, \check{x})$ is the image of \boldsymbol{x} and \check{x} under an interval Newton method. If $\tilde{\boldsymbol{x}} \subseteq \boldsymbol{x}$, it follows that there exists a unique solution of $F(x)=0$ within \boldsymbol{x}.

Non-Smooth Root Verification

Modifications for Singular / Non-Smooth Systems

The Topological Degree

- We can verify existence of solutions to $F(x)=0$ within \boldsymbol{x}, even when $\operatorname{det}\left(F^{\prime}\left(x^{*}\right)\right)=0$.
- We do this with the topological degree $\mathrm{d}(F, \boldsymbol{x}, 0)$ of F over \boldsymbol{x}.
- If $\operatorname{det}\left(F^{\prime}(x)\right) \neq 0$ when $F(x)=0$, then

$$
\mathrm{d}(F, \boldsymbol{x}, 0)=\sum_{\substack{x \in \operatorname{int}(\boldsymbol{x}), F(x)=0}} \operatorname{sgn}\left(\operatorname{det}\left(F^{\prime}(x)\right)\right)
$$

- The integer $\mathrm{d}(F, \boldsymbol{x}, 0)$ is continuous in F and depends only on values of F on the boundary $\partial \boldsymbol{x}$, so F^{\prime} may be singular or non-smooth in the interior int (\boldsymbol{x}).
- $\mathrm{d}(F, \boldsymbol{x}, 0) \neq 0 \Rightarrow F(x)=0$ has a solution in $x^{*} \in \boldsymbol{x}$.

Non-Smooth Root Verification

Modifications for Singular / Non-Smooth Systems

The Theorem Used in the Algorithms

- The boundary of \boldsymbol{x} consists of:

$$
\begin{aligned}
& \boldsymbol{x}_{\underline{k}} \equiv\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k-1}, \underline{x}_{k}, \boldsymbol{x}_{k+1}, \ldots, \boldsymbol{x}_{n}\right)^{T} \\
& \boldsymbol{x}_{\bar{k}} \equiv\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k-1}, \bar{x}_{k}, \boldsymbol{x}_{k+1}, \ldots, \boldsymbol{x}_{n}\right)^{T} \\
& \text { where } k=1, \ldots, n .
\end{aligned}
$$

- For fixed $\ell, 1 \leq \ell \leq n$, define
$F_{\neg \ell}(x)=$
$\left(f_{1}(x), \ldots, f_{\ell-1}(x), f_{\ell+1}(x), \ldots, f_{n}(x)\right)^{T}$.
- For this ℓ, define $K_{0}(s)$ as that subset of $\{k \mid k \in\{1, \ldots, n\}\}$ such that $F_{\neg \ell}=0$ has solutions on $\boldsymbol{x}_{\underline{k}}$ and $\operatorname{sgn}\left(f_{\ell}\right)=s$ at these solutions; similarly define $\overline{K_{0}(s)}$ such that $F_{\neg \ell}=0$ has solutions on $\boldsymbol{x}_{\bar{k}}$ and $\operatorname{sgn}\left(f_{\ell}\right)=s$ at these solutions, where $s \in\{-1,+1\}$.

Non-Smooth Root Verification

The Theorem Used in the Algorithms (continued)

Theorem 2 If F is continuous, $F \neq 0$ on
$\partial \boldsymbol{x}$, and there is an $\ell, 1 \leq \ell \leq n$, such that:
(1) $F_{\neg \ell} \neq 0$ on $\partial \boldsymbol{x}_{k}$ or $\partial \boldsymbol{x}_{\bar{k}}, k=1, \ldots, n$;
(2) $\operatorname{det}\left(F_{\neg \ell}^{\prime}\right) \neq 0$ whenever $F_{\neg \ell}=0$ on $\partial \boldsymbol{x}$.

Then

$$
\begin{aligned}
& \mathrm{d}(F, \boldsymbol{x}, 0)=(-1)^{\ell-1} s \\
& \cdot\left\{\sum_{k \in K_{0}(s)}(-1)^{k}\right. \\
& \sum_{\substack{x \in \boldsymbol{\boldsymbol { x } _ { k }} \\
F_{\imath \ell}(x)=0}} \operatorname{sgn}\left|\frac{\partial F_{\neg \ell}}{\partial x_{1} x_{2} \ldots x_{k-1} x_{k+1} \ldots x_{n}}(x)\right| \\
& +\sum_{k \in K_{0}(s)}(-1)^{k+1} \\
& \left.\sum_{\substack{x \in \boldsymbol{x}_{\vec{k}} \\
F_{\urcorner}(x)=0}} \operatorname{sgn}\left|\frac{\partial F_{\neg \ell}}{\partial x_{1} x_{2} \ldots x_{k-1} x_{k+1} \ldots x_{n}}(x)\right|\right\} .
\end{aligned}
$$

Non-Smooth Root Verification

Simplifications to Make It Practical

In our methods, we

1. precondition F;
2. choose the coordinate widths $\mathrm{w}\left(\boldsymbol{x}_{k}\right)$, $1 \leq k \leq n$ to have $\boldsymbol{F}_{\neg \ell}\left(\boldsymbol{x}_{\underline{k}}\right) \neq 0$ and $\boldsymbol{F}_{\neg \ell}\left(\boldsymbol{x}_{\bar{k}}\right) \neq 0$ for all k except $k=n-p$ to $k=n$, where p is the dimension of the null space. This eliminates most terms in Theorem 2.
3. We then use a p-dimensional search on the remaining several faces of \boldsymbol{x} to find the solutions of $F_{\neg \ell}=0$.
4. In certain instances, we use a heuristic to guess the value of $\mathrm{d}(F, \boldsymbol{x}, 0)$.

Simplifications to Make It Practical

The Preconditioner
We use incomplete LU factorization (with full pivoting) to put the Jacobi matrix into the form

$$
Y F^{\prime}\left(x^{*}\right) \approx\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & * \\
0 & 1 & 0 & \ldots & 0 \\
\vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 0 & 1 & * \\
0 & \ldots & 0 & 0 & 0
\end{array}\right)
$$

(for the case where the rank defect is 1).

An Example

$$
\begin{aligned}
f_{1}(x) & =x_{1}+x_{2}+x_{3} \\
f_{2}(x) & =-x_{2}+x_{3}^{3} \\
f_{3}(x) & =x_{2}+x_{3}^{3}
\end{aligned}
$$

with

$$
\begin{aligned}
& \boldsymbol{x}=([-0.02,0.02],[-0.01,0.01],[-0.01,0.01])^{T} . \\
& \boldsymbol{F}(\boldsymbol{x})=\left(\begin{array}{rrc}
1 & 1 & 1 \\
0 & -1 & {[0, .0003]} \\
0 & 1 & {[0, .0003]}
\end{array}\right), Y=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & -1 & 0 \\
0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

We thus have

$$
\begin{gathered}
Y \boldsymbol{F}^{\prime}(\boldsymbol{x})=\left(\begin{array}{ccc}
1 & 0 & {[0.9997,1]} \\
0 & 1 & {[-0.0003,0]} \\
0 & 0 & {[0,0.0006]}
\end{array}\right) \\
Y F(x) \\
\approx\left(\begin{array}{c}
x_{1}+x_{3}-x_{3}^{3} \\
x_{2}-x_{3}^{3} \\
2 x_{3}^{3}
\end{array}\right)
\end{gathered}
$$

An Example (continued)

- We will find solutions to $F_{\neg 3}=0$ on the boundary of \boldsymbol{x} at which $\operatorname{sgn}\left(f_{3}\right)=+1$.
- We choose the widths of \boldsymbol{x} appropriately, then we use mean value extensions to show
- $f_{1} \neq 0$ on \boldsymbol{x}_{1} and $\boldsymbol{x}_{\overline{1}}$ and $-f_{2} \neq 0$ on $\boldsymbol{x}_{\underline{2}}$ and \boldsymbol{x}_{2}.
- We then proceed with the interval Gauss-Seidel method on \boldsymbol{x}_{3} and $\boldsymbol{x}_{\overline{3}}$.

An Example (continued)

- No solutions on $\boldsymbol{x}_{\underline{1}}$:

$$
\begin{aligned}
(Y F)_{1}\left(\boldsymbol{x}_{\underline{1}}\right) \subseteq & (Y F)_{1}(0,0,0)+1 \cdot(-0.02) \\
& \quad+[0.9997,1] \cdot[-0.01,0.01] \\
\subseteq & {[-0.03,-0.01] }
\end{aligned}
$$

- Similarly, on $\boldsymbol{x}_{\overline{1}}:(Y f)_{1}\left(\boldsymbol{x}_{\overline{1}}\right) \subseteq[.01, .03]$.
- We thus have verified $(Y F)_{\neg 3} \neq 0$ on $\boldsymbol{x}_{1}=(-0.02,[-0.01,0.01],[-0.01,0.01])^{T}$ and

$$
\boldsymbol{x}_{\overline{1}}=(+0.002,[-0.01,0.01],[-0.01,0.01])^{T}
$$

- Similarly, we use mean value extensions for $(Y f)_{2}$ on $\boldsymbol{x}_{\underline{2}}$ and \boldsymbol{x}_{2} to verify that $(Y F)_{\neg 3} \neq 0$ on $\boldsymbol{x}_{\underline{2}}$ and $\boldsymbol{x}_{\overline{2}}$.

An Example (continued)

Verifying solutions on $\boldsymbol{x}_{\underline{3}}$ and $\boldsymbol{x}_{\overline{3}}$

For \boldsymbol{x}_{3} :

- Plug in $x_{3}=-0.01$ and apply the interval Gauss-Seidel method. Setting
$\left\{\right.$ Mean Value Extension for $\left.(Y F)_{1}\right\}=0$
gives

$$
\begin{aligned}
(Y F)_{1}(0,0,-.01) & +1 \cdot\left(x_{1}-0\right) \\
& +0 \cdot x_{2} \\
& +[0.9997,1](0)=0
\end{aligned}
$$

solving this for x_{1} gives

$$
\begin{aligned}
x_{1} \in & 0-\left\{(Y F)_{1}(0,0,-0.01)\right. \\
& \quad-([-0.01,-0.009997] \cdot 0)\} / 1 \\
= & 0.009999 .
\end{aligned}
$$

- Similarly, $x_{2} \in\left[-10^{-6},-10^{-6}\right]$.

Non-Smooth Root Verification

An Example (continued)

Verifying solutions on $\boldsymbol{x}_{\underline{3}}$ and $\boldsymbol{x}_{\overline{3}}$

- Thus,

$$
x \in\left([0.009999],\left[-10^{-6}\right],[-0.01]\right)^{T}=\boldsymbol{x}^{(1)} .
$$

- An interval evaluation of $F\left(\boldsymbol{x}^{(1)}\right)$ gives

$$
Y F(x) \in\left([0,0],[0,0],\left[-2 \times 10^{-6},-2 \times 10^{-6}\right]\right)^{T}
$$

- Since $(Y F)_{3}<0$, this solution can be ignored.
- Similar computations on $\boldsymbol{x}_{\overline{3}}$ give a single point $\boldsymbol{x}^{(1)}$ at which $(Y F)_{3}\left(\boldsymbol{x}^{(1)}\right)>0$ and at which which

$$
\operatorname{det}\left(\frac{\partial(Y F)_{\rightarrow 3}}{\partial x_{1} \partial x_{2}}\left(\boldsymbol{x}^{\overline{1}}\right)\right)>0
$$

- Combining these facts into the sum in the theorem gives a topological degree $\mathrm{d}(Y F, \boldsymbol{x}, 0)=1$.

An Example (continued)

Summary

- $\mathrm{d}(Y F, \boldsymbol{x}, 0)=1$ proves existence of a solution in \boldsymbol{x}.
- This result has been proven with $2 *(n-1)$ mean-value-extension evaluations of $(n-1)$ components of F and with two incomplete Gauss-Seidel sweeps.
- Can the same process succeed when the components of F are non-smooth?

The Principles Behind Our Degree Computation

- For the interval Gauss-Seidel method, we "solve" the preconditioned variable for the i-th variable in the i-th equation.
- Success depends on the magnitude of the off-diagonal elements being larger than the mignitude of the diagonal elements of $Y \boldsymbol{F}^{\prime}(\boldsymbol{x})$.
- In degree computation, we fix the last variables, eliminating the uncontrolled widths in the last column of $Y \boldsymbol{F}(\boldsymbol{x})$.

A Non-Smooth Example

Define

$$
\begin{aligned}
& f_{1}(x)=x_{1}+x_{2}+x_{3}, \\
& f_{2}(x)=\left\{\begin{aligned}
-x_{2}+x_{3}^{3} & \text { if } x_{2} \geq 0, \\
-5 x_{2}+x_{3}^{3} & \text { if } x_{2}<0,
\end{aligned}\right. \\
& f_{3}(x)=\left\{\begin{aligned}
x_{2}+x_{3}^{3} & \text { if } x_{2} \geq 0, \\
0.1 x_{2}+x_{3}^{3} & \text { if } x_{2}<0,
\end{aligned}\right.
\end{aligned}
$$

and take

$$
\begin{aligned}
& \boldsymbol{x}= \\
& \quad([-0.02,0.02],[-0.01,0.01],[-0.01,0.01])^{T} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& Y \boldsymbol{F}^{\prime}(\boldsymbol{x})= \\
& \left(\begin{array}{ccc}
1[-0.66 \overline{6}, 0.66 \overline{6}] & {[1.0000,1.0001]} \\
0[0.33 \overline{3}, 1.66 \overline{6}] & {[-0.0001,0]} \\
0[-0.81 \overline{6}, 0.81 \overline{6}] & {[0,0.000355]}
\end{array}\right) .
\end{aligned}
$$

- In this case, the off-diagonal entries of $Y \boldsymbol{F}$ (excluding the last column) are sufficiently small and narrow to allow the verification process to succeed: $\mathrm{d}(Y F, \boldsymbol{x}, 0)=1$.

Non-Smooth Root Verification

A Second Non-Smooth Example

$f_{1}(x)=\left\{\begin{aligned} x_{1}+x_{2}+x_{3} & \text { if } x_{2} \geq 0, \\ x_{1}+10 x^{2}+x_{3} & \text { if } x_{2}<0,\end{aligned}\right.$ $f_{2}(x)=$ same as in the previous example, $f_{3}(x)=$ same as in the previous example.

In this case,

$$
\begin{aligned}
& Y \boldsymbol{F}(\boldsymbol{x})= \\
& \left(\begin{array}{cc}
1[-8.16 \overline{6}, 8.16 \overline{6}] & {[1.0000,1.00055]} \\
0[0.33 \overline{3}, 1.66 \overline{6}] & {[-0.0001,0]} \\
0[-0.81 \overline{6}, 0.81 \overline{6}] & {[0,0.000355]}
\end{array}\right),
\end{aligned}
$$

and the off-diagonal entries (excluding the last column) are not sufficiently small and narrow to allow the verification process to succeed.

- Details of these two examples can be found in
http://interval.louisiana.edu/ preprints/nonsmooth_degree.pdf

Non-Smooth Root Verification

Additional Thoughts

- In these algorithms, the effect of the lack of smoothness is similar to the effect of non-smoothness on traditional interval Gauss-Seidel methods for verification of non-singular zeros.
- The degree $\mathrm{d}(F, \boldsymbol{x}, 0)$ depends only on the values F on the boundary of \boldsymbol{x}.
- The formula in the theorem also only involves values on the boundary.
- In principle, there is no problem applying the theorem for successful verification, as long as F is smooth on the boundary.

Additional Thoughts (continued)

- In practice, non-smoothness inside \boldsymbol{x} makes simplifications as we have illustrated impossible in general.
- Direct application of the theorem involves ($2 n$) global optimization problems.
- For details, see
http://interval.louisiana.edu/ preprints/nonsmooth_degree.pdf
- Our fast method may work anyway (as illustrated with our first non-smooth example).
- There may be other simplifications, for particular non-smooth cases, that we haven't yet discovered.
These transparencies will be available from http://interval.louisiana.edu/ preprints.html
Non-Smooth Root Verification

