The GlobSol Project: Rigorous Global Solutions (Overview and Recent Developments)

by

George F. Corliss, georgec@mscs.mu.edu Department of Mathematics, Statistics, and Computer Science Marquette University

and

<u>R. Baker Kearfott</u>, **rbk@usl.edu** Department of Mathematics, University of Southwestern Louisiana

GlobSol update

This talk will

- Highlight the nature of deterministic global optimization
- Review capabilities of the GlobSol software package
- Review an example of how to use GlobSol
- Outline improvements to GlobSol in 1998–1999
- Give an example of GlobSol's use on imprecisely known data
- Outline GlobSol's new installation procedure

Deterministic Global Optimization

- involves some kind of systematic global search over the domain.
- The various algorithms rely on estimates of the range of the objective function over subdomains.
- Some algorithms (due to Mladineo, Schubert, Wood, etc.) rely on <u>Lipschitz constants</u> to obtain estimates of ranges.
- Bounds on ranges or approximate bounds on ranges are also obtained with outwardly rounded interval arithmetic or non-rigorous interval arithmetic, respectively.

Deterministic Global Optimization

Interval Methods

- Evaluation of a an objective function $\phi(X)$ at an interval vector \boldsymbol{X} gives bounds on the actual range of ϕ over \boldsymbol{X} .
 - If <u>directed rounding</u> is used, the bounds rigorously contain the mathematical range.
 - The bounds, in general, are overestimates.
- If the lower bound of $\phi(\mathbf{X})$ is greater than a previously computed objective value $\phi(X)$, then \mathbf{X} can be discarded.
- <u>Interval Newton Methods</u>, combined with directed rounding, can *prove* existence and uniqueness of critical points, as well as reduce the size of regions **X**.

GlobSol update

On the State of the Art

- Minimizing a function over a compact set in \mathbb{R}^n is an NP-complete problem.
- Thus, barring monumental discoveries, any *general* algorithm will fail for some high-dimensional problems.
- There are many practical problems that can be solved in low-dimensional spaces.
- Some low-dimensional problems are difficult.
- Advances in computer speed and algorithm construction have allowed many more practical problems to be solved, including high-dimensional ones.

GlobSol update

What is GlobSol?

- A Fortran 90 package
 - well-tested.
 - self-contained.
- Solves constrained and unconstrained global optimization problems
- Separate program solves square algebraic systems of equations.
- Utility programs for interval and point evaluation, etc.
- Subroutine / module libraries for interval arithmetic, automatic differentiation, etc.
- Publicly available free of charge http://interval.usl.edu/GLOBSOL/GlobSol.tar.Z

GlobSol

Special Features

- Objective function and constraints are coded as Fortran 90 programs
- Can use <u>constraint propagation</u> (substitution/iteration) on the intermediate quantities in objective function, equality, and inequality constraint evaluation.
- Can use an overestimation-reducing "peeling" process for bound-constraints.
- Uses an effective point method to find approximate feasible points.
- Has a special augmented system mode for least squares problems.

GlobSol update

GlobSol

Special Features, continued

- Uses epsilon-inflation and set-complementation, with carefully controlled tolerances,
 - to avoid singularity problems.
 - to facilitate verification.

GlobSol update

GlobSol Features

(continued)

- Has extensive error-checking (user input, internal errors, etc.)
- Has on-line web page documentation.
- The algorithm is configurable.
- Has various levels of printing, for various algorithm aspects.
- Source code and libraries for components are available.
 - Automatic differentiation access.
 - Interval arithmetic access.
 - User-modifiable, with adequate study.
- Gives performance statistics, both in report form and for input to spreadsheets.

GlobSol update

Use of GlobSol

An Example

The following Fortran 90 program defines the objective function

minimize $\phi(X) = -2 * x_1^2 - x_2^2$

subject to constraints

GlobSol update

Use of GlobSol

An Example, continued

```
PROGRAM SIMPLE_MIXED_CONSTRAINTS
USE CODELIST_CREATION
PARAMETER (NN = 2)
TYPE(CDLVAR), DIMENSION(NN) :: X
TYPE(CDLLHS), DIMENSION(1) :: PHI
TYPE(CDLINEQ), DIMENSION(2) :: G
TYPE(CDLEQ), DIMENSION(1) :: C
```

OUTPUT_FILE_NAME = 'MIXED.CDL'
CALL INITIALIZE_CODELIST(X)

PHI(1) = -2*X(1)**2 - X(2)**2 G(1) = X(1)**2 + X(2)**2 - 1 G(2) = X(1)**2 - X(2)C(1) = X(1)**2 - X(2)**2

CALL FINISH_CODELIST END PROGRAM SIMPLE_MIXED_CONSTRAINTS

GlobSol update

(continued)

- 1. Running the above program produces an internal representation, or <u>code list</u>.
- 2. The optimization code interprets the code list at run time to produce floating point and interval evaluations of the objective function, gradient, and Hessian matrix.
- 3. A separate data file defines the initial search box, the bound constraints, and the initial guess, if any.
- 4. Separate data files supply algorithm options, such as which interval Newton method to use and how to precondition the linear systems.

GlobSol update

The Data File

1D-5		!	General domain tolerance
0	1	!	Bounds on the first variable
0	1	!	Bounds on the second variable
FΓ		!	X(1) has no bound constraints
FΓ		!	X(2) has no bound constraints

Subsequent optional lines can give an initial guess point.

GlobSol update

Output File – abridged first part

Output from FIND_GLOBAL_MIN on 04/06/1999 at 08:03:52. Version for the system is: March 20, 1999

Codelist file name is: MIXEDG.CDL Box data file name is: MIXED.DT1

Initial box: 0.0000E+0

0.0000E+00, 0.1000E+01] [0.0000E+00, 0.1000E+01]

BOUND_CONSTRAINT: F F F F

CONFIGURATION VALUES:

EPS_DOMAIN: 0.1000E-04 MAXITR: 60000 DO_INTERVAL_NEWTON: T QUADRATIC: T FULL_SPACE: F VERY_GOOD_INITIAL_GUESS:F USE_SUBSIT:T OUTPUT UNIT:7 PRINT_LENGTH:1 Default point optimizer was used.

GlobSol update

Output File – abridged second part

THERE WERE NO BOXES IN COMPLETED_LIST. LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS: Box no.:1 Box coordinates: [0.7071E+00, 0.7071E+00] [0.7071E+00, 0.7071E+00] PHI: [-0.1500E+01, -0.1500E+01] Level: 3 Box contains the following approximate root: 0.7071E+00 0.7071E+00 OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT: [-0.1500E+01, -0.1500E+01] UO: [0.3852E+00, 0.3852E+00] U: [0.5777E+00, 0.5777E+00] [0.0000E+00, 0.1000E+01] V: 0.1926E+00, 0.1926E+00] Γ INEQ_CERT_FEASIBLE: FΤ NIN_POSS_BINDING:1 Number of bisections: 1 BEST_ESTIMATE: -0.1500E+01 Total number of boxes processed in loop: 4 Overall CPU time: 0.5000D-01

GlobSol update

Recent Improvements to GlobSol

- Simplified installation
- Provided makefiles for several compiler / operating system combinations
- Eliminated many bugs
- Incorporated numerical techniques for interval constants in objective and constraint definitions
- Enabled constraint propagation for equality and inequality constraints

Simple Example of "Thick" Constants

```
minimize (x_1 - [1, 2])^2 + (x_2 - [3, 4])^2
```

PROGRAM THICK_PARAMETER_EXAMPLE USE CODELIST_CREATION IMPLICIT NONE

INTEGER, PARAMETER:: NN=2
TYPE(CDLVAR), DIMENSION(NN):: X
TYPE(CDLLHS) :: PHI

OUTPUT_FILE_NAME='thick_parameter_example.CDL'
CALL INITIALIZE_CODELIST(X)

PHI = (X(1) - INTERVAL(1,2))**2 &
 + (X(2)-INTERVAL(3,4))**2

CALL FINISH_CODELIST END PROGRAM THICK_PARAMETER_EXAMPLE

GlobSol update

Example with Thick Constants

(continued)

The "solution" is the set of all possible minima with constants in [1, 2] and [3, 4]. Thus, a minimum minimum and maximum minimum are obtained. The solution is

 $x_1 \in [1, 2], \quad x_2 \in [3, 4], \text{ and } \phi = 0.$ With initial box ([-10,10], [-10,10]), GlobSol gives

Box no.: 1 Box coordinates: [0.1000D+01, 0.1500D+01] [0.3000D+01, 0.4000D+01] PHI: [0.0000D+00, 0.2000D+01] Box no.: 2 Box coordinates: [0.1500D+01, 0.2000D+01] [0.3000D+01, 0.4000D+01] PHI: [0.0000D+00, 0.2000D+01] BEST_ESTIMATE: 0.5000D+00 Total number of boxes processed in loop: 4 Overall CPU time: 0.0000D+00 GlobSol update May, 1999 SIAM-18

Thick Constants

The basic idea

• The algorithm is made practical by stopping bisection when

w(value at center) > β w(interval image)

for adjustable parameter $\beta \in [0, 1]$.

- Smaller β leads to less work, but may lead to additional overestimation.
- Detailed experimental results will be given elsewhere.

A Practical Application

- This is being applied to a non-trivial maintenance interval optimization problem.
- This is ongoing work with Claudio Rocco.

GlobSol update

GlobSol Installation and Use

Installation and use has been greatly simplified.

- 1. Create a root directory for GlobSol.
- 2. Obtain the GlobSol file from http://interval.usl.edu/GLOBSOL/GlobSol.tar.Z and extract it into the GlobSol root directory.
- 3. Select an appropriate makefile and system-dependent file set (e.g. Sun with Sun compiler, Sun with NAG compiler), and extract these.
- 4. Edit a line in the makefile to specify the GlobSol root directory.
- 5. Edit a line in the macro (e.g. **unix_fmake**) that creates internal representations from user-supplied objective function programs.
- 6. Run "make".
- 7. All executable, macro, and library files are now either in the GlobSol root directory or the subdirectory executables.

GlobSol update

GlobSol References

- For the source, installation instructions, user guide, etc.: http://www.mscs.mu.edu/~globsol/
- Rigorous Global Search: Continuous Problems, R. B. Kearfott, Kluwer Academic Publishers, 1996. Contains
 - Most of the basic ideas underlying GlobSol.
 - Structure of the research code that eventually became GlobSo.
- For these transparencies: http://interval.usl.edu/preprints/1999_SIAM.ps (Postscript)

<code>http://interval.usl.edu/preprints/1999_SIAM.dvi</code> $(T_{\ensuremath{E\!X}} \ensuremath{\,\mathrm{DVI}})$

GlobSol update