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Abstract

The reliable solution of nonlinear parameter estimation problems
is an important computational problem in chemical engineering. Clas-
sical solution methods for these problems are local methods, and may
not be reliable to find the global optimum. Interval arithmetic can be
used to compute completely reliably the global optimum for the non-
linear parameter estimation problem. Experimental results are given
for parameter estimation in vapor-liquid equilibrium (VLE) models
originally set forth by Stadtherr–Gau. To complement Stadtherr’s
work, we consider not only least squares, but also the l1 and l∞ non-
smooth estimators.

1 Introduction

Parameter estimation is a common problem in many areas of science and
engineering, including such applications as real time optimization. Its goal is
to estimate accurate model parameters that provide the best fit to measured
data, despite small-scale noise in the data or occasional large-scale mea-
surement errors (outliers). In general, the estimation techniques are based
on some kind of least squares or maximum likelihood criterion, and these
require the solution of a nonlinear and nonconvex optimization problem.
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The standard methods (gradient-based approaches: Gauss-Newton methods,
Gauss-Marquardt methods, and successive quadratic programming methods,
or non-gradient methods, such as the simplex pattern search) used to solve
these problems are local methods that provide no guarantee the global opti-
mum, and the best model parameters have been found.

Interval arithmetic can be used to compute completely reliably the global
optimum for the nonlinear parameter estimation problem. Stadtherr–Gau [1],
used interval analysis in an application that deals with nonlinear parameter
estimation in vapor-liquid equilibrium (VLE) models. The reliable solution
of nonlinear parameter estimation problems is an important computational
problem in chemical engineering. Classical solution methods for these prob-
lems are local methods and may not be reliable to find the global optimum.
Stadtherr–Gau considered the least squares estimator l2 in their work.

The goal of this work is show the results of the nonsmooth estimators
l1 and l∞, in the solution of parameter estimation in VLE models using
nonsmooth optimization techniques in interval arithmetic, and also compare
them to Stadtherr ’s work.

The second section introduces parameter estimation, and the three dif-
ferent objective estimators l1, l2 and l∞ used in this work. The third section
presents basic concepts in interval arithmetic and the algorithm solution.
The fourth section is devoted to the application in VLE modeling. Finally,
the fifth section shows numerical results and conclusions.

2 Parameter Estimation

Suppose that n observations of m response variables, yji, i = 1, . . . ,m, j =
1, . . . , n are available, and that the responses are to be fit to a model of the
form yji = fi(xj, θ), with independent variables xj = (xj1, xj2, . . . , xjp)T and
parameters θ = (θ1, θ2, . . . , θq)T . Various objective functions (or estimators)
φ(θ) can be used to obtain the parameter values that provide the best fit.
In many circumstances, a maximum likelihood estimate is most appropriate.
However, assuming a normal likelihood in the errors, this can be simplified
to the widely relative least squares criterion or the l2 norm of the relative
errors, and to obtain the objective function

φ(θ) =
n

∑

i=1

m
∑

j=1

[

yji − fi(xj, θ)
yji

]2

. (1)
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Similarly, using the l1 and l∞ norms we get, respectively, the objective
functions:

φ(θ) =
m

∑

i=1

n
∑

j=1

∣

∣

∣

∣

∣

yji − fi(xj, θ)
yji

∣

∣

∣

∣

∣

, (2)

or

φ(θ) = max
1≤i≤m,1≤j≤n

∣

∣

∣

∣

∣

yji − fi(xj, θ)
yji

∣

∣

∣

∣

∣

. (3)

These can be treated either as a constrained or, if the experimental ob-
servations are substituted directly into the objective function, unconstrained
formulation of the problem here. In general, there are a variety of standard
techniques to minimize φ that provide local minimum, but no assurance that
a global minima has been found. Using interval arithmetic can provide such
a technique.

3 Interval Arithmetic: Basic Concepts

Real interval arithmetic is based on closed intervals of real numbers, i.e.
x = [x, x]. A real interval vector is x = (x1,x2, . . . ,xn), where xi = [xi, xi]
can be interpreted geometrically as an n-dimensional box. There are good
introductions to interval analysis in Kearfott [6], Hansen [2], Neumaier [8].

The interval extensions and interval Newton methods have been devel-
oped for global solution of nonlinear systems of equations and for global
optimization. These techniques provide the capability to narrowly enclose
all roots of the systems within the given initial interval. It is well known
that when the functions are given by smooth expressions, without condi-
tional branches, this technique is quadratically convergent. For instance,
the unconstrained minimization of the relative least squares function, φ(θ),
a common approach is to use the gradient of φ(θ) and seek a solution of
g(θ) = ∇φ(θ) = 0. The global minimum will be a root of this nonlinear
equation system, but there may be many other roots as well, representing
local extremes and saddle points. Thus, for this approach to be reliable, it
is necessary to find all the roots of g(θ) = 0, and this is provided by the in-
terval Newton techniques. Additional details concerning the implementation
of interval Newton methods, and the theory underlying them, is available
from Kearfott [6], Hansen [2], Neumaier [8]. Special algorithms developed in
GlobSol handle non-smooth problems such as l1 and l∞ optimizations with
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the same techniques as smooth problems, and under certain conditions the
interval Newton method converges linearly (See Kearfott [4], [5], Ratz [10]).

In practice, the interval Newton procedure can also be combined with an
interval branch and bound technique, so that roots of g(θ) = 0 that cannot
be the global minimum need not be found. The solution algorithm is applied
to a sequence of intervals, beginning with some initial interval vector θ(0)

given by the user. The initial interval can be chosen to be sufficiently large
to enclose all physically feasible behavior. It is assumed that the global
optimum will occur at an interior stationary minimum of φ(θ) and not on
the boundary of θ(0). Since the estimator φ(θ) is derived from a product of
normal distribution or double exponential functions corresponding to each
data point, only a stationary global minimum is reasonable for statistical
regression problems such as considered here.

4 Solution Algorithm by Stadtherr–Gau

Proposed in [1], The following algorithm is similar to generic algorithms that
have appeared, essentially in Moore [7],Ratschek–Rohn [9],Hansen [2], and
Kearfott [6].

For an interval θ(k) in the sequence, follow the steps:

1. Function range test. An interval extension G(θ(k)) of the function
g(θ) = ∇φ(θ) is computed.

a. If there is any component of the interval extension G(θ(k)) that
does not contain zero, the current interval θ(k) is discarded, thus
no solution of g(θ) = 0 exists in this interval.

b. Otherwise, if 0 ∈ G(θ(k)), then testing of θ(k) continues.

2. Objective range test. An interval extension Φ(θ) of the function φ(θ) is
computed.

a. If the lower bound of Φ(θ) is greater than a known upper bound
on the global minimum of φ(θ), then θ(k) cannot contain the global
minimum and it is discarded.

b. Otherwise, testing of θ(k) continues. The upper bound of φ(θ)
can be determined and updated in different ways. Here we use
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point evaluations of φ(θ) done at the midpoint of previous tested
θ intervals that may contain stationary points.

3. Interval Newton test. Here the linear interval equation system

G′(θ(k))(N (k) − θ(k)) = −g(θ(k))

is set up and solved for a new interval N (k), where G′(θ(k)) is an interval
extension of the Jacobian of g(θ), i.e. the Hessian of φ(θ), over the
current interval θ(k), and θ(k) ∈ θ(k), usually taken to be the midpoint of
θ(k). In Kearfott 1996 [6], Hansen [2], Neumaier [8] it is shown that any
root θ∗ ∈ θ(k) is also contained in N (k), implying that if θ(k)∩N (k) = ∅,
then there is no root of g(θ) = 0 in θ(k), and suggesting the iteration
scheme θ(k+1) = θ(k) ∩N (k). The foregoing suggests a series of tests to
determine whether a stationary point (root of g(θ) = 0) that might be
the global minimum of φ(θ) can be contained in θ(k):

a. If θ(k) ∩N (k) = ∅, then θ(k) is discarded.

b. Evaluate φ(θ(k)) to determine and update an upper bound on the
global minimum for use in step 2.

c. If N (k) ⊂ θ(k), then there is exactly one root of g(θ) = 0 in θ(k),
which may correspond to the global minimum.

d. If neither of the above is true, then no further conclusion can be
drawn.

In the last case, one could then repeat the root inclusion test on the next
interval Newton iterate θ(k+1), assuming it is sufficiently smaller that θ(k),
or one could bisect θ(k+1) and repeat the root inclusion test on the result-
ing intervals. This is the basic idea of interval Newton/generalized bisection
(IN/GB). The worst-case computational complexity of the (IN/GB) algo-
rithm is exponential in the number of variables. However, process modeling
problems involving over a hundred variables have been successfully solved
using this approach (Schnepper and Stadtherr, [11]).

5 Application to VLE Modeling

Because of its importance in the design of separation systems, much attention
has been given to modeling the thermodynamics of phase equilibrium in fluid
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mixtures. As an example, we consider here the estimation from binary (VLE)
data of the energy parameters in the Wilson equation

gE

RT
= −x1 ln(x1 + Λ12x2)− x2 ln(x2 + Λ21x1) = x1 ln γ1 + x2 ln γ2, (4)

where gE is the molar excess Gibbs energy for a binary system, x1 and x2 the
liquid-phase mole fractions. From (4) expressions for the activity coefficients
γ1 and γ2 are

ln γ1 = − ln(x1 + Λ12x2) + x2

[

Λ12

x1 + Λ12x2
− Λ21

x2 + Λ21x1

]

, (5)

ln γ2 = − ln(x2 + Λ21x1)− x1

[

Λ12

x1 + Λ12x2
− Λ21

x2 + Λ21x1

]

, (6)

where the binary parameters Λ12 and Λ21 are given by

Λ12 =
v2

v1
exp

[

−θ1

RT

]

, (7)

Λ21 =
v1

v2
exp

[

−θ2

RT

]

, (8)

v1 and v2 are the pure component liquid molar volumes, T is the sys-
tem temperature and θ1 and θ2 are the energy parameters that need to be
estimated.

Given VLE measurements and assuming an ideal vapor phase, experi-
mental values γ1,exp and γ2,exp of the activity coefficients can be obtained
from the relation

γi,exp =
yi,expPexp

xi,expP 0
i

, i = 1, 2, (9)

where P 0
i is the vapor pressure of pure component i at the system tem-

perature T . For the example problems here we follow Gmehling et at. [3]
and consider the three different objective functions in the introduction, with
yji = γji,exp and fi(xj, θ) = γji,calc(θ), i.e. the relative errors are

yji − fi(xj, θ)
yji

=
γji,exp − γji,calc(θ)

γji,exp
, j = 1, . . . , n, i = 1, 2, (10)
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where γji,calc(θ) are calculated from the Wilson equation at the same con-
ditions (temperature, pressure and composition) used to measure γji,exp.

Using the solution algorithm on section 1.2, with the different objective
functions φ(θ), defined in (1), (2), (3) we can estimate the energy parameters,
θ1 and θ2. The next section presents results and discussion of these three
estimations.

6 Results and Conclusions

In the following tables θ(2), θ(1), θ(∞), denote the solutions for the objective
functions defined by (1), (2) and (3) respectively, and θ(D) is the solution
published in Gmehling et at. [3]. Each column l∞(θ), l1(θ) and l2(θ) considers
the evaluation of these objective functions in all solutions.

(a) Without the diagonal numbers in Table 1, a robust comparison among
the three different estimators can be considered. It can be established
by column ranking, assigning the scores 3, 2, and 1 from the minimum
value to the largest value in each column. The most robust solution
would be the solution with largest accumulative score. In Table 1 the
l2 solution is the most robust with score 7, followed by the l1 solution
with score 6, and the worst solution is the l∞ solution with score 5.

(b) For Tables 2, 3, 4 the scoring for the three estimators is the same, 6.
Considering this simple robust method, is impossible to choose what
estimator is the best. In this case it is necessary to use other robust
procedure to compare these estimators, for instance, observe the sensi-
tivity of these estimators with respect to different kinds of outliers.

(c) In general, this interval technique of parameter estimation is model
independent. The approach presented here is general purpose and can
be used in connection with other objective functions, such as maximum
likelihood, or other type of data.

(d) In all tables the evaluations of the three objective functions in θ(2), θ(1),
θ(∞) are lower than their corresponding evaluations in θ(D). This shows
that using the nonsmooth parameter estimators we have obtained sim-
ilar results than those in (Stadtherr–Gau [1]), using the smooth least
squares estimator, for the same four data set. In other words, the
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solutions θ(D) published in Gmehling et at. [3] correspond to local op-
tima only whereas interval approaches find globally optimal parameter
values.

(e) Since this is a very wide interval based on physical considerations, we
believe that it is extremely likely that it will contain the globally opti-
mal parameter values. However, it should be emphasized again that the
solution algorithm is, of course, only guaranteed to converge to a global
solution, that is a stationary point within this chosen initial parameter
interval. It should also be noted that other approaches, including the
use of system-specific information, could be used to establish reasonable
initial bounds.

Table 1: Results for the Data Set one

T(◦ C) Solution l∞(θ) l1(θ) l2(θ)
30 θ(∞) = (−455.5, 1135) 0.0620 0.4451 0.0140
30 θ(1) = (−454.1, 1255) 0.0848 0.3639 0.0130
30 θ(2) = (−468.5, 1320) 0.0713 0.3758 0.0118
30 θ(D) = (437,−437) 0.1280 0.7139 0.0383

Table 2: Results for the Data Set two

T(◦ C) Solution l∞(θ) l1(θ) l2(θ)
40 θ(∞) = (−440.8, 1058.1) 0.0490 0.3705 0.0101
40 θ(1) = (−454.1, 1255) 0.0848 0.3639 0.0080
40 θ(2) = (−468.5, 1320) 0.0713 0.3758 0.0078
40 θ(D) = (405,−405) 0.1163 0.6624 0.0329
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Table 3: Results for the Data Set three

T(◦ C) Solution l∞(θ) l1(θ) l2(θ)
50 θ(∞) = (−425.9, 986.4) 0.0472 0.2500 0.0081
50 θ(1) = (−447.0, 1158.7) 0.0507 0.2499 0.0057
50 θ(2) = (−449.7, 1162.6) 0.0489 0.2567 0.0057
50 θ(D) = (374,−374) 0.1088 0.6248 0.0289

Table 4: Results for the Data Set four

T(◦ C) Solution l∞(θ) l1(θ) l2(θ)
50 θ(∞) = (−423.3, 976.9) 0.0413 0.3246 0.0084
50 θ(1) = (−388.2, 861.4) 0.0619 0.2923 0.0093
50 θ(2) = (−417.9, 969.3) 0.0475 0.3130 0.0081
50 θ(D) = (342,−342) 0.1343 0.6838 0.0426
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