An Overview of the (GlobSol
Package for Verified Global
Optimization

by
R. Baker Kearfott
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rbk@louisiana.edu

This talk will

e Contrast verified and non-verified global
optimization

e Briefly discuss the underlying mathematics
of verified global optimization

e Review capabilities of the GlobSol software
package

e Review an example of how to use GlobSol

e (Give an on-line demonstration.
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Local Optimization Versus
Global Optimization

Local Optimization

e The model is steepest descent with
univariate line searches (for monotone
decrease of the objective function). (Start
a ball on a hill and let it roll to the bottom
of the nearest valley.)

e Algorithm developers speak of
“globalization,” but mean only the design
of algorithm variants that increase the
domain of convergence. (See J. E. Dennis
and R. B. Schnabel, Numerical Methods
for Unconstrained Optimization and

Nonlinear Least Squares, Prentice—Hall,
1983.)

e Algorithms contain many heuristics, and
do not always work. However, many useful
implementations exist.
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Local Optimization Versus
Global Optimization

Global Optimization

e is a much harder problem. Progress has
accelerated with increases in computing
pOWer.

e Farly milestones are L. C. W. Dixon and
G. P. Szego, Towards Global
Optimization (North-Holland, 1975), and
Towards Global Optimization 2
(North-Holland, 1977).

e T'wo types of algorithms: stochastic and
deterministic.

e Deterministic algorithms can be either
rigorous or heuristic.
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Global Optimization

Stochastic Algorithms

Monte-Carlo search: Random points are
generated in the search space. The point
with lowest objective value is taken to be
the global optimum.

Simulated annealing: is similar to a local
optimization method, although larger
objective values are accepted with a
probability that decreases as the algorithm
progresses.

Genetic algorithms: Attributes, such as
values of a particular coordinate,
correspond to particular “genes.”
“Chromosomes” of these genes are
recombined randomly, and only the best
results are kept. Random “mutations” are
introduced.
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Global Optimization

Deterministic Optimization

e involves some kind of systematic global
search over the domain.

e The various algorithms rely on estimates of
the range of the objective function over
subdomains.

e Some algorithms (due to Mladineo,
Schubert, Wood, etc.) rely on
Lipschitz constants to obtain estimates of
ranges.

e Bounds on ranges are also obtained with
outwardly rounded interval arithmetic.
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Global Optimization

Hybrid Stochastic / Deterministic
Algorithms

Recently, several people have combined
statistical methods with deterministic
methods.

e Janos Pinter uses a statistical model to
estimate local approximations to Lipschitz
constants for a global search.

e Donald Jones constructs a cumulative
statistical model of of the objective, and
uses deterministic global optimization with
a simpler objective to determine optimal
placement of the next sample point.

e Kaj Madsen uses multiple starts of a local
optimizer to simulate a rigorous global
search with interval methods.
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On the State of the Art

e Minimizing a function over a compact set
in R" is an NP-complete problem.

e Thus, barring monumental discoveries, any
general algorithm will fail for some
high-dimensional problems.

e There are many practical problems that
can be solved in low-dimensional spaces.

e Some low-dimensional problems are

difficult.

e Advances in computer speed and algorithm
construction have allowed many more
practical problems to be solved, including
high-dimensional ones.
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Deterministic Global
Optimization

Interval Methods

e Evaluation of an objective function ¢(X)
at an interval vector X gives bounds on
the actual range of ¢ over X.

— If directed rounding is used, the bounds

rigorously contain the mathematical range.

— The bounds, in general, are overestimates.

e [f the lower bound of ¢(X) is greater than

a previously computed objective value
(X ), then X can be discarded.

e Interval Newton Methods, combined with
directed rounding, can prove existence and
uniqueness of critical points, as well as
reduce the size of regions X.
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Interval Methods

Advantages

easier to use: Obtaining bounds with
interval methods involves programming the
objective function, while using Lipschitz
constant-based methods may require
extensive preliminary analysis.

more efficient: Despite interval
overestimation of ranges, the
overestimation is often less than with a
fixed Lipschitz constant. (But keep in
mind the success of hybrid deterministic
/ stochastic algorithms.)

more capable: With directed roundings,
interval methods cannot lie. Also, interval
Newton iteration results in
quadratic convergence effects.
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Underlying Mathematics

Classical fixed point theory implies
existence.
— Contraction Mapping Theorem
— Brouwer Fixed Point Theorem

— Miranda’s Theorem

Regularity (non-singularity) implies
uniqueness.

e Fundamental property of interval
arithmetic allows computational existence
and uniqueness.
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Underlying Mathematics

Miranda’s Theorem

Theorem 1 Suppose X € IR", and let the
faces of X be denoted by

X, = (T1, -, T, X5, Tt 1y - - - :zzn)T
X{ — (wh ooy Ti1, Ty Lijtly- -, mn>T .
Let F = (fi,..., f.)! be a continuous
function defined on X. If

fz'u<Xz>fiu(X€> <0 (1)

for each i between 1 and n, then there is an
X € X such that F(X) = 0.

GlObSOl July, 2000 Dresden—12



Underlying Mathematics

Regularity

Lemma 2 Suppose F: X — R" and A s a
Lipschitz matriz, such as F(X). If A is
reqular, then any root of F' in X 1s unique.

Proof: Suppose X* € X and X € X have
F(X*)=0and F(X)=0. If A is a Lipschitz
set, then there is an A € A such that
FX*)—F(X) =0

= A(X") — A(X)

= A(X" - X).
If X*# X, then A would have a null vector,
contradicting the regularity of A. O
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A Computational Existence
Tool

Interval Gauss—Seidel Method
Assume FI(X) = (f1(X), ..., fu(X)) is

continuously differentiable. Then the mean
value theorem gives

) = ) + 520 ) — 20,

whence f;(X) = 0 provided

0fi

v = B s )/ g @ 8)
Ofi

C ; — fi(x—, fi)/a—i(mm x;)

The above inclusion forms the Interval
Gauss—oeidel iteration equation.
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Interval Gauss—Seidel Method

Verification Properties

Do sequentially for 1 =1 to n:
Lz «— & — fi(x—, ;) g—;Z(iBw', ;)
2. T; — T

Then:

1. If &; C a; after each step 1, then the
hypotheses of Miranda’s theorem are

satisfied, and, hence, there exists a solution
to F'(X) = 0 within X.

2. If &; C x; after each step 1, then F'(X)
must be regular, and hence, the solution in
X 1is also unique.

Note: The system F(X) = 0 is usually
preconditioned by a point matrix Y to make
the Jacobi matrix Y F'(X) approximately
diagonal.
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Preconditioned Interval
Gauss—Seidel

An Example

filxy, x0) = a7 — 4ao,
folxy, m0) = x% — 211 + 4xo,

and
T T
X = (x1,22) = (]—0.1,0.1],[—0.1,0.3])" .
X* = QO,O)T, of FI(X* =0 is unique in X.

~

Take X = (0,. 1)1, so F(X) = (—.4, 41!,
and
o 2(131 —4
F<X> - ( —2 2:132+4)

B ( [_272'2] [3.&;16] ) '
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An Example

(Continued)

Take Y to be the inverse of the midpoint
matrix of F'(X):

V= tmFo) = (2500
0.895,1.105] [—.2,.2)
Th“1Y17@K>::< —.05,.05] 1 )’
YF(X) = (.005,.1)7, and

— 005 + [—.2,.2][~.2, 2]

r, = 00—
(895, 1.105)
—.035, .045
c 2089 08 30 0503]
895, 1.105)
C 1 = [—.1, 1]

Similarly, s C a9, so there is a unique root of

Fin X.
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What is GlobSol?

e A Fortran 90 package

— well-tested.

— self-contained.

e Solves constrained and unconstrained
global optimization problems

e Separate program solves square algebraic
systems of equations.

e Utility programs for interval and point
evaluation, etc.

e Subroutine / module libraries for interval
arithmetic, automatic differentiation, etc.

e Publicly available free of charge
http://interval.louisiana.edu/GlobSol/download GlobSol.html
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GlobSol

Special Features

e Objective function and constraints are
coded as Fortran 90 programs.

e Can use constraint propagation
(substitution /iteration) on the intermediate
quantities in objective function, equality,
and inequality constraint evaluation.

e Can use an overestimation-reducing
“peeling” process for bound-constraints.

e Uses an effective point method to find
approximate feasible points.

e Has a special augmented system mode for
least squares problems.
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GlobSol Features

(continued)

e Has extensive error-checking (user input,
internal errors, etc.)

e Has on-line web page documentation.
e The algorithm is configurable.

e Has various levels of printing, for various
algorithm aspects.

e Source code and libraries for components
are available.

— Automatic differentiation access.
— Interval arithmetic access.

— User-modifiable, with adequate study.

e Gives performance statistics, both in
report form and for input to spreadsheets.
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Use of GlobSol

An Example

The following Fortran 90 program defines the
objective function

minimize @(X) = —2* o7 — 3

subject to constraints

ri+a5—1<0
i — x5 < 0
i — a3 = 0

GlObSOl July, 2000 Dresden—21



Use of GlobSol

An Example, continued

PROGRAM SIMPLE_MIXED_CONSTRAINTS
USE CODELIST_CREATION
PARAMETER (NN = 2)
TYPE(CDLVAR), DIMENSION(NN) :: X
TYPE(CDLLHS), DIMENSION(1):: PHI
TYPE(CDLINEQR), DIMENSION(2) :: G
TYPE(CDLER), DIMENSION(1) 0 C

CALL INITIALIZE_CODELIST(X)
PHI(1) = -2*xX(1)**2 — X(2)*x*2
G(1) = X(D)**x2 + X(2)*x2 - 1
G(2) = X(1)*x2 - X(2)

C(1) = X(1)*x2 — X(2)**2

CALL FINISH_CODELIST
END PROGRAM SIMPLE_MIXED_CONSTRAINTS
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GlobSol Example

(continued)

. Running the above program produces an
internal representation, or code list.

. The code list is then symbolically
differentiated.

. The optimization code interprets the
derivative code list at run time to produce
floating point and interval evaluations of
the objective function, gradient, and
Hessian matrix.

. A separate data file defines the initial
search box, the bound constraints, and the
initial guess, if any:.

. A configuration file GlobSol.CFG supplies
algorithm options, such as which interval
Newton method to use and how to
precondition the linear systems.
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GlobSol Example

The Data File

1D-5 I General domain tolerance

0 1 I Bounds on the first variable
0 1 I Bounds on the second variable
FF I X(1) has no bound constraints
F F I X(2) has no bound constraints

Subsequent optional lines can give an initial guess point.
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GlobSol Example

Output File — abridged first part

Output from FIND_GLOBAL_MIN on 04/06/1999 at 08:03:52.
Version for the system is: March 20, 1999

Codelist file name is: MIXEDG.CDL
Box data file name is: MIXED.DT1

Initial box:
[ 0.0000E+00, 0.1000E+01 ] [ 0.0000E+00, 0.1000E+01 ]

BOUND_CONSTRAINT:
FF FF

CONFIGURATION VALUES:

EPS_DOMAIN: 0.1000E-04  MAXITR: 60000
DO_INTERVAL_NEWTON: T QUADRATIC: T FULL_SPACE: F
VERY_GOOD_INITIAL_GUESS:F

USE_SUBSIT:T

OUTPUT UNIT:7 PRINT_LENGTH:1

Default point optimizer was used.
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GlobSol Example

Output File — abridged second part

THERE WERE NO BOXES IN COMPLETED_LIST.
LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.:1
Box coordinates:

[ 0.7071E+00, 0.7071E+00 ] [ 0.7071E+00,  0.7071E+00 ]
PHI:

[ -0.1500E+01, -0.1500E+01 ]

Level: 3

Box contains the following approximate root:

0.7071E+00 0.7071E+00

OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT:

[ -0.1500E+01, -0.1500E+01 ]
Uo:

[ 0.3852E+00,  0.3852E+00 ]
U:

[ 0.5777E+00, 0.5777E+00 1 [ 0.0000E+00, 0.1000E+01 ]
V:

[ 0.1926E+00,  0.1926E+00 ]
INEQ_CERT_FEASIBLE:

FT
NIN_POSS_BINDING:1

Number of bisections: 1
BEST_ESTIMATE: -0.1500E+01

Total number of boxes processed in loop: 4
Overall CPU time: 0.5000D-01
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Simple Example of “Thick”
Constants

minimize (z7 — [1, 2])2 + (22 — [3, 4D2

PROGRAM THICK_PARAMETER_EXAMPLE
USE CODELIST_CREATION
IMPLICIT NONE

INTEGER, PARAMETER:: NN=2
TYPE(CDLVAR), DIMENSION(NN):: X
TYPE(CDLLHS) :: PHI

OUTPUT_FILE_NAME=’thick_parameter_example.CDL’
CALL INITIALIZE_CODELIST(X)

PHI = (X(1) - INTERVAL(1,2))**2 &
+ (X(2)-INTERVAL(3,4))*x*2

CALL FINISH_CODELIST
END PROGRAM THICK_PARAMETER_EXAMPLE
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Example with Thick Constants

(continued)

The “solution” is the set of all possible minima
with constants in [1,2] and |3, 4]. Thus, a
minimum minimum and maximum minimum
are obtained. The solution is

r1 €[1,2], x9 € [3,4], and ¢ =0.
With initial box ([-10,10], [-10,10]), GlobSol

gives

Box no.: 1

Box coordinates:

[ 0.1000D+01, 0.1500D+01 ] [ 0.3000D+01, 0.4000D+01 ]
PHI:

[ 0.0000D+00, 0.2000D+01 ]

Box no.: 2

Box coordinates:

[ 0.1500D+01, 0.2000D+01 ] [ 0.3000D+01, 0.4000D+01 ]
PHI:

[ 0.0000D+00, 0.2000D+01 ]

BEST_ESTIMATE: 0.5000D+00
Total number of boxes processed in loop: 4
Overall CPU time: 0.0000D+00
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Thick Constants

A Practical Application
e Work by Claudio Rocco

e Maintenance scheduling optimization based
on a model by Dekker et al

e A multi-component system has n
components. Each component can be
scheduled for preventive maintenance every
k; T time units, where T' is a fixed interval
and the k; are integers.

e The total cost of a particular schedule is
written as an unconstrained minimization
problem, with integer variables k; and the
base interval T'.

e The expected deterioration cost of each
component is not known precisely; the cost
of the ¢-th component depends on a
parameter ¢; known to lie in an interval.
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Maintenance Scheduling
Application

GlobSol’s Possibilities

1. For an objective of the form f(z,p), where
p is a set of parameters subject to interval
uncertainty, GlobSol can compute a lower
bound on

min {min f(x,p)}
peP z
and an upper bound on
max {min f(x,p)} .
pep T

2. This lower bound and upper bound can be
made sharper by subdividing the
parameter intervals p, solving the
subproblems, then taking the union of the
solutions. Subdividing can also decrease
the overall execution time.

3. Details can be found in a preprint at
http://interval.usl.edu/preprints/TOMS thick.ps
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Maintenance Scheduling
Application

GlobSol’s Performance

. GlobSol solves an 8-component model with
fixed ¢; very effectively.

. If the ¢; are intervals, GlobSol gives
satistactory results if only one of the ¢; is
assumed to be uncertain, and if the
variation is within the range of 10% or so.

. GlobSol presently takes excessive time
when more than one ¢; 1s assumed to be
uncertain.

. Certain algorithmic improvements appear
promising for increasing the practicality of
GlobSol on this problem when more than
one parameter is uncertain.
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GlobSol References

e For the source, installation instructions,
user guide, etc.:
http://www.mscs.mu.edu/"globsol/

e Rigorous Global Search: Continuous
Problems, R. B. Kearfott, Kluwer
Academic Publishers, 1996. Contains

— Most of the basic ideas underlying
GlobSol.

— Structure of the research code that
eventually became GlobSol.

e For various preprints related to techniques
in GlobSol and applications:

http://interval.louisiana.edu/preprints.html

e For these transparencies:
http://interval.louisiana.edu/preprints/2000 Dresden.ps
(Postscript)

http://interval.louisiana.edu/preprints/2000 Dresden.dvi

(TEX DVI)
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