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Here, we will briefly describe the
background and state our main results.
These results include both new results
for functions in real space and new
results for functions in complex space.
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The General Problem

Use the notation

L = {(331,332,...,56n>T€Rn

A fundamental problem is then

Given F': x — R" and & € IR", rig-
orously verify:

(1)

e there exists a unique x* € @ such

that F'(z*) = 0,

Computer arithmetic can be used to verity the
assertion in Problem (1), with the aid of
interval extensions and computational fized
point theorems.
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Underlying Mathematics

The Nonsingular Case

Classical fixed point theory implies
existence.
— Contraction Mapping Theorem
— Brouwer Fixed Point Theorem
— Miranda’s Theorem

e Regularity (non-singularity) implies
uniqueness.

e Fundamental property of interval
arithmetic allows computational existence
and uniqueness.
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The Nonsingular Case

Traditional Interval Newton Methods

Assumptions (roughly stated):
. The Jacobi matrix F'(z*) is nonsingular.
. ¥ is near the center of .

. The component widths of x are small.

- 0 DN =

. IN(F; x, ) is the image of  under an
appropriate, preconditioned interval
Newton method, with & the center of a.

Then:

1. The preconditioned F'(x) is approximately
the identity matrix.

2. Thus, N(F;x,z) C . This proves that
there is a unique solution of F'(z) =0 in .
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Singularities

When the Jacobi matrix F'(x*) is singular,
computations as above cannot possibly prove
existence and uniqueness.

Example 1 Take

fl(fEl,fEQ) — CU% — T2,

fo(w1,29) = x7 + @2,
and
x = (x1,x:) = ([—0.1,0.1],[—0.1,0.3])" .

For such systems, the best that a
preconditioner can do is reduce the Jacobi
matrix to approximately the form

n - rank

x 0 ... 0 %...x%
0 % 0...0 *%...x%
0 x % *

0 0 00...0
0 0 00...0
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Singularities

Verification of at Least One Solution

1. The topological degree (to be explained
shortly) may be computed over .

2. If the topological degree is non-zero, there
is at least one solution of F(x) =0 in «.

3. No conclusion can be reached if the
topological degree is zero.
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Singularities

Verification of the Exact Multiplicity

1. If F:C" — C", then the topological
degree of F' over & gives the exact number
of solutions, counting multiplicities.

2. If F:R" — R" and F' can be extended
analytically into C", then computations
can verify existence of an exact solution or
solutions (with multiplicity computed by
the algorithm) within a small region of
complex space containing @.
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The Topological Degree

Some Properties

o [f FF:x CR" — R" F'(z*) # 0 wherever
F(z*) =0, 2" € x, and F(z) # 0 when
xr € Ox, then the degree d(F, x,0) is the
number of x* € x, F(x*) = 0 with
det(F'(x*)) > 0, minus the number of such
r* € x with det(F'(z*)) < 0.

e d(F,x,0) is a continuous function of F|
and is defined even if det(F'(z*)) = 0, as
long as there are no solutions to F'(x) =0
on Ox.

o If F'is extended to C" and is thought of as
mapping R*" to R*, and « is embedded in
a box z € C*", then d(F, 2,0) is equal to
the exact number of z € z, F(z) =0,
counting multiplicities.
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The Topological Degree

An Erample
filz,y) = e
f2<xay> — QCUy,

o If ¢ # 0, then F' has solutions at
(z,y) = (¢,0) and (x,y) = (—¢,0). Since
det(F'(z)) = 4(x? + y*) = 4¢€* at each of
these solutions, d(F) z,0) = 2, where

z = {(x,y) | T € [_01701]7y < [_57 5]}
for any d > 0.

o [f ¢ =0, then d(F} z,0) is still equal to 2,
even though the Jacobi matrix vanishes at
the only solution (x,y) = (0,0).
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The Topological Degree

How 1is it Computed?

e d(F,x,0) depends only on values of F' on
ox.

e Define

Foplx) = (fil), ..., fimi(),
fk—l—l(w)? RIS fn<w>)7

and select s € {—1,1}. Then d(F, x,0) is
equal to the number of zeros of F.; on Ox
with positive orientation at which

sgn( fr) = s, minus the number of zeros of
F_; on Ox with negative orientation at
which sgn(fi) = s.

e The orientation is computed by computing
the sign of the determinant of the Jacobian
of F_; and by taking account of which face.
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Computation of the Degree

fi=a1— 23

fo = 22129

Jo>0 \

filz) =0

Jo>0
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The Complex Case

Notation for our result

e Suppose the rank defect of the
preconditioned matrix is 1.

e Define
0
Y = af;"%sE), 1<k<n-1,
a, = —1,
oF 5
Al = (95171 ax (33) ’
n 0 fr
A E U o o o
d kl,..%]:CdZI awkl c e awkd <x>05k1 Oékd
for d > 2.

e Assume Ay =0 for k < d and Ay # 0.

e 7 is near a point * with f(z*) =0, T € =,
and x* € x, and there are no solutions of
f(z) = 0 on the boundary Ox.
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The Complex Case

o [f

— The first n — 1 components of the
preconditioned F' are nearly linear, the
last component is nearly a degree d
form, and x is sufficiently small, and

— we are considering the complex
extension of F' and a sufficiently small
box z € IC" containing the real box a,

then d(F), z,0) = d.

e New: We have designed an algorithm that
verifies the degree is equal to d in O (n?’)
time, with only two searches, in only one
variable.

e With a similar algorithm for d = 2, we
have verified d = 2 for over 300 equations
and unknowns, for discretizations of
nonlinear eigenvalue problems.
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Singular Systems

The Real Case

e If the approximation assumptions hold and
—if d is odd, then
d(F,z,0) = sgn(Aq) = +£1;
—if d is even, then d(F, x,0) = 0.
e Verification that d(F,«,0) = £1 when d is
odd is done with an algorithm similar to

the complex setting, but more efficiently,
with half the number of variables.
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