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e We will show actual computations, to
illustrate the relationship between
traditional interval Newton methods and
degree theory.

e We will illustrate how the computations
can succeed or break down in non-smooth
problems.

Credits: My former student, Jianwei Dian,
who supplied both inspiration and
perspiration.
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The General Question

Let F'(x) = 0 represent a system of n
equations in n unknowns, and suppose Z is a
numerical approximation to a solution x*,
F(2*) = 0. We wish to compute bounds

x = (x1,T9,...,T,)
— ([ilafl]a [$27T2]7 I [inafn]a

such that & is the center of . and such that a
is guaranteed to contain a solution x* to

F(x) = 0. That is,

Given ' : @ — R", where & € TR",
rigorously verify:

e there exists a #* € x such that
F(z*) = 0.

Here, IIR" represents the set of interval
n-vectors.
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Interval Newton Methods

The Traditional Setting

If the Jacobi matrix F’(x*) is non-singular and
continuous in x, then we can use an interval
Newton method:

x=NF;x,z)=1+,
where
Y(A,—F (1)) Cw,
where A is a Lipschitz matrix for F' over x,

and where (A, —F(1))

={reR"|dA € A with AX =—-F(z)}.
We have:
Theorem 1 (see Neumaier’s book) Suppose
x = N(F;x, 1) is the image of x and T
under an interval Newton method. If

x C x, it follows that there exists a unique
solution of F(x) =0 within x.
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Modifications for Singular /
Non-Smooth Systems

The Topological Degree

e We can verify existence of solutions to
F(x) = 0 within 2, even when
det(F'(x*)) = 0.

e We do this with the topological degree
d(F,x,0) of F over x.
o If det(F'(x)) # 0 when F'(x) =0, then

d(F,2,0) = Y sgn(det(F'(x))).
rE€int (),
F(z)=0
e The integer d(F, x,0) is continuous in F’
and depends only on values of F' on the
boundary 0z, so F’' may be singular or

non-smooth in the interior int(a).

o d(F,x,0) # 0 = F(x) =0 has a solution
nr e x.
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Modifications for Singular /
Non-Smooth Systems

The Theorem Used in the Algorithms

e The boundary of @ consists of:

_ T
Ty = (T1,..., Tp_1,Tp, Thaty -, L)
_ . T
L = (CUl,...,xk_l,xk,mk+1,...,inn> )
where Kk =1,...,n.
e For fixed ¢, 1 < /¢ < n, define
Fﬁg(x) =

(fi(@)s o, foa(@), frn(@), . fal@))"

e For this ¢, define Ky(s) as that subset of
{k|k € {1,...,n}} such that F.;, = 0 has
solutions on @ and sgn(fy) = s at these
solutions; similarly define Ky(s) such that
F_; = 0 has solutions on xz and
sgn( fy) = s at these solutions, where

se{—1,+1}.
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The Theorem Used in the
Algorithms (continued)

Theorem 2 If F' is continuous, F' # 0 on
Ox, and there is an £, 1 < { <n, such that:

(1) Foy #0 on Oxy or Oxg, k=1,...,n;
(2) det(F',) # 0 whenever F_y =0 on Ox.

Then

d(F,x,0) = (=1)""s
{ > (=1
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Simplifications to Make It
Practical

In our methods, we
1. precondition F’;

2. choose the coordinate widths w(axy),
1 <k <mntohave Fy(x) # 0 and
F_y(xz) # 0 for all k except k =mn — p to
k = n, where p is the dimension of the null

space. This eliminates most terms in
Theorem 2.

3. We then use a p-dimensional search on the
remaining several faces of & to find the
solutions of F-, = 0.

4. In certain instances, we use a heuristic to
guess the value of d(F, x,0).
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Simplifications to Make It
Practical

The Preconditioner

We use incomplete LU factorization (with full
pivoting) to put the Jacobi matrix into the
form

I 0 ... 0=
0 1 0...0 =%
YF ()~ |: + . &
O... 0 1=
0O... 0 00

(for the case where the rank defect is 1).
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An Example

fl(.CE) = X1+ X9 + T3,

folz) = —:C2+a:§,
fs(lx) = :U2+:1:§,
with
x = ([—0.02,0.02],[—0.01,0.01], [—0.01, O.Ol])T.
1 1 1 1 0 —1
F(x)=|0 —11[0,.0003] |, Y =0 -1 0].
0 1 10,.0003] 0 1 1
We thus have
10 [0.9997,1]
YF(x)=|0 1 [-0.0003,0] |,
0 0 [0,0.0006]
T+ T3 — CE%
YF(x)~ Ty — T3
213
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An Example (continued)

e We will find solutions to FL3 = 0 on the
boundary of & at which sgn(f3) = +1.

e We choose the widths of & appropriately,
then we use mean value extensions to show

— f1 # 0 on &y and @7 and

— f2 7é 0 on Lo and Iy.

e We then proceed with the interval
Gauss—Seidel method on x3 and 5.
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An Example (continued)

e No solutions on x:

(YF)(z)) € (YF)1(0,0,0) +1-(—0.02)
+]0.9997, 1] - [~0.01, 0.01]
C [—0.03,—0.01].

e Similarly, on x1: (Y f)i(27) C [.01,.03].

e We thus have verified (Y F')_3 # 0 on
2z, = (—0.02,[~0.01,0.01], [~0.01, 0.01))”
and
z7 = (+0.002, [—0.01,0.01], [~0.01, 0.01])""

e Similarly, we use mean value extensions for
(Y f)2 on @2 and x5 to verify that
(YF)_3 # 0 on a9 and x3.
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An Example (continued)

Verifying solutions on x3 and x3

For x3:

e Plug in x3 = —0.01 and apply the interval
Gauss—Seidel method. Setting

{Mean Value Extension for (Y F);} =0
gives

(Y F)1(0,0,—.01) + 1- (21 — 0)
+ 0- i)
+ [0.9997, 1)(0) = 0:

solving this for a1 gives

z1 € 0—{(YF)(0,0,—0.01)
—([—0.01, —0.009997] - 0)} /1
— 0.009999.

e Similarly, zo € [-107% —1079].
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An Example (continued)

Verifying solutions on x3 and x5
e Thus,
z € ([0.009999], [=107%], [—-0.01)) = =Y.
e An interval evaluation of F(2!) gives
Y F(z) € ([0,0],[0,0],[-2 x 1075, =2 x 1079))"

e Since (Y F)3 < 0, this solution can be
ignored.

e Similar computations on @3 give a single
point 1) at which (Y F)3(z™) > 0 and
at which which

Y F)_3 1)
det( 91102, (x7)| >0

e Combining these facts into the sum in the
theorem gives a topological degree

d(YF,z,0) = 1.
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An Example (continued)

Summary

o d(YF,x,0) =1 proves existence of a
solution in .

e This result has been proven with
2 % (n — 1) mean-value-extension
evaluations of (n — 1) components of F' and
with two incomplete Gauss—Seidel sweeps.

e Can the same process succeed when the
components of F' are non-smooth?
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The Principles Behind Our
Degree Computation

e For the interval Gauss—Seidel method, we
“solve” the preconditioned variable for the
i-th variable in the i-th equation.

e Success depends on the magnitude of the
off-diagonal elements being larger than the
mignitude of the diagonal elements of

YF(x).

e In degree computation, we fix the last

variables, eliminating the uncontrolled
widths in the last column of Y F'(x).
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A Non-Smooth Example

Define
f1(37> = 1+ X9+ T3,
B —xo + a3 if w9 > 0,
falz) = —5wy + x5 if 19 < 0,
B T9 + 3 if 29 > 0,
f3(z) = 0.1zg + 3 if 29 < 0,
and take
€Xr —
([-0.02,0.02], [-0.01, 0.01], [-0.01, 0.01])~.
Then
Y F(x)

1 [—0.666,0.666] [1.0000,1.0001]

0 [ 0.333,1.666] [—0.0001,0]

0 [—0.816,0.816] [0,0.000355]

e In this case, the off-diagonal entries of Y F'
(excluding the last column) are sufficiently

small and narrow to allow the verification
process to succeed: d(Y F,x,0) = 1.
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A Second Non-Smooth
Example

X1+ 19+ x3 if 29 >0,
fl(aj) B T+ 1O$2 + X3 if To < O,
fo(x) = same as in the previous example,
f3(x) = same as in the previous example.

In this case,
YF(x)=
1 [—8.166,8.166] [1.0000, 1.00055]
0 [ 0.333,1.666] [—0.0001,0] :
0 [—0.816,0.816]  [0,0.000355]

and the off-diagonal entries (excluding the last
column) are not sufficiently small and narrow
to allow the verification process to succeed.

e Details of these two examples can be found
n
http://interval.louisiana.edu/
preprints/nonsmooth degree.pdf

Non-Smooth Root Verification May 25, 2002 VC02-17



Additional Thoughts

e In these algorithms, the effect of the lack of
smoothness is similar to the effect of
non-smoothness on traditional interval
Gauss—Seidel methods for verification of
non-singular zeros.

e The degree d(F, «,0) depends only on the
values F' on the boundary of a.

— The formula in the theorem also only
involves values on the boundary.

— In principle, there is no problem
applying the theorem for successtul
verification, as long as F' is smooth on
the boundary:.
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Additional Thoughts
(continued)

e In practice, non-smoothness inside @
makes simplifications as we have illustrated
impossible in general.

e Direct application of the theorem involves
(2n) global optimization problems.

e For details, see
http://interval.louisiana.edu/
preprints/nonsmooth degree.pdf

e Our fast method may work anyway (as
illustrated with our first non-smooth
example).

e There may be other simplifications, for
particular non-smooth cases, that we
haven'’t yet discovered.

These transparencies will be available from
http://interval.louisiana.edu/
preprints.html
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