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The Traditional Modus
Operandi

• Classical regression involves fitting a model
with a small number of parameters to a
large number of data points.

• Typically least squares, minimax, or l1 fits
are used.

• The assumption is that the underlying
model is exact, but there are errors in the
data. The fits do not fit the data exactly,
but minimize some metric of the distance
from the data.
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An Alternate Procedure

1. Start with a model, with a small number of
parameters, that we assume can fit correct
data exactly.

2. Perturb the data more and more until we
can prove that the model admits an exact
fit for some point data set within the
perturbed data.

3. Output the point fit shown to be an exact
fit to the perturbed data.

4. Also output bounds on the parameter
values within which all exact solutions
must lie, given the bounds on the data.

5. Output the bounds on the perturbed data.
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A Third Possibility

1. Start with a model as above.

2. Instead of perturbing the data, provide a
priori bounds within which the data is
known to lie.

3. Try to prove that some point within the
given bounds admits an exact solution.

4. IF existence of an exact solution can be
proven, THEN

(a) Output the parameter values
corresponding to the exact solution.

(b) Output bounds on the parameter values
within which all exact solutions must
lie, given the bounds on the data.

ELSE Output “The model may not be
appropriate for this data, or the
assumptions on the bounds on the data
may be incorrect.”
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An Alternate Procedure

Example

Suppose we suspect that u = f (t) = x1t + x2

is a good model for the data

i t u
1 0 1
2 1 4
3 2 5
4 3 8

If the model fit the data exactly, then we
would have
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Example

(Continued)

• Due to “errors” in the data (say, in both
the values of t and u), the system is
inconsistent.

• However, suppose we have somehow
determined error bounds for the data, so
that the actual system of equations is
contained in the interval system

























[−0.09885, 0.09885] [0.9012, 1.099]
[0.9012, 1.099] [0.9012, 1.099]
[1.901, 2.099] [0.9012, 1.099]
[2.901, 3.099] [0.9012, 1.099]
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[0.7364, 1.264]
[3.736, 4.264]
[4.736, 5.264]
[7.736, 8.264]
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Example

(Continued)

1. The above interval linear system Ax = b
can have an exact solution in the sense
that there are x and A ∈ A, b ∈ b with
Ax = b.

2. Beginning with the least squares solution
x = (2.2, 1.2)T system representing the
midpoints of the elements, we see that
Ax ∩ b 6= ∅.

3. Due to a result of Beeck, this shows that x
is in the solution set of Ax = b.

4. Furthermore, following a procedure pointed
out by Neumaier, the solution set of
Ax = b is bounded by
x = ([1.677, 2.813], [0.388, 2.273])T .
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A Verification Principle

1. Consider Ax = b, where A ∈ IRm×n,
b ∈ IRm, m > n.

2. Let Y be the Moore-Penrose
pseudo-inverse of, say, the midpoint matrix
of A.

3. Any possible solutions of Ax = b must
also be solutions of Y Ax = Y b.

4. An interval Newton method can be applied
to Y Ax = Y b to

• determine non-existence, or
• compute narrow(er) bounds on the

solution set to Ax = b.
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Some Illustrations

Solution Sets to Overdetermined Interval
Systems

Consider the system Ax = b, where

A =

















[0.9, 1.1] 1
[1.9, 2.1] 1
[2.9, 3.1] 1

















, b =

















[1.9, 2.1]
[3.9, 4.1]
[5.9, 6.1]

















.

The first equation is satisfied where the
following inequalities are true.

−0.9x1 + 1.9 ≤ x2 ≤ −1.1x1 + 2.1, x1 ≤ 0,
−1.1x1 + 1.9 ≤ x2 ≤ −0.9x1 + 2.1, x1 > 0.

The graph of the solution of this set of
inequalities appears on the next page.
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Solution Set Graphs

The First Equation
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[0.9, 1.1]x1 + x2 = [1.9, 2.1].

We combine this with the solution sets to

[1.9, 2.1]x1 + x2 = [3.9, 4.1]

and
[2.9, 3.1]x1 + x2 = [5.9, 6.1]

on the next graph.

New Least Squares Paradigm May 22, 2002 SIAM Minisymposium–10



Solution Set Graphs
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The simultaneous solution set of

[0.9, 1.1]x1 + x2 = [1.9, 2.1],
[1.9, 2.1]x1 + x2 = [3.9, 4.1],
[2.9, 3.1]x1 + x2 = [5.9, 6.1].
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Relationships

• Traditional least squares:

1. Compute the least squares solution to
Ax = b.

2. Define b̃ = b + r, where r is the least
squares residual r = Ax− b.

3. If x and r were exact, then Ax = b̃ is
satisfied exactly. Thus, Ax∩ (b, b̃) 6= ∅,
where (b, b̃) is the smallest box
containing b and b̃, and A = A.

• The interval technique:

– allows more flexibility (individual
components in both b and A may be
interactively perturbed);

– gives bounds x on the solution set to
Ax = b, useful if data error bounds are
known beforehand.

– can show non-existence of solutions,
with a-priori error bounds.
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