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Here, we will briey desribe the

bakground and state our main results.

These results inlude both new results

for funtions in real spae and new

results for funtions in omplex spae.
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The General Problem

Use the notation

x = f(x

1

; x

2

; : : : ; x
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A fundamental problem is then

Given F : x ! R

n

and x 2 IR

n

, rig-

orously verify:

� there exists a unique x

�

2 x suh

that F (x

�

) = 0,

(1)

Computer arithmeti an be used to verify the

assertion in Problem (1), with the aid of

interval extensions and omputational �xed

point theorems .
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Underlying Mathematis

The Nonsingular Case

� Classial �xed point theory implies

existene.

{ Contration Mapping Theorem

{ Brouwer Fixed Point Theorem

{ Miranda's Theorem

� Regularity (non-singularity) implies

uniqueness.

� Fundamental property of interval

arithmeti allows omputational existene

and uniqueness.
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The Nonsingular Case

Traditional Interval Newton Methods

Assumptions (roughly stated):

1. The Jaobi matrix F

0

(x

�

) is nonsingular.

2. x

�

is near the enter of x.

3. The omponent widths of x are small.

4.N(F ;x; �x) is the image of x under an

appropriate, preonditioned interval

Newton method, with �x the enter of x.

Then:

1. The preonditioned F

0

(x) is approximately

the identity matrix.

2. Thus, N(F ;x; �x) � x. This proves that

there is a unique solution of F (x) = 0 in x.
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Singularities

When the Jaobi matrix F

0

(x

�

) is singular,

omputations as above annot possibly prove

existene and uniqueness.

Example 1 Take

f

1
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2
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2

) = x

2

1

+ x

2

;

and

x = (x

1

;x

2

)

T

= ([�0:1; 0:1℄; [�0:1; 0:3℄)

T

:

For suh systems, the best that a

preonditioner an do is redue the Jaobi

matrix to approximately the form
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Singularities

Veri�ation of at Least One Solution

1. The topologial degree (to be explained

shortly) may be omputed over x.

2. If the topologial degree is non-zero, there

is at least one solution of F (x) = 0 in x.

3. No onlusion an be reahed if the

topologial degree is zero.
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Singularities

Veri�ation of the Exat Multipliity

1. If F : C

n

! C

n

, then the topologial

degree of F over x gives the exat number

of solutions, ounting multipliities.

2. If F : R

n

! R

n

, and F an be extended

analytially into C

n

, then omputations

an verify existene of an exat solution or

solutions (with multipliity omputed by

the algorithm) within a small region of

omplex spae ontaining x.
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The Topologial Degree

Some Properties

� If F : x � R

n

! R

n

, F

0

(x

�

) 6= 0 wherever

F (x

�

) = 0, x

�

2 x, and F (x) 6= 0 when

x 2 �x, then the degree d(F;x; 0) is the

number of x

�

2 x, F (x

�

) = 0 with

det(F

0

(x

�

)) > 0, minus the number of suh

x

�

2 x with det(F

0

(x

�

)) < 0.

� d(F;x; 0) is a ontinuous funtion of F ,

and is de�ned even if det(F

0

(x

�

)) = 0, as

long as there are no solutions to F (x) = 0

on �x.

� If F is extended to C

n

and is thought of as

mapping R

2n

to R

2n

, and x is embedded in

a box z 2 C

2n

, then d(F;z; 0) is equal to

the exat number of z 2 z, F (z) = 0,

ounting multipliities.
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The Topologial Degree

An Example

f

1

(x; y) = x

2

� y

2

� �

2

f

2

(x; y) = 2xy;

� If � 6= 0, then F has solutions at

(x; y) = (�; 0) and (x; y) = (��; 0). Sine

det(F

0

(x)) = 4(x

2

+ y

2

) = 4�

2

at eah of

these solutions, d(F;z; 0) = 2, where

z = f(x; y) j x 2 [�0:1; 0:1℄; y 2 [�Æ; Æ℄g

for any Æ > 0.

� If � = 0, then d(F;z; 0) is still equal to 2,

even though the Jaobi matrix vanishes at

the only solution (x; y) = (0; 0).
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The Topologial Degree

How is it Computed?

� d(F;x; 0) depends only on values of F on

�x.

� De�ne

F

:k

(x) = (f

1

(x); : : : ; f

k�1

(x);

f

k+1

(x); : : : ; f

n

(x));

and selet s 2 f�1; 1g. Then d(F;x; 0) is

equal to the number of zeros of F

:k

on �x

with positive orientation at whih

sgn(f

k

) = s, minus the number of zeros of

F

:k

on �x with negative orientation at

whih sgn(f

k

) = s.

� The orientation is omputed by omputing

the sign of the determinant of the Jaobian

of F

:k

and by taking aount of whih fae.
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Computation of the Degree
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The Complex Case

Notation for our result

� Suppose the rank defet of the

preonditioned matrix is 1.

� De�ne

�

k

�

�f

k

�x

n

(�x); 1 � k � n� 1;

�

n

� �1;

�

1

�

�

�

�

�

�

�

�

�F

�x

1

: : : �x

n

(�x)

�

�

�

�

�

�

�

;

�

d

�

n

X

k

1

;:::;k

d

=1

�

d

f

n

�x

k

1

: : : �x

k

d

(�x)�

k

1

: : : �

k

d

for d � 2:

� Assume �

k

= 0 for k � d and �

d

6= 0.

� �x is near a point x

�

with f(x

�

) = 0, �x 2 x,

and x

�

2 x, and there are no solutions of

f(x) = 0 on the boundary �x.
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The Complex Case

� If

{ The �rst n� 1 omponents of the

preonditioned F are nearly linear, the

last omponent is nearly a degree d

form, and x is suÆiently small, and

{ we are onsidering the omplex

extension of F and a suÆiently small

box z 2 IC

n

ontaining the real box x,

then d(F; z; 0) = d.

� New: We have designed an algorithm that

veri�es the degree is equal to d in O

�

n

3

�

time, with only two searhes, in only one

variable.

�With a similar algorithm for d = 2, we

have veri�ed d = 2 for over 300 equations

and unknowns, for disretizations of

nonlinear eigenvalue problems.
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Singular Systems

The Real Case

� If the approximation assumptions hold and

{ if d is odd, then

d(F;x; 0) = sgn(�

d

) = �1;

{ if d is even, then d(F;x; 0) = 0.

� Veri�ation that d(F;x; 0) = �1 when d is

odd is done with an algorithm similar to

the omplex setting, but more eÆiently,

with half the number of variables.
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