Existence Verification for Singular Zeros of Nonlinear Systems

by

R. Baker Kearfott, **rbk@usl.edu** Department of Mathematics, University of Southwestern Louisiana

and

Jianwei Dian, dian@usl.edu Department of Mathematics, University of Southwestern Louisiana

singular system verification

The General Question

Given $F : \boldsymbol{x} \to \mathbb{R}^n$ and $\boldsymbol{x} \in \mathbb{IR}^n$, rigorously verify: (1)

• there exists a unique $x^* \in \boldsymbol{x}$ such that $F(x^*) = 0$,

Computer arithmetic can be used to verify the assertion in Problem (1), with the aid of interval extensions and *computational fixed* point theorems.

singular system verification

The General Question

Uses

- Producing rigorous bounds on approximate solutions to linear and nonlinear systems (The approximate solutions can be computed with traditional techniques.)
 - in analysis of stability of structures, where one wants to prove that all eigenvalues have negative real parts
 - in robust computational geometry (surface intersection problems, etc.)
- As a tool in branch and bound algorithms in global optimization.
- As a tool in the verification that *all* zeros of a nonlinear system have been found in a region of \mathbb{R}^n .

The Nonsingular Case

Traditional Interval Newton Methods

Assumptions (roughly stated):

- 1. The Jacobi matrix $F'(x^*)$ is nonsingular.
- 2. x^* is near the center of \boldsymbol{x} .
- 3. The component widths of \boldsymbol{x} are small.
- 4. $N(F; \boldsymbol{x}, \check{x})$ is the image of \boldsymbol{x} under an appropriate, preconditioned interval Newton method, with \check{x} the center of \boldsymbol{x} .

Then:

- 1. The preconditioned $F'(\boldsymbol{x})$ is approximately the identity matrix.
- 2. Thus, $N(F; \boldsymbol{x}, \check{\boldsymbol{x}}) \subset \boldsymbol{x}$. This proves that there is a unique solution of F(x) = 0 in \boldsymbol{x} .

Singularities

When the Jacobi matrix $F'(x^*)$ is singular, computations as above cannot possibly prove existence and uniqueness. For such systems, the best that a preconditioner can do is reduce the Jacobi matrix to approximately the form

$$\begin{pmatrix} 1 & 0 & \dots & 0 & * \dots & * \\ 1 & 0 & \dots & 0 & * \dots & * \\ 0 & 1 & 0 \dots & 0 & * \dots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & * \dots & * \\ 0 & \dots & 0 & 0 & 0 \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & 0 \dots & 0 \end{pmatrix}$$

singular system verification

Uses : Verification of at Least One Solution

- 1. The *topological degree* (to be explained shortly) may be computed over \boldsymbol{x} .
- 2. If the topological degree is non-zero, there is at least one solution of F(x) = 0 in \boldsymbol{x} .
- 3. No conclusion can be reached if the topological degree is zero.

singular system verification

Uses : Verification of the Exact Multiplicity

- 1. If $F : \mathbb{C}^n \to \mathbb{C}^n$, then the topological degree of F over \boldsymbol{x} gives the exact number of solutions, counting multiplicities.
- 2. If $F : \mathbb{R}^n \to \mathbb{R}^n$, and F can be extended analytically into \mathbb{C}^n , then computations can verify existence of an exact solution or solutions (with multiplicity computed by the algorithm) within a small region of complex space containing \boldsymbol{x} .

How is it Computed?

- $d(F, \boldsymbol{x}, 0)$ depends only on values of F on $\partial \boldsymbol{x}$.
- Define

$$F_{\neg k}(x) = (f_1(x), \dots, f_{k-1}(x), \\ f_{k+1}(x), \dots, f_n(x)),$$

and select $s \in \{-1, 1\}$. Then $d(F, \boldsymbol{x}, 0)$ is equal to the number of zeros of $F_{\neg k}$ on $\partial \boldsymbol{x}$ with positive orientation at which $\operatorname{sgn}(f_k) = s$, minus the number of $\operatorname{zeros} of F_{\neg k} on \partial \boldsymbol{x}$ with negative orientation at which $\operatorname{sgn}(f_k) = s$.

 The orientation is computed by computing the sign of the determinant of the Jacobian of F_{¬k} and by taking account of which face.

singular system verification

 $Computational\ Cost$

- 1. Directly finding all zeros of $F_{\neg k}$ on $\partial \boldsymbol{x}$ can be done in a straightforward branch and bound algorithm. However, that is perhaps too expensive for mere verification purposes.
- 2. The structure of the preconditioned system can be used to greatly simplify the computations.
- 3. The widths of the box \boldsymbol{x} constructed about the approximate solution can be chosen so that only several one-dimensional searches need be done to compute $d(F, \boldsymbol{z}, 0)$, where $F : \mathbb{C}^n \to \mathbb{C}^n$.

singular system verification

Notation and Assumptions

- For $F : \mathbb{R}^n \to \mathbb{R}^n$, extend F to complex space: z = x + iy, $u_k(x, y) = \Re(f_k(z))$ and $v_k(x, y) = \Im(f_k(z))$.
- Define $\tilde{F}(x, y) =$ $(u_1(x, y), v_1(x, y), \dots, u_n(x, y), v_n(x, y)) :$ $\mathbb{R}^{2n} \to \mathbb{R}^{2n}.$
- Assume $F(\check{x}) \approx 0$.
- Assume F has been preconditioned (say, through an incomplete LU factorization). Also assume F'(x*) has null space of dimension 1.

singular system verification

Consequences

 $F'(\check{x})$ is approximately the form

/	1	0	•••	0	*)	
	0	1	0	0	*	
	÷	:	•••	÷	÷	
	0	•••	0	1	*	
	0	•••	0	0	0	

So,

$$f_k(x) = (x_k - \check{x}_k) + \frac{\partial f_k}{\partial x_n} (\check{x})(x_n - \check{x}_n) + \mathcal{O}\left(\|x - \check{x}\|^2\right)$$

for $1 \le k \le n - 1$. $f_n(x) = \frac{1}{2} \sum_{k,l=1}^n \frac{\partial^2 f_n}{\partial x_k \partial x_l} (\check{x}) (x_k - \check{x}_k) (x_l - \check{x}_l) + \mathcal{O} \left(\|x - \check{x}\|^3 \right)$

singular system verification

Consequences (continued)

For $1 \leq k \leq (n-1)$,

$$u_k(x,y) = (x_k - \check{x}_k) + \frac{\partial f_k}{\partial x_n} (\check{x})(x_n - \check{x}_n) \\ + \mathcal{O}\left(\| (x - \check{x}, y) \|^2 \right) \\ v_k(x,y) = y_k + \frac{\partial f_k}{\partial x_n} (\check{x}) y_n \\ + \mathcal{O}\left(\| (x - \check{x}, y) \|^2 \right),$$

So, for $1 \le k \le (n-1)$,

$$u_k(x,y) \approx (x_k - \check{x}_k) + \frac{\partial f_k}{\partial x_n} (\check{x})(x_n - \check{x}_n)$$
$$v_k(x,y) \approx y_k + \frac{\partial f_k}{\partial x_n} (\check{x})y_n$$

singular system verification

Consequences (continued)

The following things are useful in the search phase (to be explained shortly) of the topological degree approach.

- 1. If x_n is known precisely, formally solving $\boldsymbol{u}_k(\boldsymbol{x}, \boldsymbol{y}) = 0$ for x_k gives \boldsymbol{x}_k with $w(\boldsymbol{x}_k) = \mathcal{O}\left(\|(\boldsymbol{x} - \check{x}, \boldsymbol{y})\|^2 \right),$ $1 \le k \le n-1.$
- 2. If y_n is known precisely, formally solving $\boldsymbol{v}_k(\boldsymbol{x}, \boldsymbol{y}) = 0$ for y_k gives \boldsymbol{y}_k with $w(\boldsymbol{y}_k) = \mathcal{O}\left(\|(\boldsymbol{x} - \check{x}, \boldsymbol{y})\|^2 \right),$ $1 \le k \le n-1.$

singular system verification

May, 1999 SIAM–13 $\,$

1. Define

 $\boldsymbol{x} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) = ([\underline{x}_1, \overline{x}_1], \dots, [\underline{x}_n, \overline{x}_n])$ and

- 2. The center of \boldsymbol{x}_k is $\check{\boldsymbol{x}}_k$. The center of \boldsymbol{y}_k is 0.
- 3. Define $\boldsymbol{x}_{\underline{k}}$ as $(\boldsymbol{x}, \boldsymbol{y})$ with $[\underline{x}_k, \overline{x}_k]$ replaced by \underline{x}_k , and define $\boldsymbol{x}_{\overline{k}}$ as $(\boldsymbol{x}, \boldsymbol{y})$ with $[\underline{x}_k, \overline{x}_k]$ replaced by \overline{x}_k . Similarly define $\boldsymbol{y}_{\underline{k}}$ and $\boldsymbol{y}_{\overline{k}}$.
- 4. Consider $\tilde{F}_{\neg u_n}(x,y) = (u_1(x,y), v_1(x,y), \dots, u_{n-1}(x,y), v_{n-1}(x,y), v_n(x,y))$ on the boundary of $(\boldsymbol{x}, \boldsymbol{y})$.

singular system verification

For
$$1 \le k \le (n-1)$$
,
on $\boldsymbol{x}_{\underline{k}}$,
 $\tilde{F}_{\neg u_n}(x,y) = 0$
 $\implies u_k(x,y) \approx (\underline{x}_k - \check{x}_k) + \frac{\partial f_k}{\partial x_n}(\check{x})(x_n - \check{x}_n) = 0$
 $\implies \frac{|\underline{x}_k - \check{x}_k|}{|\partial f_k / \partial x_n(\check{x})|} = |x_n - \check{x}_n|$
 $\implies \frac{\mathrm{w}(\boldsymbol{x}_k)}{|\partial f_k / \partial x_n(\check{x})|} \le \mathrm{w}(\boldsymbol{x}_n)$

Similarly,

on $\boldsymbol{x}_{\overline{k}}$,

$$\tilde{F}_{\neg u_n}(x,y) = 0 \Longrightarrow \frac{w(\boldsymbol{x}_k)}{|\partial f_k / \partial x_n(\check{x})|} \le w(\boldsymbol{x}_n)$$

singular system verification

For
$$1 \leq k \leq (n-1)$$
,
on $\boldsymbol{y}_{\underline{k}}$,
 $\tilde{F}_{\neg u_n}(x, y) = 0$
 $\implies u_k(x, y) \approx \underline{y}_k + \frac{\partial f_k}{\partial x_n}(\check{x})y_n = 0$
 $\implies \frac{|\underline{y}_k|}{|\partial f_k / \partial x_n(\check{x})|} = |y_n|$
 $\implies \frac{w(\boldsymbol{y}_k)}{|\partial f_k / \partial x_n(\check{x})|} \leq w(\boldsymbol{y}_n)$

Similarly,

on $\boldsymbol{y}_{\overline{k}}$,

$$\tilde{F}_{\neg u_n}(x,y) = 0 \Longrightarrow \frac{\mathrm{w}(\boldsymbol{y}_k)}{|\partial f_k / \partial x_n(\check{x})|} \le \mathrm{w}(\boldsymbol{y}_n)$$

singular system verification

1. Thus, if \boldsymbol{x}_n is chosen so that

$$w(\boldsymbol{x}_n) \leq \frac{1}{2} \min_{1 \leq k \leq n-1} \left\{ \frac{w(\boldsymbol{x}_k)}{|\partial f_k / \partial x_n(\check{x})|} \right\},\$$

then it is unlikely that $u_k(x, y) = 0$ on either $\boldsymbol{x}_{\underline{k}}$ or $\boldsymbol{x}_{\overline{k}}$.

2. Similarly, if \boldsymbol{y}_n is chosen so that

$$\mathbf{w}(\boldsymbol{y}_n) \leq \frac{1}{2} \min_{1 \leq k \leq n-1} \left\{ \frac{\mathbf{w}(\boldsymbol{y}_k)}{|\partial f_k / \partial x_n(\check{x})|} \right\},\,$$

then it is unlikely that $v_k(x, y) = 0$ on either $\boldsymbol{y}_{\underline{k}}$ or $\boldsymbol{y}_{\overline{k}}$.

3. So, we can eliminate 4n - 4 of the 4n faces of the boundary of $(\boldsymbol{x}, \boldsymbol{y})$, since we have arranged to verify $\tilde{F}_{\neg u_n}(x, y) \neq 0$ on each of these faces. Thus, we only need to search the four faces $\boldsymbol{x}_{\underline{n}}, \boldsymbol{x}_{\overline{n}}, \boldsymbol{y}_{\underline{n}}$ and $\boldsymbol{y}_{\overline{n}}$, regardless of how large n is.

singular system verification

Some Hints

If

1. the approximations

$$f_k(x) \approx (x_k - \check{x}_k) + \frac{\partial f_k}{\partial x_n} (\check{x})(x_n - \check{x}_n)$$

for $1 \le k \le n - 1$.

$$f_n(x) \approx \frac{1}{2} \sum_{k,l=1}^n \frac{\partial^2 f_n}{\partial x_k \partial x_l} (\check{x}) (x_k - \check{x}_k) (x_l - \check{x}_l)$$

are exact; and

2.

$$\sum_{k,l=1}^{n} \frac{\partial^2 f_n}{\partial x_k \partial x_l} (\check{x}) \alpha_k \alpha_l \neq 0,$$

where $\alpha_k = \partial f_k / \partial x_n(\check{x})$ for $1 \le k \le n-1$, and $\alpha_n = -1$, then, $d(\tilde{F}, \boldsymbol{z}, 0) = 2$.

singular system verification

Some Hints

Also, under the above assumptions,

- $\tilde{F}_{\neg u_n}(x, y) = 0$ has no solutions on each of the 4n - 4 faces $\boldsymbol{x}_{\underline{k}}, \boldsymbol{x}_{\overline{k}}, \boldsymbol{y}_{\underline{k}}$ and $\boldsymbol{y}_{\overline{k}}, 1 \leq k \leq n - 1.$
- $\tilde{F}_{\neg u_n}(x, y) = 0$ has a unique solution on each of the 4 faces $\boldsymbol{x}_{\underline{n}}, \boldsymbol{x}_{\overline{n}}, \boldsymbol{y}_n$ and $\boldsymbol{y}_{\overline{n}}$.

We also know where the solution is, for example, on $\boldsymbol{x}_{\underline{k}}$ the solution is $(\check{x}_1, 0, \check{x}_2, 0, \dots, \check{x}_{n-1}, 0, \underline{x}_n, 0)$. This knowledge helps in the search phase which handles the faces $\boldsymbol{x}_{\underline{n}}, \boldsymbol{x}_{\overline{n}}, \boldsymbol{y}_{\underline{n}}$ and $\boldsymbol{y}_{\overline{n}}$ when the approximations are not exact.

singular system verification

Construction of the Box \boldsymbol{z}

- 1. For $1 \leq k \leq n-1$, \boldsymbol{x}_k is chosen to be centered at $\check{\boldsymbol{x}}_k$. We need to take into consideration the accuracy of the approximate solver which finds the approximate solution of $F(\boldsymbol{x}) = 0$.
- 2. For $1 \le k \le n 1$, \boldsymbol{y}_k is chosen to be centered at 0. The width of \boldsymbol{y}_k is chosen to be small, with some freedom.
- 3. \boldsymbol{x}_n is chosen so that

$$w(\boldsymbol{x}_n) \leq \frac{1}{2} \min_{1 \leq k \leq n-1} \left\{ \frac{w(\boldsymbol{x}_k)}{|\partial f_k / \partial x_n(\check{x})|} \right\}$$

4. \boldsymbol{y}_n is chosen so that

$$w(\boldsymbol{y}_n) \leq \frac{1}{2} \min_{1 \leq k \leq n-1} \left\{ \frac{w(\boldsymbol{y}_k)}{|\partial f_k / \partial x_n(\check{x})|} \right\}.$$

singular system verification

Elimination Phase

For k = 1 to n - 1

- 1. Use mean-value interval evaluations of $u_k(x, y)$ over $\boldsymbol{x}_{\underline{k}}$ and $\boldsymbol{x}_{\overline{k}}$ to show that $u_k(x, y) \neq 0$ on these faces of \boldsymbol{z} . This implies $\tilde{F}_{\neg u_n}(x, y) = 0$ has no solutions on $\boldsymbol{x}_{\underline{k}}$ and $\boldsymbol{x}_{\overline{k}}$
- 2. Use second-order interval evaluations of $v_k(x, y)$ over $\boldsymbol{y}_{\underline{k}}$ and $\boldsymbol{y}_{\overline{k}}$ to show that $v_k(x, y) \neq 0$ on these faces of \boldsymbol{z} . This implies $\tilde{F}_{\neg u_n}(x, y) = 0$ has no solutions on \boldsymbol{y}_k and $\boldsymbol{y}_{\overline{k}}$

singular system verification

Search Phase

1. On $\boldsymbol{x}_{\underline{n}}$ and $\boldsymbol{x}_{\overline{n}}$:

(a) Narrow \boldsymbol{x}_k : use mean-value extensions $\boldsymbol{u}_k(\boldsymbol{x}, \boldsymbol{y}) = 0$ to solve for \boldsymbol{x}_k with width $\mathcal{O}\left(\|(\boldsymbol{x} - \check{x}, \boldsymbol{y})\|^2\right), 1 \le k \le n - 1.$

singular system verification

Search Phase (continued)

(b) Search \boldsymbol{y}_n :

- i.A. A small subinterval \boldsymbol{y}_n^0 of \boldsymbol{y}_n is chosen centered at 0.
 - B. The mean-value extensions for $\boldsymbol{v}_k(\boldsymbol{x}, \boldsymbol{y}) = 0$ are used to solve for \boldsymbol{y}_k with width $\mathcal{O}\left(\max(\|(\boldsymbol{x} - \check{x}, \boldsymbol{y})\|^2, \|\boldsymbol{y}_n^0\|)\right),$ $1 \le k \le n-1.$
 - C. An interval Newton method can be set up for $\tilde{F}_{\neg u_n}$ to verify existence and uniqueness of a zero in \boldsymbol{y}_n^0 .
- ii. \boldsymbol{y}_n^0 is inflated as much as possible provided the existence and uniqueness of the zero can be verified.
- iii. Verify $\tilde{F}_{\neg u_n} = 0$ has no solutions in the rest of \boldsymbol{y}_n

singular system verification

May, 1999 SIAM–23 $\,$

Search Phase (continued)

- 2. On $\boldsymbol{y}_{\underline{n}}$ and $\boldsymbol{y}_{\overline{n}}$:
 - (a) Narrow \boldsymbol{y}_k : use mean-value extensions $\boldsymbol{v}_k(\boldsymbol{x}, \boldsymbol{y}) = 0$ to solve for \boldsymbol{y}_k with width $\mathcal{O}\left(\|(\boldsymbol{x} \check{x}, \boldsymbol{y})\|^2\right), 1 \le k \le n 1.$

singular system verification

Search Phase (continued)

(b) Search \boldsymbol{x}_n :

- i.A. A small subinterval \boldsymbol{x}_n^0 of \boldsymbol{x}_n is chosen centered at \check{x}_n .
 - B. The mean-value extensions for $\boldsymbol{u}_k(\boldsymbol{x}, \boldsymbol{y}) = 0$ are used to solve for \boldsymbol{x}_k with width $\mathcal{O}\left(\max(\|(\boldsymbol{x} - \check{x}, \boldsymbol{y})\|^2, \|\boldsymbol{x}_n^0\|)\right),$ $1 \le k \le n-1.$
 - C. An interval Newton method can be set up for $\tilde{F}_{\neg u_n}$ to verify existence and uniqueness of a zero in \boldsymbol{x}_n^0 .
- ii. \boldsymbol{x}_n^0 is inflated as much as possible provided the existence and uniqueness of the zero can be verified.
- iii. Verify $\tilde{F}_{\neg u_n} = 0$ has no solutions in the rest of \boldsymbol{y}_n

singular system verification

May, 1999 SIAM–25 $\,$

Search Phase (continued)

- 3. For each solution to $\tilde{F}_{\neg u_n} = 0$ found in Steps 1b and 2b, compute the sign of u_n . Eliminate the solutions with negative u_n .
- 4. For each solution to $\tilde{F}_{\neg u_n} = 0$ left in Steps 3, compute the sign of the determinant to get an orientation. Sum to get the degree.

singular system verification

Preliminary Experimental Results

- 1. Elimination phase: for all experiments that had been done, it was always successful to eliminate the 4n - 4 faces $\boldsymbol{x}_{\underline{k}}, \boldsymbol{x}_{\overline{k}}, \boldsymbol{y}_{\underline{k}}$ and $\boldsymbol{y}_{\overline{k}}, 1 \leq k \leq n - 1$.

singular system verification