
Existence Verification for
Singular Zeros of Nonlinear

Systems

by

R. Baker Kearfott, rbk@usl.edu
Department of Mathematics, University of

Southwestern Louisiana

and

Jianwei Dian, dian@usl.edu
Department of Mathematics, University of

Southwestern Louisiana

singular system verification May, 1999 SIAM–1

The General Question

Given F : x → Rn and x ∈ IRn, rig-
orously verify:

• there exists a unique x∗ ∈ x such
that F (x∗) = 0,

(1)

Computer arithmetic can be used to verify the
assertion in Problem (1), with the aid of
interval extensions and computational fixed
point theorems .

singular system verification May, 1999 SIAM–2

The General Question

Uses

• Producing rigorous bounds on approximate
solutions to linear and nonlinear systems
(The approximate solutions can be
computed with traditional techniques.)

– in analysis of stability of structures,
where one wants to prove that all
eigenvalues have negative real parts

– in robust computational geometry
(surface intersection problems, etc.)

• As a tool in branch and bound algorithms
in global optimization.

• As a tool in the verification that all zeros
of a nonlinear system have been found in a
region of Rn.

singular system verification May, 1999 SIAM–3

The Nonsingular Case

Traditional Interval Newton Methods

Assumptions (roughly stated):

1. The Jacobi matrix F ′(x∗) is nonsingular.

2. x∗ is near the center of x.

3. The component widths of x are small.

4. N(F ; x, x̌) is the image of x under an
appropriate, preconditioned interval
Newton method, with x̌ the center of x.

Then:

1. The preconditioned F ′(x) is approximately
the identity matrix.

2. Thus, N(F ; x, x̌) ⊂ x. This proves that
there is a unique solution of F (x) = 0 in x.

singular system verification May, 1999 SIAM–4

Singularities

When the Jacobi matrix F ′(x∗) is singular,
computations as above cannot possibly prove
existence and uniqueness.
For such systems, the best that a
preconditioner can do is reduce the Jacobi
matrix to approximately the form

























1 0 . . . 0
n - rank
︷ ︸︸ ︷∗ . . . ∗

0 1 0 . . . 0 ∗ . . . ∗
...
0 . . . 0 1 ∗ . . . ∗
0 . . . 0 0 0 . . . 0
...
0 . . . 0 0 0 . . . 0

























.

singular system verification May, 1999 SIAM–5

The Topological Degree

Uses : Verification of at Least One Solution

1. The topological degree (to be explained
shortly) may be computed over x.

2. If the topological degree is non-zero, there
is at least one solution of F (x) = 0 in x.

3. No conclusion can be reached if the
topological degree is zero.

singular system verification May, 1999 SIAM–6

The Topological Degree

Uses : Verification of the Exact Multiplicity

1. If F : Cn → Cn, then the topological
degree of F over x gives the exact number
of solutions, counting multiplicities.

2. If F : Rn → Rn, and F can be extended
analytically into Cn, then computations
can verify existence of an exact solution or
solutions (with multiplicity computed by
the algorithm) within a small region of
complex space containing x.

singular system verification May, 1999 SIAM–7

The Topological Degree

How is it Computed?

• d(F, x, 0) depends only on values of F on
∂x.

• Define

F¬k(x) = (f1(x), . . . , fk−1(x),
fk+1(x), . . . , fn(x)),

and select s ∈ {−1, 1}. Then d(F, x, 0) is
equal to the number of zeros of F¬k on ∂x
with positive orientation at which
sgn(fk) = s, minus the number of
zeros of F¬k on ∂x with negative
orientation at which sgn(fk) = s.

• The orientation is computed by computing
the sign of the determinant of the Jacobian
of F¬k and by taking account of which face.

singular system verification May, 1999 SIAM–8

The Topological Degree

Computational Cost

1. Directly finding all zeros of F¬k on ∂x can
be done in a straightforward branch and
bound algorithm. However, that is perhaps
too expensive for mere verification
purposes.

2. The structure of the preconditioned system
can be used to greatly simplify the
computations.

3. The widths of the box x constructed about
the approximate solution can be chosen so
that only several one-dimensional searches
need be done to compute d(F, z, 0), where
F : Cn → Cn.

singular system verification May, 1999 SIAM–9

Structure of the System

Notation and Assumptions

• For F : Rn → Rn, extend F to complex
space: z = x + iy, uk(x, y) = <(fk(z)) and
vk(x, y) = =(fk(z)).

• Define F̃ (x, y) =
(u1(x, y), v1(x, y), . . . , un(x, y), vn(x, y)) :
R2n → R2n.

• Assume F (x̌) ≈ 0.

• Assume F has been preconditioned (say,
through an incomplete LU factorization).
Also assume F ′(x∗) has null space of
dimension 1.

singular system verification May, 1999 SIAM–10

Structure of the System

Consequences

F ′(x̌) is approximately the form












1 0 . . . 0 ∗
0 1 0 . . . 0 ∗
...
0 . . . 0 1 ∗
0 . . . 0 0 0













.

So,

fk(x) = (xk − x̌k) +
∂fk

∂xn
(x̌)(xn − x̌n)

+O
(

‖x− x̌‖2
)

for 1 ≤ k ≤ n− 1.

fn(x) =
1
2

n
∑

k,l=1

∂2fn

∂xk∂xl
(x̌)(xk − x̌k)(xl − x̌l)

+O
(

‖x− x̌‖3
)

singular system verification May, 1999 SIAM–11

Structure of the System

Consequences (continued)

For 1 ≤ k ≤ (n− 1),

uk(x, y) = (xk − x̌k) +
∂fk

∂xn
(x̌)(xn − x̌n)

+O
(

‖(x− x̌, y)‖2
)

vk(x, y) = yk +
∂fk

∂xn
(x̌)yn

+O
(

‖(x− x̌, y)‖2
)

,

So, for 1 ≤ k ≤ (n− 1),

uk(x, y) ≈ (xk − x̌k) +
∂fk

∂xn
(x̌)(xn − x̌n)

vk(x, y) ≈ yk +
∂fk

∂xn
(x̌)yn

singular system verification May, 1999 SIAM–12

Structure of the System

Consequences (continued)

The following things are useful in the search
phase (to be explained shortly) of the
topological degree approach.

1. If xn is known precisely, formally solving
uk(x, y) = 0 for xk gives xk with
w(xk) = O

(

‖(x− x̌, y)‖2
)

,
1 ≤ k ≤ n− 1.

2. If yn is known precisely, formally solving
vk(x, y) = 0 for yk gives yk with
w(yk) = O

(

‖(x− x̌,y)‖2
)

,
1 ≤ k ≤ n− 1.

singular system verification May, 1999 SIAM–13

Computation of d(F̃ , z, 0)

1. Define
x = (x1, . . . , xn) = ([x1, x1], . . . , [xn, xn])
and

y = (x1, . . . , xn) = ([y
1
, y1], . . . , [yn

, yn]).
and

z = (x1, y1, . . . , xn, yn)

2. The center of xk is x̌k.
The center of yk is 0.

3. Define xk as (x, y) with [xk, xk] replaced
by xk, and define xk as (x, y) with [xk, xk]
replaced by xk. Similarly define yk and yk.

4. Consider
F̃¬un(x, y) = (u1(x, y), v1(x, y), . . . ,

un−1(x, y), vn−1(x, y), vn(x, y))
on the boundary of (x, y).

singular system verification May, 1999 SIAM–14

Computation of d(F̃ , z, 0)

For 1 ≤ k ≤ (n− 1),
on xk,
F̃¬un(x, y) = 0

=⇒ uk(x, y) ≈ (xk − x̌k) +
∂fk

∂xn
(x̌)(xn − x̌n) = 0

=⇒ |xk − x̌k|
|∂fk/∂xn(x̌)|

= |xn − x̌n|

=⇒ w(xk)
|∂fk/∂xn(x̌)|

≤ w(xn)

Similarly,
on xk,

F̃¬un(x, y) = 0 =⇒ w(xk)
|∂fk/∂xn(x̌)|

≤ w(xn)

singular system verification May, 1999 SIAM–15

Computation of d(F̃ , z, 0)

For 1 ≤ k ≤ (n− 1),
on yk,
F̃¬un(x, y) = 0

=⇒ uk(x, y) ≈ y
k

+
∂fk

∂xn
(x̌)yn = 0

=⇒
|y

k
|

|∂fk/∂xn(x̌)|
= |yn|

=⇒ w(yk)
|∂fk/∂xn(x̌)|

≤ w(yn)

Similarly,
on yk,

F̃¬un(x, y) = 0 =⇒ w(yk)
|∂fk/∂xn(x̌)|

≤ w(yn)

singular system verification May, 1999 SIAM–16

Computation of d(F̃ , z, 0)

1. Thus, if xn is chosen so that

w(xn) ≤
1
2

min
1≤k≤n−1

{

w(xk)
|∂fk/∂xn(x̌)|

}

,

then it is unlikely that uk(x, y) = 0 on
either xk or xk.

2. Similarly, if yn is chosen so that

w(yn) ≤
1
2

min
1≤k≤n−1

{

w(yk)
|∂fk/∂xn(x̌)|

}

,

then it is unlikely that vk(x, y) = 0 on
either yk or yk.

3. So, we can eliminate 4n− 4 of the 4n faces
of the boundary of (x, y), since we have
arranged to verify F̃¬un(x, y) 6= 0 on each
of these faces. Thus, we only need to
search the four faces xn, xn, yn and yn,
regardless of how large n is.

singular system verification May, 1999 SIAM–17

Some Hints

If

1. the approximations

fk(x) ≈ (xk − x̌k) +
∂fk

∂xn
(x̌)(xn − x̌n)

for 1 ≤ k ≤ n− 1.

fn(x) ≈ 1
2

n
∑

k,l=1

∂2fn

∂xk∂xl
(x̌)(xk− x̌k)(xl− x̌l)

are exact; and

2.
n

∑

k,l=1

∂2fn

∂xk∂xl
(x̌)αkαl 6= 0,

where αk = ∂fk/∂xn(x̌) for
1 ≤ k ≤ n− 1, and αn = −1,

then, d(F̃ , z, 0) = 2.
singular system verification May, 1999 SIAM–18

Some Hints

Also, under the above assumptions,

• F̃¬un(x, y) = 0 has no solutions on each of
the 4n− 4 faces xk, xk, yk and
yk, 1 ≤ k ≤ n− 1.

• F̃¬un(x, y) = 0 has a unique solution on
each of the 4 faces xn, xn, yn and yn.

We also know where the solution is, for
example, on xk the solution is
(x̌1, 0, x̌2, 0, . . . , x̌n−1, 0, xn, 0). This
knowledge helps in the search phase which
handles the faces xn, xn, yn and yn when the
approximations are not exact.

singular system verification May, 1999 SIAM–19

The Actual Algorithm

Construction of the Box z

1. For 1 ≤ k ≤ n− 1, xk is chosen to be
centered at x̌k. We need to take into
consideration the accuracy of the
approximate solver which finds the
approximate solution of F (x) = 0.

2. For 1 ≤ k ≤ n− 1, yk is chosen to be
centered at 0. The width of yk is chosen to
be small, with some freedom.

3. xn is chosen so that

w(xn) ≤
1
2

min
1≤k≤n−1

{

w(xk)
|∂fk/∂xn(x̌)|

}

.

4. yn is chosen so that

w(yn) ≤
1
2

min
1≤k≤n−1

{

w(yk)
|∂fk/∂xn(x̌)|

}

.

singular system verification May, 1999 SIAM–20

The Actual Algorithm

Elimination Phase

For k = 1 to n− 1

1. Use mean-value interval evaluations of
uk(x, y) over xk and xk to show that
uk(x, y) 6= 0 on these faces of z. This
implies F̃¬un(x, y) = 0 has no solutions on
xk and xk

2. Use second-order interval evaluations of
vk(x, y) over yk and yk to show that
vk(x, y) 6= 0 on these faces of z. This
implies F̃¬un(x, y) = 0 has no solutions on
yk and yk

singular system verification May, 1999 SIAM–21

The Actual Algorithm

Search Phase

1. On xn and xn:

(a) Narrow xk: use mean-value extensions
uk(x, y) = 0 to solve for xk with width
O

(

‖(x− x̌, y)‖2
)

, 1 ≤ k ≤ n− 1.

singular system verification May, 1999 SIAM–22

The Actual Algorithm

Search Phase (continued)

(b) Search yn:
i.A. A small subinterval y0

n of yn is
chosen centered at 0.

B. The mean-value extensions for
vk(x, y) = 0 are used to solve for
yk with width
O

(

max(‖(x− x̌, y)‖2,
∥

∥y0
n

∥

∥)
)

,
1 ≤ k ≤ n− 1.

C. An interval Newton method can be
set up for F̃¬un to verify existence
and uniqueness of a zero in y0

n.
ii. y0

n is inflated as much as possible
provided the existence and
uniqueness of the zero can be verified.

iii. Verify F̃¬un = 0 has no solutions in
the rest of yn

singular system verification May, 1999 SIAM–23

The Actual Algorithm

Search Phase (continued)

2. On yn and yn:

(a) Narrow yk: use mean-value extensions
vk(x, y) = 0 to solve for yk with width
O

(

‖(x− x̌,y)‖2
)

, 1 ≤ k ≤ n− 1.

singular system verification May, 1999 SIAM–24

The Actual Algorithm

Search Phase (continued)

(b) Search xn:
i.A. A small subinterval x0

n of xn is
chosen centered at x̌n.

B. The mean-value extensions for
uk(x, y) = 0 are used to solve for
xk with width
O

(

max(‖(x− x̌, y)‖2,
∥

∥x0
n

∥

∥)
)

,
1 ≤ k ≤ n− 1.

C. An interval Newton method can be
set up for F̃¬un to verify existence
and uniqueness of a zero in x0

n.
ii. x0

n is inflated as much as possible
provided the existence and
uniqueness of the zero can be verified.

iii. Verify F̃¬un = 0 has no solutions in
the rest of yn

singular system verification May, 1999 SIAM–25

The Actual Algorithm

Search Phase (continued)

3. For each solution to F̃¬un = 0 found in
Steps 1b and 2b, compute the sign of un.
Eliminate the solutions with negative un.

4. For each solution to F̃¬un = 0 left in
Steps 3, compute the sign of the
determinant to get an orientation. Sum to
get the degree.

singular system verification May, 1999 SIAM–26

Preliminary Experimental
Results

1. Elimination phase: for all experiments that
had been done, it was always successful to
eliminate the 4n− 4 faces xk, xk, yk and
yk, 1 ≤ k ≤ n− 1.

2. Search phase: for some of the experiments,
it successfully searched the four faces
xn, xn, yn and yn, and verified the degree
was 2. For others, different problems
occurred, indicating the need to adjust
some parameters.

singular system verification May, 1999 SIAM–27

