
EXISTENCE VERIFICATION FOR SINGULAR ZEROS OF
COMPLEX NONLINEAR SYSTEMS∗

R. BAKER KEARFOTT† , JIANWEI DIAN† , AND A. NEUMAIER‡

SIAM J. NUMER. ANAL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 2, pp. 360–379

Abstract. Computational fixed point theorems can be used to automatically verify existence
and uniqueness of a solution to a nonlinear system of n equations in n variables ranging within a given
region of n-space. Such computations succeed, however, only when the Jacobi matrix is nonsingular
everywhere in this region. However, in problems such as bifurcation problems or surface intersection
problems, the Jacobi matrix can be singular, or nearly so, at the solution. For n real variables, when
the Jacobi matrix is singular, tiny perturbations of the problem can result in problems either with
no solution in the region, or with more than one; thus no general computational technique can prove
existence and uniqueness. However, for systems of n complex variables, the multiplicity of such a
solution can be verified. That is the subject of this paper.

Such verification is possible by computing the topological degree, but such computations hereto-
fore have required a global search on the (n− 1)-dimensional boundary of an n-dimensional region.
Here it is observed that preconditioning leads to a system of equations whose topological degree can
be computed with a much lower-dimensional search. Formulas are given for this computation, and
the special case of rank-defect one is studied, both theoretically and empirically.

Verification is possible for certain subcases of the real case. That will be the subject of a
companion paper.

Key words. complex nonlinear systems, interval computations, verified computations, singu-
larities, topological degree

AMS subject classifications. 65G10, 65H10

PII. S0036142999361074

1. Introduction. Given an approximate solution x̌ to a nonlinear system of
equations F (x) = 0, F : R

n → R
n, it is useful in various contexts to construct bounds

around x̌ in which it is proven that there exists a unique solution x∗, F (x∗) = 0. For
continuously differentiable F for which the Jacobian det(F ′(x∗)) �= 0 and for which
that Jacobian is well conditioned, interval computations have no trouble proving that
there is a unique solution within small boxes with x∗ reasonably near the center; see
[8], [16], [23]. However, if F ′(x∗) is ill conditioned or singular, such computations
necessarily must fail. In the singular case, for some classes of systems F (x) = 0,
F : R

n → R
n, arbitrarily small perturbations of the problem can lead to no solutions

or an even number of solutions, so multiplicity verification is not logical. In contrast,
verification is always possible if F maps C

n into C
n. Here, algorithms are developed

for the multiplicity of such solutions for F (z) = 0, F : C
n → C

n.
The algorithms are presented in the context of solutions that lie near the real line

of complex extensions of real systems. (Such solutions arise, for example, in bifur-
cation problems.) However, the algorithms can be generalized to arbitrary solutions
z ∈ C

n with z not necessarily near the real line.
Also, verification is possible for singular solutions of particular general classes of

F : R
n → R

n. We will cover this in a separate paper.

∗ Received by the editors September 10, 1999; accepted for publication (in revised form) February
21, 2000; published electronically July 19, 2000. This work was supported by National Science
Foundation grant DMS-9701540.

http://www.siam.org/journals/sinum/38-2/36107.html
†Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504 (rbk@

louisiana.edu, dian@louisiana.edu).
‡Institut für Mathematik, Universität Wien, Strudhofgasse 4, A-1050 Wien, Austria (neum@

cma.univie.ac.at).

360



SINGULAR COMPLEX ZEROS VERIFICATION 361

1.1. Previous work, related material, and references. The emphasis in
this paper is on rigorous verification of existence of a zero of a system of nonlinear
equations in a small region containing an approximate, numerically computed solu-
tion. Verification for F : R

n → R
n with the Jacobi matrix of F nonsingular at points

x with F (x) = 0 is done with computational fixed point theorems based on interval
Newton methods. Such methods are introduced, for example, in the books [2], [8],
[11], [16], [21], and [23].

The techniques in this paper for handling singularities are based on the topological
degree. Introductions to degree theory include parts of [3] (in German) or [20]. A
basic computational procedure for the degree over large regions appears in Stenger
[27]. Stynes [28], [29] and Kearfott [12], [13], [14] derived additional formulas and
algorithms based on Stenger’s results. These degree computation procedures, however,
involved heuristics, and the result was not guaranteed to be correct. Aberth [1] based
a verified degree computation method on interval Newton methods and a recursive
degree-computation formula such as Theorem 2.2 below. The work here differs from
this previous work in two important aspects:

• The algorithms here execute in polynomial time with respect to the number
of variables and equations,1 and

• the algorithms here assume at least second-order smoothness, and are meant
to compute the degree over small regions containing the solution, over which
certain asymptotic approximations are valid.

The treatment of verified existence represented in this paper involves computation
of the topological degree in n-dimensional complex space. In loosely related work,
Vrahatis et al. develop an algorithm for computing complex zeros of a function of a
complex variable in [31].

Finally, most of the literature we know on specialized methods for finding com-
plex zeros, verified or otherwise, of equations and systems of equations deals with
polynomial systems. Along these lines, continuation methods, as introduced in [6]
and [22], figure prominently. The article [4] contains methods for determining the
complex zeros of a single polynomial, while [7] and [9] contain verified methods for
determining the complex zeros of a single polynomial.

1.2. Notation. We assume familiarity with the fundamentals of interval arith-
metic; see [16, 23] for an introduction in the present context. (The works [2], [8], [24]
also contain introductory material.)

Throughout, scalars and vectors will be denoted by lower case, while matrices
will be denoted by upper case. Intervals, interval vectors (also called “boxes”), and
interval matrices will be denoted by boldface. For instance, x = (x1, . . . ,xn) denotes
an interval vector, A = (ai,j) denotes a point matrix, and A = (ai,j) denotes an
interval matrix. Real n-space will be denoted by R

n, while the set of n-dimensional
interval matrices will be denoted by IR

n×n. Similarly, complex n-space will be denoted
by C

n. The midpoint of an interval or interval vector x will be denoted by m(x). The
nonoriented boundary of a box x will be denoted by ∂x while its oriented boundary
will be denoted by b(x) (see section 2).

1.3. Traditional computational existence and uniqueness. Computational
existence and uniqueness verification rests on interval versions of Newton’s method.
Typically, such computations can be described as evaluation of a related interval

1The general degree computation problem is NP-complete; see [26].



362 R. BAKER KEARFOTT, JIANWEI DIAN, AND A. NEUMAIER

operator G(x); G(x) ⊆ x then implies existence and uniqueness of the solution of
F (x) = 0 within x. To describe these, we review the following definition.

Definition 1.1 (see [23, p. 174], etc.). Let F : R
n → R

m. The matrix A is said
to be a Lipschitz matrix for F over x provided for every x ∈ x and y ∈ x, F (x) −
F (y) = A(x− y) for some A ∈ A.

Most interval Newton methods for F : R
n → R

n, abstractly, are of the general
form

x̃ =N(F ;x, x̌) = x̌+ v,(1.1)

where v is computed to contain the solution set to the interval linear system

Av = −F (x̌),(1.2)

and where, for initial uniqueness verification, A is generally a Lipschitz matrix2 for F
over the box (interval vector) x and x̌ ∈ x is a guess point. We sometimes write F ′(x)
in place of A, since the matrix can be an interval extension of the Jacobi matrix of
F . Uniqueness verification traditionally depends on regularity of the matrix A. We
have the following lemma.

Lemma 1.2. (see [16], [23]). Suppose x̃ = x̌ + v is the image under the interval
Newton method (formula (1.1)), where v is computed by any method that bounds the
solution set to the interval linear system (1.2), and x̃ ⊆ x. Then A is regular.

The method of bounding the solution set of (1.2) to be considered here is the
interval Gauss–Seidel method, defined by the following definition.

Definition 1.3. The preconditioned interval Gauss–Seidel image GS(F ;x, x̌) of
a box x is defined as GS(F ;x, x̌) ≡ (x̃1, . . . , x̃n), where x̃i is defined sequentially for
i = 1 to n by

x̃i ≡ xi ∩
(
x̌i −N i/(YiAi)

)
,

where

N i = YiF (x̌) +

i−1∑
j=1

YiAj(x̃j − x̌j) +
n∑

j=i+1

YiAj(xj − x̌j),

and where x̌ = (x̌1, . . . , x̌n)
T is an initial guess point, YA ∈ IR

n×n and Y F (x̌) are the
matrix and right-hand-side vector for the preconditioned interval system YA(x− x̌) =
−Y F (x̌), Y ∈ R

n×n is a point preconditioning matrix, Yi denotes the ith row of Y ,
and Aj denotes the jth column of A.

Lemma 1.2 applies when N(F ;x, x̌) = GS(F ;x, x̌), provided we specify that
GS(F ;x, x̌) be in the interior3 int(x) of x. In particular, we have the following
theorem.

Theorem 1.4 (see [16], [23]). Suppose F : x ⊂ R
n → R

n and A is a Lipschitz
matrix such as an interval extension F ′(x) of the Jacobi matrix. If x̃ is the image
under an interval Newton method as in formula (1.1) and x̃ ⊂ int(x), then there is a
unique x∗ ∈ x with F (x∗) = 0.

Various authors have proven Theorem 1.4; see [16], [23]. In particular, Miranda’s
theorem can be used to easily prove Theorem 1.4 for N(F ;x, x̌) = GS(F ;x, x̌); see
[19], [30], or [16, p. 60]. For worked-out examples, see [18, p. 3] or [17].

2However, see [16, 25] for techniques for using slope matrices.
3We must specify the interior because of the intersection step in Definition 1.3.



SINGULAR COMPLEX ZEROS VERIFICATION 363

Inclusion in the interval Gauss–Seidel method is possible because the inverse
midpoint preconditioner reduces the interval Jacobi matrix to approximately a diag-
onal matrix. In the singular case, an incomplete factorization for the preconditioner
leads to an approximate diagonal matrix in the upper (n−1)× (n−1) submatrix, but
with approximate zeros in the last row. We discovered the methods in this paper by
viewing the interval Gauss–Seidel method on this submatrix, then applying special
techniques to the preconditioned nth function.

1.4. A simple singular example. Consider the following example.
Example 1. Take

f1(x1, x2) = x2
1 − x2,

f2(x1, x2) = x2
1 + x2,

and x =
(
x1,x2

)T
=
(
[−0.001, 0.001], [−0.001, 0.001])T .

Even though there is a unique root x∗ = (0, 0)T of F = (f1, f2)
T within x when

F is as in Example 1, the interval Gauss–Seidel method cannot prove this, since the
Jacobi matrix F ′(x∗) is singular. In fact, the interval Jacobi matrix is computed to
be

F ′(x) =
(
2x1 −1
2x1 1

)
=

(
[-0.002,0.002] −1
[-0.002,0.002] 1

)
,

and the midpoint matrix is m(F ′(x)) = ( 0 −1
0 1 ). The midpoint matrix, often used

as the preconditioner Y , is singular.4

Symbolic methods can be used to show that Example 1 has a unique solution at
x1 = 0, x2 = 0. However, arbitrarily small perturbations of the problem result in
either no solutions or two solutions. Consider the following example.

Example 2. Take

f1(x1, x2) = x2
1 − x2,

f2(x1, x2) = x2
1 + x2 + ε,

and x =
(
x1,x2

)T
=
(
[−0.001, 0.001], [−0.001, 0.001])T . Here, |ε| is very small.

The system in Example 2 has two solutions for ε < 0 and no solutions for ε > 0.
Roundout in computer arithmetic and, perhaps, uncertainties in the system itself due
to modelling or measurement uncertainties, however, make it impossible to distinguish
systems such as in Example 2 for different ε, especially when computer arithmetic is
used as part of the verification process. In such instances, no verification is possi-
ble. However, if F is viewed as a complex function of two variables, then, for all ε
sufficiently small, F has two solutions in a small box in C

2 containing the real point
(0, 0).

More generally, we can extend an n-dimensional box in R
n to an n-dimensional

box in C
n by adding a small imaginary part to each variable. If the system can

be extended to an analytic function in complex n-space (or if it can be extended to
a function that can be approximated by an analytic function), then the topological
degree gives the number of solutions, counting multiplicities, within the small region
in complex space. (See section 2 for an explanation of multiplicity.) For example,

4Alternate preconditioners can nonetheless be computed; see [16]. However, it can be shown that
uniqueness cannot be proven in this case; see [16], [23].



364 R. BAKER KEARFOTT, JIANWEI DIAN, AND A. NEUMAIER

the degree of the system in Example 2 within an extended box in complex space
can be computed to be 2, regardless of whether ε is negative, positive, or zero. (See
the numerical results in section 8.) The topological degree corresponds roughly to
algebraic degree in one dimension; for example, the degree of zn in a small region in
C

1 containing 0 is n.

1.5. Organization of this paper. A review of properties of the topological
degree, to be used later, appears in section 2. The issue of preconditioning appears
in section 3. Construction of the box in the complex space appears in section 4.

Several algorithms have previously been proposed for computing the topological
degree [1], [12], [28], but these require computational effort equivalent to finding all
solutions to 4n (2n-1)-dimensional nonlinear systems within a given box, or worse. In
section 5, a reduction is proposed that allows computation of the topological degree
with a search in a space of dimension equal to the rank defect of the Jacobian matrix.
A theorem is proven that further simplifies the search.

In section 6, the actual algorithm is presented and its computational complexity is
given. Test problems and the test environment are described in section 7. Numerical
results appear in section 8. Future directions appear in section 9.

2. Review of some elements of degree theory. The topological degree or
Brouwer degree, well known within algebraic topology and nonlinear functional anal-
ysis, is both a generalization of the concept of a sign change of a one-dimensional
continuous function and of the winding number for analytic functions. It can be used
to generalize the concept of multiplicity of a root. The fundamentals will not be
reviewed here, but we refer to [3], [5], [12]. We present only the material we need.

Here we explain what we mean by “multiplicity.” Actually, there is a more general
concept index (see [5, Chapter I]) for an isolated zero. The topological degree is equal
to the sum of the indices of zeros in the domain. The index is always positive in
our context. For this reason, we use the more suggestive term multiplicity as an
alternative term for index.

Suppose that F : D ⊂ C
n → C

n is analytic. Then the real and imaginary
components of F and its argument z ∈ C

n may be viewed as real components in R
2n.

Let z = x+ iy and F (z) = u(x, y)+ iv(x, y), where x = (x1, . . . , xn), y = (y1, . . . , yn),
u(x, y) = (u1(x, y), . . . , un(x, y)), and v(x, y) = (v1(x, y), . . . , vn(x, y)). We define D̃
by D̃ ≡ {(x1, y1, . . . , xn, yn)|(x1 + iy1, . . . , xn + iyn) ∈ D} and F̃ : D̃ ⊂ R

2n →
R

2n by F̃ = (u1, v1, . . . , un, vn). Then we have the following property of topological
degree d(F̃ , D̃, 0), and relationships between d(F̃ , D̃, 0) and the solutions of the system
F (z) = 0 in D.

Theorem 2.1 (see [5], [20], etc.). Suppose F : D ⊂ C
n → C

n is analytic, with
F (z) �= 0 for any z ∈ ∂D, and suppose D̃ and F̃ : D̃ → R

2n are defined as above.
Then

(1) d(F̃ , D̃, 0) ≥ 0.
(2) d(F̃ , D̃, 0) > 0 if and only if there is a solution z∗ ∈ D, F (z∗) = 0.
(3) d(F̃ , D̃, 0) is equal to the number of solutions z∗ ∈ D, F (z∗) = 0, counting

multiplicities.
(4) If the Jacobi matrix F ′(z∗) is nonsingular at every z∗ ∈ D with F (z∗) = 0,

then d(F̃ , D̃, 0) is equal to the number of solutions z∗ ∈ D, F (z∗) = 0.
The following three theorems lead to the degree computation formula in Theorem

5.1 in section 5, the formula used in our computational scheme.
Theorem 2.2. (see [27, section 4.2]). Let D be an n-dimensional connected,

oriented region in R
n and F = (f1, . . . , fn), where fk, k = 1, . . . , n are continuous



SINGULAR COMPLEX ZEROS VERIFICATION 365

functions defined in D. Assume F �= 0 on the oriented boundary b(D) of D, b(D) can
be subdivided into a finite number of closed, connected (n − 1)-dimensional oriented
subsets βk

n−1, k = 1, . . . , r, and there is a p, 1 ≤ p ≤ n, such that
(1) F¬p ≡ (f1, . . . , fp−1, fp+1, . . . , fn) �= 0 on the oriented boundary b(βk

n−1) of
βk
n−1, k = 1, . . . , r; and

(2) fp has the same sign at all solutions of F¬p = 0, if there are any, on βk
n−1,

1 ≤ k ≤ r.
Choose s ∈ {−1,+1} and let K0(s) denote the subset of the integers k ∈ {1, . . . , r}

such that F¬p = 0 has solutions on βk
n−1 and sgn(fp) = s at each of those solutions.

Then

d(F,D, 0) = (−1)p−1s
∑

k∈K0(s)

d(F¬p, β
k
n−1, 0).

The formula in Theorem 2.2 is a combination of formulas (4.15) and (4.16) in
[27]. The orientation of D is positive and the orientations of βk

n−1, whether positive
or negative, are induced by the orientation ofD. If we assume that the Jacobi matrices
of F¬p are nonsingular at all solutions of F¬p = 0 on βk

n−1, then

d(F¬p, β
k
n−1, 0) = t(βk

n−1)
∑

x∈βk
n−1

F¬p=0

sgn(JF¬p(x)),

where t(βk
n−1) = +1 or −1 depending on whether βk

n−1 has positive orientation or
negative orientation, and JF¬p(x) is the determinant of the Jacobi matrix of F¬p at
x. (See Theorem 5.2 and Theorem 7.2 in Chapter I of [5].) Thus we can simplify the
formula in Theorem 2.2 as follows.

Theorem 2.3. Suppose the conditions of Theorem 2.2 are satisfied and, addi-
tionally, the Jacobi matrix of F¬p is nonsingular at each solution of F¬p = 0 on βk

n−1,
for each k ∈ K0(s). Then

d(F,D, 0) = (−1)p−1s
∑

k∈K0(s)

t(βk
n−1)

∑
x∈βk

n−1
F¬p(x)=0

sgn(JF¬p(x)),

where t(βk
n−1) = +1 or −1 depending on whether βk

n−1 has positive orientation or
negative orientation, and JF¬p(x) is the determinant of the Jacobi matrix of F¬p at
x.

In our context, the region D is an n-dimensional box x = (x1, . . . ,xn), where
n ≥ 2 and xk = [xk, xk]. The boundary ∂x of x consists of 2n (n − 1)-dimensional
boxes

xk ≡ (x1, . . . ,xk−1, xk,xk+1, . . . ,xn) and xk ≡ (x1, . . . ,xk−1, xk,xk+1, . . . ,xn),

where k = 1, . . . , n.
The following theorem, necessary for the main characterization used in our algo-

rithm, is a basic property of oriented domains in n-space and follows from definitions
such as in [3]. See [18, pp. 7–8] for a detailed derivation in terms of oriented simplices.

Theorem 2.4. If x is positively oriented, then the induced orientation of xk is
(−1)k, and the induced orientation of xk is (−1)k+1, for 1 ≤ k ≤ n.

The oriented boundary b(x) can be divided into xk and xk, k = 1, . . . , n, with
the associated orientations. Also, F �= 0 on b(x) is the same as F �= 0 on ∂x.



366 R. BAKER KEARFOTT, JIANWEI DIAN, AND A. NEUMAIER

Y F ′(x) =




1 0 . . . 0

p︷ ︸︸ ︷∗ . . . ∗
0 1 0 . . . 0 ∗ . . . ∗
...

...
. . .

...
...

0 . . . 0 1 ∗ . . . ∗
0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0



.

Fig. 3.1. A singular system of rank n− p preconditioned with an incomplete LU factorization,
where “∗” represents a nonzero element.

Now fix a p between 1 and n. Then F¬p(x) = 0 on b(xk) or b(xk) is the same
as F¬p(x) = 0 on ∂xk or ∂xk. For this fixed p, let K0(s) denote the subset of the
integers k ∈ {1, . . . , n} such that F¬p = 0 has solutions on xk and sgn(fp) = s at these

solutions, and let K0(s) denote the subset of the integers k ∈ {1, . . . , n} such that
F¬p = 0 has solutions on xk and sgn(fp) = s at these solutions, where s ∈ {−1,+1}.
Then, by Theorem 2.3, we have the following theorem.

Theorem 2.5. Suppose F �= 0 on ∂x, and suppose there is p, 1 ≤ p ≤ n, such
that

(1) F¬p �= 0 on ∂xk or ∂xk, k = 1, . . . , n;
(2) fp has the same sign at all solutions of F¬p = 0, if there are any, on xk or

xk, 1 ≤ k ≤ n; and
(3) the Jacobi matrices of F¬p are nonsingular at all solutions of F¬p = 0 on ∂x.
Then

d(F,x, 0) = (−1)p−1s




∑
k∈K0(s)

(−1)k
∑
x∈xk

F¬p(x)=0

sgn

∣∣∣∣ ∂F¬p

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣∣∣∣

+
∑

k∈K0(s)

(−1)k+1
∑
x∈x

k
F¬p(x)=0

sgn

∣∣∣∣ ∂F¬p

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣∣∣∣

 .

3. On preconditioning. The inverse midpoint preconditioner approximately
diagonalizes the interval Jacobi matrix when F ′(x∗) is nonsingular (and well enough
conditioned). This preconditioner can be computed with Gaussian elimination with
partial pivoting. We can compute (to within a series of row permutations) an LU
factorization of the midpoint matrix m

(
F ′(x)

)
. The factors L and U may then be

applied to actually precondition the interval linear system.
When the rank of F ′(x∗) is n − p for some p > 0, Gaussian elimination with

full pivoting can be used to reduce F ′(x) to approximately the pattern shown in
Figure 3.1. Actually, an incomplete factorization based on full pivoting will put the
system into a pattern that resembles a permutation of the columns of the pattern
in Figure 3.1. However, for notational simplicity, there is no loss here in assuming
exactly the form in Figure 3.1.



SINGULAR COMPLEX ZEROS VERIFICATION 367

In the analysis to follow, we assume that the system has already been precondi-
tioned, so that it is, to within second-order terms with respect to w(x), of the form
in Figure 3.1. Here we concentrate on the case p=1, although the idea can be applied
to the general case.

4. The complex setting and system form. Below, we assume
(1) F : D ⊂ R

n → R
n can be extended to an analytic function in C

n.
(2) x = (x1, . . . ,xn) = ([x1, x1], . . . , [xn, xn]) is a small box that will be con-

structed centered at the approximate solution x̌, i.e., m(x) = (x̌1, . . . , x̌n).
(3) x̌ is near a point x∗ with F (x∗) = 0, such that ‖x̌− x∗‖ is much smaller than

the width of the box x, and width of the box x is small enough so that mean
value interval extensions lead, after preconditioning, to a system like Figure
3.1, with small intervals replacing the zeros.

(4) F has been preconditioned as in Figure 3.1, and F ′(x∗) has null space of
dimension 1.

The following representation is appropriate under these assumptions:

fk(x) = (xk − x̌k) + ∂fk
∂xn

(x̌)(xn − x̌n) +O
(
‖x− x̌‖2

)
for 1 ≤ k ≤ n− 1,

fn(x) =
1

2

n∑
k=1

n∑
l=1

∂2fn
∂xk∂xl

(x̌)(xk − x̌k)(xl − x̌l) +O
(
‖x− x̌‖3

)
.

For F : R
n → R

n, extend F to complex space: x + iy, with y in a small box
y =

(
y1, . . . ,yn

)
=
(
[y

1
, y1], . . . , [yn, yn]

)
, where y is centered at (0, . . . , 0). Define

z ≡ (x1,y1, . . . ,xn,yn) = ([x1, x1], [y1
, y1], . . . , [xn, xn], [yn, yn]), uk(x, y) ≡ �(fk(x+

iy)), and vk(x, y) ≡ �(fk(x+ iy)). With this, define

F̃ (x, y) ≡ (u1(x, y), v1(x, y), . . . , un(x, y), vn(x, y)) : R
2n → R

2n.

Then, if preconditioning based on complete factorization of the midpoint matrix for
F ′(x) is used, the first-order terms are eliminated in the pattern of Figure 3.1, and,
for 1 ≤ k ≤ (n− 1),

uk(x, y) = (xk − x̌k) + ∂fk
∂xn

(x̌)(xn − x̌n) +O
(
‖(x− x̌, y)‖2

)
,

vk(x, y) = yk +
∂fk
∂xn

(x̌)yn +O
(
‖(x− x̌, y)‖2

)
,


(4.1)

and

un(x, y) =
1

2

n∑
k=1

n∑
l=1

∂2fn
∂xk∂xl

(x̌)(xk − x̌k)(xl − x̌l)

−1
2

n∑
k=1

n∑
l=1

∂2fn
∂xk∂xl

(x̌)ykyl +O
(
‖(x− x̌, y)‖3

)
,

vn(x, y) =

n∑
k=1

n∑
l=1

∂2fn
∂xk∂xl

(x̌)(xk − x̌k)yl +O
(
‖(x− x̌, y)‖3

)
.




(4.2)

5. Simplification of a degree computation procedure. To use Theorem 2.5
to compute the topological degree d(F̃ , z, 0) directly in a verification algorithm would
require a global search of the 4n (2n−1)-dimensional faces of the 2n-dimensional box
z for zeros of F̃¬p. This is an inordinate amount of work for a verification process



368 R. BAKER KEARFOTT, JIANWEI DIAN, AND A. NEUMAIER

that would normally require only a single step of an interval Newton method in the
nonsingular case. However, if the system is preconditioned and in the form described
in section 3 and section 4, the verification can be reduced to 4n−4 interval evaluations
and four one-dimensional searches.

To describe the simplification, define

xk ≡ (x1,y1, . . . ,xk−1,yk−1, xk,yk,xk+1,yk+1, . . . ,xn,yn) and
xk ≡ (x1,y1, . . . ,xk−1,yk−1, xk,yk,xk+1,yk+1, . . . ,xn,yn).

Similarly define yk and yk. Also define

F̃¬un(x, y) ≡
(
u1(x, y), v1(x, y), . . . , un−1(x, y), vn−1(x, y), vn(x, y)

)
.

To compute the degree d(F̃ , z, 0), we will consider F̃¬un on the boundary of z. The
boundary of z consists of the 4n faces x1, x1, y1, y1, . . ., xn, xn, yn, yn.

Observe that, for 1 ≤ k ≤ (n− 1), F̃¬un(x, y) = 0 on xk implies uk(x, y) ≈ (xk −
x̌k) +

∂fk
∂xn

(x̌)(xn − x̌n) ≈ 0, whence w(xk) ≤ |∂fk/∂xn(x̌)|w(xn), i.e.,
w(xk)

|∂fk/∂xn(x̌)| ≤
w(xn). Similarly, F̃¬un(x, y) = 0 on xk implies w(xk)/|∂fk/∂xn(x̌)| ≤ w(xn),

F̃¬un
(x, y) = 0 on yk implies w(yk)/|∂fk/∂xn(x̌)| ≤ w(yn), and F̃¬un

(x, y) = 0
on yk implies w(yk)/|∂fk/∂xn(x̌)| ≤ w(yn). Thus if xn is chosen so that

w(xn) ≤ 1

2
min

1≤k≤n−1

{
w(xk)

|∂fk/∂xn(x̌)|
}
,(5.1)

then it is unlikely that uk(x, y) = 0 on either xk or xk. Similarly, if yn is chosen so
that

w(yn) ≤
1

2
min

1≤k≤n−1

{
w(yk)

|∂fk/∂xn(x̌)|
}
,(5.2)

then it is unlikely that vk(x, y) = 0 on either yk or yk. Here, the coefficient 1
2 is

to take into consideration the fact that uk(x, y) ≈ (xk − x̌k) + ∂fk
∂xn

(x̌)(xn − x̌n) and
vk(x, y) ≈ yk +

∂fk
∂xn

(x̌)yn are only approximate equalities. (When ∂fk/∂xn(x̌) = 0,
there is no restriction on w(xn) or w(yn) due to w(xk) or w(yk).)

By constructing the box z in this way, we can eliminate search of 4n − 4 of the
4n faces of the boundary of z, since we have arranged to verify F̃¬un(x, y) �= 0 on
each of these faces. Elimination of these 4n− 4 faces needs only 4n− 4 interval eval-
uations. Then, we need only to search the four faces xn,xn,yn, and yn for solutions

of F̃¬un(x, y) = 0, regardless of how large n is. This reduces total computational cost
dramatically, since searching a face is expensive. Based on this, the following theorem
underlies our algorithm in section 6.1.

Theorem 5.1. Suppose
(1) uk �= 0 on xk and xk, and vk �= 0 on yk and yk, k = 1, . . . , n− 1;
(2) F̃¬un = 0 has a unique solution on xn and xn with yn in the interior of yn,

and F̃¬un
= 0 has a unique solution on yn and yn with xn in the interior of

xn;
(3) un �= 0 at the four solutions of F̃¬un = 0 in condition 2; and
(4) the Jacobi matrices of F̃¬un are nonsingular at the four solutions of F̃¬un = 0

in condition 2.



SINGULAR COMPLEX ZEROS VERIFICATION 369

Then

d(F̃ ,z, 0) = −
∑

xn=x
n

F̃¬un (x,y)=0

un(x,y)>0

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x, y)

∣∣∣∣∣

+
∑

xn=xn
F̃¬un (x,y)=0

un(x,y)>0

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x, y)

∣∣∣∣∣

+
∑

yn=y
n

F̃¬un (x,y)=0

un(x,y)>0

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x, y)

∣∣∣∣∣

−
∑

yn=yn
F̃¬un (x,y)=0

un(x,y)>0

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x, y)

∣∣∣∣∣ .

Proof. Condition 1 implies F̃ �= 0 on xk, xk, yk and yk, k = 1, . . . , n − 1, and
conditions 2 and 3 imply F̃ �= 0 on xn, xn, yn and yn. Thus F̃ �= 0 on ∂z.

Condition 1 implies F̃¬un �= 0 on ∂xk, ∂xk, ∂yk and ∂yk, k = 1, . . . , n− 1. ∂xn

consists of 2(n − 1) (2n − 2)-dimensional boxes, each of which is either embedded
in some xk, xk, yk or yk, 1 ≤ k ≤ n − 1 or is embedded in yn or yn. Thus, by

conditions 2 and 3, F̃¬un �= 0 on ∂xn. Similarly, F̃¬un �= 0 on ∂xn, ∂yn and ∂yn.
Thus condition 1 in Theorem 2.5 is satisfied.

Condition 2 in Theorem 2.5 is automatically satisfied since F¬p = 0 either has no
solutions or a unique solution on xk, xk, yk, or yk, 1 ≤ k ≤ n.

Then, with condition 4, the conditions of Theorem 2.5 are satisfied. The formula
is thus obtained with s = +1.

The conditions of Theorem 5.1 will be satisfied when the system is that as de-
scribed in section 3 and section 4, the box z is constructed as in (5.1) and (5.2), and
the quadratic model is accurate. (See Theorem 5.2 and its proof of the results when
all the approximations are exact.)

In Theorem 5.1, the degree consists of contributions of the four faces we search.
We can compute the degree contribution of each of the four faces, then add them to
get the degree.

In Theorem 5.1 we choose s = +1. We can also choose s = −1. That doesn’t
make any difference in our context if we ignore higher order terms in the values of un
at the solutions of F̃¬un = 0 on the four faces xn, xn, yn, and yn. To be specific, the
four values of un are

un =
1

2
∆(xn − x̌n)2 +O

(
‖(x− x̌, y)‖3

)
,

un =
1

2
∆(xn − x̌n)2 +O

(
‖(x− x̌, y)‖3

)
,

un = −1
2
∆y2

n
+O

(
‖(x− x̌, y)‖3

)
,

un = −1
2
∆y2

n +O
(
‖(x− x̌, y)‖3

)
,



370 R. BAKER KEARFOTT, JIANWEI DIAN, AND A. NEUMAIER

respectively, where ∆ is defined in (5.3). When we choose w(yk) the same (or roughly
the same) as w(xk), the values of un as a function of yn (or yn) will be the same (or
roughly the same) as the values of un as a function of xn − x̌n (or xn − x̌n). Thus, if
we ignore higher order terms, the cost of verifying un < 0 and searching for solutions
of F̃¬un = 0 with un > 0 is approximately the same as the cost of verifying un > 0
and searching for solutions of F̃¬un

= 0 with un < 0.
Next we will give a theorem that will further reduce the search cost by telling us

how we should search. Define

αk ≡ ∂fk
∂xn

(x̌), 1 ≤ k ≤ n− 1, αn ≡ −1,

βkl ≡ ∂2fn
∂xk∂xl

(x̌), 1 ≤ k ≤ n, 1 ≤ l ≤ n,

∆ ≡
n∑

k=1

n∑
l=1

βklαkαl.(5.3)

Theorem 5.2. If the approximations of (4.1) and (4.2) are exact, if we construct
the box z as in (5.1) and (5.2), and if ∆ �= 0, then d(F̃ ,z, 0) = 2.

Proof. Under the assumptions,

uk = (xk − x̌k) + αk(xn − x̌n), 1 ≤ k ≤ n− 1,(5.4)

vk = yk + αkyn, 1 ≤ k ≤ n− 1,(5.5)

un =
1

2

n∑
k=1

n∑
l=1

βkl(xk − x̌k)(xl − x̌l)− 1

2

n∑
k=1

n∑
l=1

βklykyl,(5.6)

vn =

n∑
k=1

n∑
l=1

βkl(xk − x̌k)yl.(5.7)

Due to the construction of the box z, uk = (xk − x̌k) + αk(xn − x̌n) �= 0 on xk and
xk, and vk = y

k
+ αkyn �= 0 on yk and yk, where k = 1, . . . , n − 1. Next we locate

the solutions of F̃¬un = 0 on xn, xn, yn, and yn.
(1) On xn,

uk = 0 =⇒ x̃k = x̌k − αk(xn − x̌n), 1 ≤ k ≤ n− 1,(5.8)

vk = 0 =⇒ ỹk = −αkyn, 1 ≤ k ≤ n− 1.(5.9)

Plugging (5.8) and (5.9) into (5.6) and (5.7), we get

un =
1

2

n∑
k=1

n∑
l=1

βklαkαl(xn − x̌n)2 −
1

2

n∑
k=1

n∑
l=1

βklαkαly
2
n(5.10)

=
1

2
∆(xn − x̌n)2 −

1

2
∆y2

n,

vn =

n∑
k=1

n∑
l=1

βklαkαl(xn − x̌n)yn(5.11)

= ∆(xn − x̌n)yn.
Then

vn = 0 =⇒ ỹn = 0,(5.12)



SINGULAR COMPLEX ZEROS VERIFICATION 371

since ∆ �= 0. Thus by (5.9)

ỹn = 0 =⇒ ỹk = 0, 1 ≤ k ≤ n− 1.(5.13)

Therefore F̃¬un = 0 has a unique solution (x̃, ỹ) = (x̃1, 0, . . . , x̃n−1, 0, xn, 0)
on xn. Plugging (5.12) into (5.10), we get the un value at this solution, which
is

un =
1

2
∆(xn − x̌n)2.(5.14)

Next we compute the determinant of the Jacobi matrix of F̃¬un
at this solu-

tion. Define γk ≡
∑n

l=1 βlkαl. Noting (5.4), (5.5), and (5.7), we have∣∣∣∣∣ ∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x̃, ỹ)

∣∣∣∣∣(5.15)

= −(xn − x̌n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0 0
0 1 . . . 0 0 α1

...
...

...
...

...
0 0 . . . 1 0 0
0 0 . . . 0 1 αn−1

0 γ1 . . . 0 γn−1 γn

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −(xn − x̌n)

(
−

n∑
k=1

αkγk

)
= (xn − x̌n)

n∑
k=1

αk

n∑
l=1

βlkαl

= (xn − x̌n)
n∑

k=1

n∑
l=1

βlkαkαl = (xn − x̌n)
n∑

k=1

n∑
l=1

βklαkαl

= (xn − x̌n)∆.

(2) Similarly, on xn, F̃¬un = 0 has a unique solution (x̃, ỹ) on xn. The un value
at this solution is

un =
1

2
∆(xn − x̌n)2.(5.16)

The determinant of the Jacobi matrix of F̃¬un
at this solution is∣∣∣∣∣ ∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x̃, ỹ)

∣∣∣∣∣ = (xn − x̌n)∆.(5.17)

(3) On yn,

uk = 0 =⇒ x̃k = x̌k − αk(xn − x̌n), 1 ≤ k ≤ n− 1,(5.18)

vk = 0 =⇒ ỹk = −αkyn, 1 ≤ k ≤ n− 1.(5.19)

Plugging (5.18) and (5.19) into (5.6) and (5.7), we get

un =
1

2

n∑
k=1

n∑
l=1

βklαkαl(xn − x̌n)2 − 1

2

n∑
k=1

n∑
l=1

βklαkαly
2
n

(5.20)



372 R. BAKER KEARFOTT, JIANWEI DIAN, AND A. NEUMAIER

=
1

2
∆(xn − x̌n)2 − 1

2
∆y2

n
,

vn =

n∑
k=1

n∑
l=1

βklαkαl(xn − x̌n)yn(5.21)

= ∆(xn − x̌n)yn.
Then

vn = 0 =⇒ x̃n = x̌n,(5.22)

since ∆ �= 0. Thus by (5.18),

x̃n = x̌n =⇒ x̃k = x̌k, 1 ≤ k ≤ n− 1.(5.23)

Therefore F̃¬un
= 0 has a unique solution (x̃, ỹ) = (x̌1, ỹ1, . . . , x̌n−1, ỹn−1,

x̌n, yn) on yn. Plugging (5.22) into (5.20), we get the un value at this solution,
which is

un = −1
2
∆y2

n
.(5.24)

Next, as in (5.15), we compute the determinant of the Jacobi matrix of F̃¬un

at this solution. Noting (5.4), (5.5), and (5.7), we have∣∣∣∣∣ ∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x̃, ỹ)

∣∣∣∣∣ = y
n
∆.(5.25)

(4) Similarly, F̃¬un = 0 has a unique solution (x̃, ỹ) on yn. The un value at this
solution is

un = −1
2
∆y2

n.(5.26)

The determinant of the Jacobi matrix of F̃¬un
at this solution is∣∣∣∣∣ ∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x̃, ỹ)

∣∣∣∣∣ = yn∆.(5.27)

Finally, we can use the formula in Theorem 5.1 to compute the topological degree
d(F̃ ,z, 0). If ∆ > 0, then we know from (5.14), (5.16), (5.24), and (5.26) that
un > 0 at the solutions of F̃¬un

= 0 on xn and xn. We also know the signs of
the determinants of the Jacobi matrices at the two solutions from (5.15) and (5.17).
Therefore, d(F̃ , z, 0) = −(−1) + (+1) = 2. If ∆ < 0, then we know from (5.14),
(5.16), (5.24), and (5.26) that un > 0 at the solutions of F̃¬un = 0 on yn and
yn. We also know the signs of the determinants of the Jacobi matrices at the two
solutions from (5.25) and (5.27). Therefore d(F̃ ,z, 0) = +(+1)−(−1) = 2 also in this
case.

The proof of Theorem 5.2 tells us approximately where we can expect to find the
solutions of F̃¬un = 0 on the four faces we search and the value of the degree we can
expect when the approximations (4.1) and (4.2) are accurate.

From (4.1), we know that if xn is known precisely, formally solving uk(x,y) = 0

for xk gives sharper bounds x̃k with w(x̃k) = O
(
‖(x− x̌,y)‖2

)
, 1 ≤ k ≤ n−1. Simi-

larly, if yn is known precisely, formally solving vk(x,y) = 0 for yk gives sharper bounds



SINGULAR COMPLEX ZEROS VERIFICATION 373

ỹk with ỹk = O
(
‖(x− x̌,y)‖2

)
, 1 ≤ k ≤ n− 1. Thus when we search xn (or xn) for

solutions of F̃¬un
= 0, we can first get sharper bounds for xk, 1 ≤ k ≤ n−1, since xn is

known precisely. Then, for a small subinterval y0
n of yn, we can solve vk(x,y) = 0 for

yk to get sharper bounds ỹk with ỹk = O
(
max(‖(x− x̌,y)‖2,∥∥y0

n

∥∥)), 1 ≤ k ≤ n−1.
Thus we get a small subface of xn (or xn) over which we can either use an inter-

val Newton method to verify the existence and uniqueness of the zero of F̃¬un or use
mean-value extensions to verify that F̃¬un has no zeros, depending on whether y

0
n is in

the middle of yn or not. Thus the process reduces to searching over a one-dimensional
interval yn. This further reduces the search cost. We can similarly search yn or yn.

6. The algorithm and its computational complexity.

6.1. Algorithm. The algorithm consists of three phases. In the box-setting
phase, we set the box z. In the elimination phase, we verify that uk �= 0 on xk and
xk, and vk �= 0 on yk and yk, where 1 ≤ k ≤ n − 1. In the search phase, we verify
the unique solution of F̃¬un

= 0 on xn and xn with yn in the interior of yn, and on
yn and yn with xn in the interior of xn, compute the signs of un and the signs of

the Jacobi matrices of F̃¬un
at the four solutions of F̃¬un

= 0, compute the degree
contributions of the 4 faces xn, xn, yn, and yn according to the formula in Theorem
5.1, and finally add the contributions to get the degree.

Algorithm
Box-setting phase
1. Compute the preconditioner of the original system, using Gaussian elimina-
tion with full pivoting.

2. Set the widths of xk and yk (see explanation below), for 1 ≤ k ≤ n− 1.
3. Set the widths of xn and yn as in (5.1) and (5.2).

Elimination phase
1. Do for 1 ≤ k ≤ n− 1

(a) Do for xk and xk
i. Compute the mean-value extension of uk over that face.
ii. If 0 ∈ uk, then stop and signal failure.

(b) Do for yk and yk
i. Compute the mean-value extension of vk over that face.
ii. If 0 ∈ vk, then stop and signal failure.

Search phase
1. Do for xn and xn

(a) i. Use mean-value extensions for uk(x,y) = 0 to solve for xk to get

sharper bounds x̃k with width O
(
‖(x− x̌,y)‖2

)
, 1 ≤ k ≤ n− 1.

ii. If x̃k ∩ xk = ∅, then return the degree contribution of that face as
0.

iii. Update xk.
(b) i. Compute the mean-value extension un over that face.

ii. If un < 0, then return the degree contribution of that face as 0.
(c) Construct a small subinterval y0

n of yn which is centered at 0.
(d) i. Use mean-value extensions for vk(x,y) = 0 to solve for yk to get

sharper bounds ỹk with width O
(
max(‖(x− x̌,y)‖2,∥∥y0

n

∥∥)), 1 ≤
k ≤ n− 1, thus getting a subface x0

n (or x
0
n) of xn (or xn.)

ii. If ỹk ∩ yk = ∅, then stop and signal failure.



374 R. BAKER KEARFOTT, JIANWEI DIAN, AND A. NEUMAIER

(e) i. Set up an interval Newton method for F̃¬un
to verify existence and

uniqueness of a zero in the subface x0
n (or x

0
n).

ii. If the zero cannot be verified, then stop and signal failure.
(f) Inflate y0

n as much as possible subject to verification of existence and
uniqueness of the zero of F̃¬un over the corresponding subface, and thus
get a subinterval y1

n of yn.
(g) In this step, we verify F̃¬un = 0 has no solutions when yn ∈ yn \ y1

n.
yn \ y1

n has two separate parts; we denote the lower part by yl
n and the

upper part by yu
n. We present only the processing of the lower part.

The upper part can be processed similarly.
i. Do
A. Use mean-value extensions for vk(x,y) = 0 to solve for yk to

get sharper bounds for yk, 1 ≤ k ≤ n − 1, and thus to get a
subface of xn (or xn).

B. Compute the mean-value extensions F̃¬un over the subface ob-
tained in the last step.

C. If 0 ∈ F̃¬un
, then bisect yl

n, update the lower part as a new yl
n

and cycle.
If 0 �∈ F̃¬un

, then exit the loop.
ii. Do

A. If y1
n
≤ yln, then exit the loop.

B. yl
n ←− [yln, yln +w

(
yl
n

)
].

C. Use mean-value extensions for vk(x,y) = 0 to solve for yk to
get sharper bounds for yk, 1 ≤ k ≤ n − 1, and thus to get a
subface of xn (or xn).

D. Compute the mean-value extensions F̃¬un over the subface ob-
tained in the last step.

E. If 0 �∈ F̃¬un
, then cycle.

If 0 ∈ F̃¬un , then yl
n ←− [yln,mid(yl

n)] and cycle.

(h) i. Compute the mean-value extension of un over x
0
n (or x

0
n.)

ii. If un < 0, then return the degree contribution of that face as 0.

(i) i. Compute
∣∣∣ ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)
∣∣∣ (or ∣∣∣ ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)
∣∣∣).

ii. If 0 ∈
∣∣∣ ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)
∣∣∣ (or 0 ∈ ∣∣∣ ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)
∣∣∣), then

stop and signal failure.
(j) Use the formula in Theorem 5.1 to compute the degree contribution of

that face.
2. Do for yn and yn

(a) Same as step 1(a) except change xk to yk, x̃k to ỹk, xk to yk, and uk

to vk.
(b) Same as step 1(b).
(c) Same as step 1(c) except change y0

n to x0
n, yn to xn, and 0 to x̌n.

(d) Same as step 1(d) except change yk to xk, ỹk to x̃k, yk to xk, x
0
n to y0

n,

x0
n to y0

n, xn to yn, and xn to yn.

(e) Same as step 1(e) except change x0
n to y0

n and x0
n to y0

n.

(f) Same as step 1(f) except change y0
n to x0

n, y
1
n to x1

n, and yn to xn.
(g) Same as step 1(g) except change yn \ y1

n to xn \ x1
n.

(h) Same as step 1(h) except change x0
n to y0

n and x0
n to y0

n.



SINGULAR COMPLEX ZEROS VERIFICATION 375

(i) Same as step 1(i) except change∣∣∣ ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)
∣∣∣ to ∣∣∣ ∂F̃¬un

∂x1y1...xn−1yn−1xn
(y0

n)
∣∣∣ and∣∣∣ ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0

n)
∣∣∣ to ∣∣∣ ∂F̃¬un

∂x1y1...xn−1yn−1xn
(y0

n)
∣∣∣.

(j) Same as step 1(j).
3. Add the degree contributions of the four faces obtained in steps 1 and 2 to
get the degree.

End of algorithm

An explanation of the algorithm
1. In the box-setting phase, in step 2, the width w(xk) of xk depends on the
accuracy of the approximate solution x̌ of the system F (x) = 0. w(xk) should
be much larger than |x̌k − x∗k|. At the same time, w(xk) should not be too
large, since the quadratic model needs to be accurate over the box.

2. In the search phase, in step 1(b) (or 2(b)), we check the sign of un on that
face and discard that face at the earliest possible time if un < 0 on that
face, since we know the degree contribution of that face is 0 according to the
formula in Theorem 5.1. This will save time significantly if it happens that
un < 0 on that face. It did happen for all the test problems. (See section 8
for the test results.)

3. In the search phase, in step 1(e) (or 2(e)), we precondition the system F̃¬un

before we use an interval Newton method, so that the method will succeed
(see section 1.3 and section 3). The system F̃¬un is nonsingular over the
subfaces under consideration.

4. In the search phase, in step 1(f) (or 2(f)), we first expand the subinterval
y0
n (or x

0
n) by ε =

1
2w
(
y0
n

)
at both ends. If existence and uniqueness of the

zero of F̃¬un
can be verified over the corresponding subface, then we expand

the subinterval by 2ε at both ends, then 4ε and so on until existence and
uniqueness verification fails.

5. In the search phase, in step 1(g) (or 2(g)), the underlying idea is that the
farther away the interval yl

n is from the interval y0
n whose corresponding

subface of xn (or xn) contains a unique solution of F̃¬un = 0 or the narrower

the interval yl
n is, the more probable it is that we can verify that F̃¬un

�= 0
over the subface of xn (or xn) corresponding to yl

n.

6.2. Computational complexity.
Derivation of the computational complexity
Box-setting phase: Step 1 is of order O (n3

)
. Step 2 is of order O (n). Step 3 is of

order O (n2
)
. Thus, the order of this phase is O (n3

)
.

Elimination phase: Step 1(a)i and 1(b)i are of order O (n2
)
. Step 1(a)ii and 1(b)ii

are of order O (1). Thus, the order of this phase is O (n3
)
.

Search phase: Step 1(a) and 2(a) are of order O (n3
)
. Step 1(b) and 2(b) are of

order O (n2
)
. Step 1(c) and 2(c) are of order O (1). Step 1(d) and 2(d) are

of order O (n3
)
. Step 1(e) and 2(e) are of order O (n3

)
. Step 1(f) and 2(f)

are of order Ninfl*O
(
n3
)
. (See explanation below.) Step 1(g) and 2(g) are

of order Nproc*O
(
n3
)
. (See explanation below.) Step 1(h) and 2(h) are of

order O (n2
)
. Step 1(i) and 2(i) are of order O (n3

)
. Step 1(j) and 2(j) are

of order O (1) . The last step of this phase is of order O (1) too. Thus, the
order of this phase is O (n3

)
.



376 R. BAKER KEARFOTT, JIANWEI DIAN, AND A. NEUMAIER

The order of the overall algorithm is thus O (n3
)
.

Remark. The order of the algorithm cannot be improved, since computing pre-
conditioners of the original system and the system F̃¬un is necessary and computing
each preconditioner is of order O (n3

)
.

7. Test problems and test environment.

7.1. Test problems. Before describing the test set, we introduce one more
problem. Motivated by [10, Lemma 2.4], we considered systems of the following form.

Example 3. Set f(x) = h(x, t) = (1 − t)(Ax − x2) − tx, where A ∈ R
n×n is

the matrix corresponding to central difference discretization of the boundary value
problem −u′′ = 0, u(0) = u(1) = 0 and x2 = (x2

1, . . . , x
2
n)

T . The parameter t was
chosen to be equal to t1 = λ1/(1 + λ1), where λ1 is the largest eigenvalue of A.

The homotopy h in Example 3 has a simple bifurcation point at t = t1, where the
two paths cross obliquely. That is, there are two solutions to f(x) = 0 near x = 0, for
all t near t1 and on either side of t1. Furthermore, the quadratic terms in the Taylor
expansion for f do not vanish at t = t1.

The test set consists of Example 1, Example 2 with ε = +10−6 and −10−6,
and Example 3 with n = 5, 10, 20, 40, 80, 160, 320. For all the test problems, we used
(0, 0, . . . , 0) as a good approximate solution to the problem F (x) = 0. Actually, it’s the
exact solution in Example 1 and Example 3. w(xk) and w(yk) were set to 10

−3 for 1 ≤
k ≤ n− 1. w(xn) and w(yn) were computed automatically by the algorithm. In fact,
w(xk) and w(yk), 1 ≤ k ≤ n−1 can also be computed automatically by the algorithm,
depending on the accuracy of the approximate solution. At present, we used the known
true solutions to Example 1 and Example 3 and the known approximate solution to
Example 2 to test the algorithm and set the widths apparently small but otherwise
arbitrary.

For all the problems, the algorithm succeeded and returned a degree of 2.

7.2. Test environment. The algorithm in section 6.1 was programmed in the
Fortran 90 environment developed and described in [15], [16]. Similarly, all the func-
tions in the test problems were programmed using the same Fortran 90 system, and
internal symbolic representations of the functions were generated prior to execution of
the numerical tests. In the actual tests, generic routines then interpreted the internal
representations to obtain both floating point and internal values.

The LINPACK routines DGECO and DGESL were used in step 1 of the box-setting
phase, and in step 1(e), 2(e), 1(f), and 2(f) of the search phase to compute the
preconditioners. (See the algorithm and its explanation in section 6.1.)

The Sun Fortran 90 compiler version 1.2 was used on a Sparc Ultra model 140
with optimization level 0. Execution times were measured using the routine DSECND.
All times are given in CPU seconds.

8. Numerical results. We present the numerical results in Table 8.1 and some
statistical data in Table 8.2.

The column labels of Table 8.1 are as follows.
Problem: names of the problems identified in section 7.1.
n: number of independent variables.
Success: whether the algorithm was successful.
Degree: topological degree returned by the algorithm.
CPU time: CPU time in seconds of the algorithm.
Time ratio: This applies only to Example 3. It’s the ratio of two successive CPU

times.



SINGULAR COMPLEX ZEROS VERIFICATION 377

Table 8.1
Numerical results.

Problem n Success Degree CPU time Time ratio

Example 1 2 Yes 2 0.0761
Example 2

(ε = +10−6) 2 Yes 2 0.0511
Example 2

(ε = −10−6) 2 Yes 2 0.0513
Example 3 5 Yes 2 0.6806
Example 3 10 Yes 2 3.3403 4.91
Example 3 20 Yes 2 19.440 5.82
Example 3 40 Yes 2 140.34 7.22
Example 3 80 Yes 2 1123.6 8.01
Example 3 160 Yes 2 8891.3 7.91
Example 3 320 Yes 2 65395.5 7.36

Table 8.2
Statistical data.

Ninfl Nproc

Problem n xn xn yn yn xn xn yn yn

Example 1 2 6 6 0 0 0 0 0 0
Example 2

(ε = +10−6) 2 2 2 0 0 0 0 0 0
Example 2

(ε = −10−6) 2 2 2 0 0 0 0 0 0
Example 3 5 0 0 5 5 0 0 2 2
Example 3 10 0 0 5 5 0 0 2 2
Example 3 20 0 0 4 4 0 0 2 2
Example 3 40 0 0 4 4 0 0 2 2
Example 3 80 0 0 4 4 0 0 2 2
Example 3 160 0 0 4 4 0 0 2 2
Example 3 320 0 0 3 3 0 0 2 2

The column labels of Table 8.2 are as follows.

Problem: names of the problems identified in section 7.1.
n: number of independent variables.
Ninfl: number of inflations the algorithm did in step 1(f) or 2(f) for the indicated

face xn, xn, yn, or xy.

Nproc: number of subintervals of yn \ y1
n the algorithm processed in step 1(g) or

subintervals of xn \x1
n the algorithm processed in step 2(g), i.e., the number

of yl
n’s plus number of y

u
n’s in step 1(g) or number of x

l
n’s plus number of

xu
n’s in step 2(g) for the indicated face xn, xn, yn, or xy.

We can see from Table 8.1 that the algorithm was successful on each problem in the
test set. The overall algorithm is O (n3

)
, but the are many O (n3

)
and O (n2

)
steps.

Some steps have many O (n3
)
and O (n2

)
substeps, and some of the substeps still

have many O (n2
)
structures. Thus, when n was small, those lower order structures

had significant influence on the CPU time. However, for the larger n in the examples
tried, the O (n3

)
terms dominated. We can see this from the time ratios of Example 3

in Table 8.1.

In Table 8.2, in each problem there were two faces of xn, xn, yn, and yn for
which Ninfl = 0. This is because the algorithm verified that un < 0 on each of those
two faces in step 1(b) or 2(b), and returned a degree contribution of each of those



378 R. BAKER KEARFOTT, JIANWEI DIAN, AND A. NEUMAIER

two faces as 0. Thus, the algorithm didn’t proceed to step 1(f) or 2(f). For the same
reason, Nproc = 0 for those two faces. For the remaining two faces for which the
algorithm did proceed to step 1(f) or 2(f), Ninfl is small.

In step 1(g) or 2(g), which immediately follows the inflations, Nproc = 0 for
Example 1 and Example 2. This is because the inflations had covered the whole
interval yn. More significant is that Nproc = 2 in Example 3 regardless of small n

or large n. This is because only one interval was processed to verify that F̃¬un
= 0

has no solutions when xn ∈ xl
n and only one interval was processed to verify that

F̃¬un = 0 has no solutions when xn ∈ xu
n. This means that the algorithm was quite

efficient.

9. Conclusions and future work. When we tested the algorithm, we took
advantage of knowing the true solutions (see section 7.1.). For this reason, we set
w(xk) and w(yk), 1 ≤ k ≤ n− 1 somewhat arbitrarily. But we plan to have the algo-
rithm eventually compute these, based on the accuracy of the approximate solution
obtained by a floating point algorithm and the accuracy of the quadratic model.

We presented an algorithm which was designed to work for the case that the rank
deficiency of the Jacobian matrix at the singular solution is one. But the analysis in
section 5 and the algorithm in section 6.1 can be generalized to general rank deficiency.

Also, at present, it is assumed that the second derivatives ∂2fn
∂xk∂xl

, 1 ≤ k ≤ n, 1 ≤ l ≤ n
don’t vanish simultaneously at the singular solution. In fact, the analysis in section
5 and the algorithm in section 6.1 can be generalized to the general case that the
derivatives of fn of order 1 through r (r ≥ 2) vanish simultaneously at the singular
solution. Computing higher order derivatives, however, may be expensive. Those
two generalizations can also be combined, i.e., any rank deficiency and any order of
derivatives of fn that vanish. We will pursue these generalizations in the future.

Modification of the algorithm to verify complex roots that are not lying near the
real axis is possible.

Another future direction of this study is to apply the algorithms to bifurcation
problems and other physical models.

Finally, verification is possible for f : R
n → R

n, in a multidimensional analogue
of odd-multiplicity roots. We are presently writing up theoretical and experimental
results for this situation.

REFERENCES

[1] O. Aberth, Computation of topological degree using interval arithmetic, and applications,
Math. Comp., 62 (1994), pp. 171–178.

[2] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
New York, 1983.

[3] P. Alexandroff and H. Hopf, Topologie, Chelsea, New York 1935.
[4] F. Bauhuber, Direkte Verfahren zur Berechnung der Nullstellen von Polynomen, Computing,

5 (1970), pp. 97–118.
[5] J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, AMS, Providence, RI,

1964.
[6] C. B. Garcia and W. I. Zangwill, Pathways to Solutions, Fixed Points, and Equilibria,

Prentice-Hall, Englewood Cliffs, NJ, 1981.
[7] J. Gargantini and P. Henrici, Circular arithmetic and the determination of polynomial zeros,

Numer. Math., 18 (1972), pp. 305–320.
[8] E. R. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, Inc., New York,

1992.
[9] P. Henrici, Applied and Computational Complex Analysis. Vol. 1— Power Series – Integration

– Conformal Mapping – Location of Zeros, Wiley, New York, 1974.



SINGULAR COMPLEX ZEROS VERIFICATION 379

[10] H. Jürgens, H.-O. Peitgen, and D. Saupe, Topological perturbations in the numerical non-
linear eigenvalue and bifurcation problems, in Analysis and Computation of Fixed Points,
S. M. Robinson, ed., Academic Press, New York, 1980, pp. 139–181.

[11] E. W. Kaucher and W. L. Miranker, Self-Validating Numerics for Function Space Problems,
Academic Press, Orlando, 1984.

[12] R. B. Kearfott, Computing the Degree of Maps and a Generalized Method of Bisection, Ph.D.
thesis, Department of Mathematics, University of Utah, Salt Lake City, UT, 1977.

[13] R. B. Kearfott, An efficient degree-computation method for a generalized method of bisection,
Numer. Math., 32 (1979), pp. 109–127.

[14] R. B. Kearfott, A summary of recent experiments to compute the topological degree, in
Applied Nonlinear Analysis, V. Lakshmikantham, ed., Academic Press, New York, 1979,
pp. 627–635.

[15] R. B. Kearfott, A Fortran 90 environment for research and prototyping of enclosure algo-
rithms for nonlinear equations and global optimization, ACM Trans. Math. Software, 21
(1995), pp. 63–78.

[16] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht, The
Netherlands, 1996.

[17] R. B. Kearfott, Rigorous global optimization and the GlobSol package. Colloquium lecture
presented at University of Houston–Downtown, Houston, TX, September 1999; also avail-
able online from http://interval.louisiana.edu/preprints/1999 U of H.ps.

[18] R. B. Kearfott, J. Dian, and A. Neumaier, Existence Verification for Singular Zeros of
Nonlinear Systems, Tech. report, University of Louisiana at Lafayette and the Univer-
sity of Vienna, 1999; also available online from http://interval.louisiana.edu/preprints/
singular existence.ps.

[19] W. Kulpa, The Poincaré–Miranda theorem, Amer. Math. Monthly, 104 (1997), pp. 545–550.
[20] N. G. Lloyd, Degree Theory, Cambridge University Press, Cambridge, UK, 1978.
[21] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.
[22] A. P. Morgan, Solving Polynomial Systems Using Continuation for Engineering and Scientific

Problems, Prentice-Hall, Englewood Cliffs, NJ, 1987.
[23] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cam-

bridge, UK, 1990.
[24] H. Ratschek and J. Rokne, New Computer Methods for Global Optimization, Wiley, New

York, 1988.
[25] S. M. Rump, Verification methods for dense and sparse systems of equations, in Topics in

Validated Computations, J. Herzberger, ed., Elsevier Science Publishers, Amsterdam, 1994,
pp. 63–135.

[26] K. A. Sikorski, Optimal Solution of Nonlinear Equations, Oxford University Press, London,
2000.

[27] F. Stenger, An algorithm for the topological degree of a mapping in Rn, Numer. Math., 25
(1976), pp. 23–38.

[28] M. Stynes, An Algorithm for the Numerical Calculation of the Degree of a Mapping, Ph.D.
thesis, Department of Mathematics, Oregon State University, Corvallis, OR, 1977.

[29] M. Stynes, An algorithm for numerical calculation of the topological degree, Appl. Anal., 9
(1979), pp. 63–77.

[30] M. N. Vrahatis, A short proof and a generalization of Miranda’s existence theorem, Proc.
Amer. Math. Soc., 107 (1989), pp. 701–703.

[31] M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa, The topo-
logical degree theory for the location and computation of complex zeros of Bessel functions,
Numer. Funct. Anal. Optim., 18 (1997), pp. 227–234.


