
2
A REVIEW OF TECHNIQUES IN

THE VERIFIED SOLUTION OF

CONSTRAINED GLOBAL

OPTIMIZATION PROBLEMS

R. Baker Kearfott
∗

Department of Mathematics

University of Southwestern Louisiana

U.S.L. Box 4-1010, Lafayette, LA 70504-1010, USA

email: rbk@usl.edu

*This work was supported in part by National Science Foundation grant CCR-9203730.

ABSTRACT

Elements and techniques of state-of-the-art automatically verified constrained global

optimization algorithms are reviewed, including a description of ways of rigorously

verifying feasibility for equality constraints and a careful consideration of the role

of active inequality constraints. Previously developed algorithms and general work

on the subject are also listed. Limitations of present knowledge are mentioned, and

advice is given on which techniques to use in various contexts. Applications are

discussed.

1 INTRODUCTION, BASIC IDEAS AND

LITERATURE

We consider the constrained global optimization problem

minimize φ(X)

subject to ci(X) = 0, i = 1, . . . ,m (2.1)

aij ≤ xij ≤ bij , j = 1, . . . , q,

where X = (x1, . . . , xn)
T . A general constrained optimization problem, includ-

ing inequality constraints g(X) ≤ 0 can be put into this form by introducing
slack variables s, replacing by s + g(X) = 0, and appending the bound con-
straint 0 ≤ s <∞; see §2.2.

23

24 Chapter 2

We wish to find all minimizers in problem 2.1, and to verify bounds on the
local minimum. Because of this, the methods used must go beyond (and build
upon) traditional methods utilizing descent, line searches, trust regions, etc.
in floating-point arithmetic, such as those in the books [7], [13] [46], or in
the software package of [4]: these “approximate minimization” methods find
only one approximate minimizer per run, may terminate near points other
than minimizers without indications that they have done so, may converge to
local minimizers that are not global minimizers, etc. The efficiency of such
approximate methods, however, makes them practical. They can be used as in
[22] and [24] or [3] to make verification algorithms efficient.

The conditions aij ≤ xij ≤ bij , j = 1, . . . , q represent actual bound constraints
intrinsic to the problem formulation. In rigorous branch and bound algorithms,
an overall search region X0 is generally defined through similar bounds:

X0 = {(x0,1, . . . , x0,n) | ai ≤ x0,i ≤ bi, 1 ≤ i ≤ n} ; (2.2)

only those bounds corresponding to the index set {ij}qj=1 should be treated as
actual bound constraints.

Deterministic location of the global minima and all global minimizers of the
non-convex constrained optimization problem 2.1 is in general very difficult
(and, indeed, NP-complete; cf. §2.2 and §2.3). However, interval branch and
bound methods have exhibited a degree of success in many instances. Various
authors, including Moore [43] and Skelboe [65], Hansen ([17], [18] and [19]),
Ichida [21], Ratschek and Rokne [52], Jansson and Knüppel ([23] and [24]),
Caprani, Godthaab and Madsen [3] have contributed to the knowledge of such
algorithms. See [52] for a coherent explanation of this type of algorithm, as
well as for the requisite introduction to interval arithmetic1.

The basic ideas behind versions of such algorithms for unconstrained opti-
mization (where m = 0) can be stated with minimal notation and without
reference to details of interval arithmetic. The principles include a check
on the range of φ and a computational existence / uniqueness test. We let
X = (x1, . . .xn)

T = ([x1, x1], . . . , [xn, xn])
T be the interval vector (“box”) rep-

resenting the search region xi ≤ xi ≤ xi, 1 ≤ i ≤ n. Branch and bound
algorithms maintain one or more of these lists: a list L of boxes X to be
processed, a list U of boxes the algorithm has reduced to small diameter, and
a list C of boxes that have been verified to contain critical points. The general
pattern is as follows.

1Other texts, such as [1], [15], [19], [43] and [48] also give good introductions to the subject,
and contain techniques relevant to global optimization.

Constrained Global Optimization 25

Algorithm 1 (Abstract Branch-and-Bound Pattern)

1. Initialize L by placing the initial search region X0 in it.

2. DO WHILE L 6= ∅.

(a) Remove the first2 box X from L;
(b) (Process X) Do one of the following:

reject X;

reduce the size of X;

determine that X contains a unique critical point, then find the
critical point to high accuracy.

subdivide X to make it more likely to succeed at rejecting, reduc-
ing, or verifying uniqueness.

(c) Insert one or more boxes derived from X onto L, U or C, depend-
ing on the size of the resulting box(es) from step 2b and whether the
(possible) computational existence test in that step has determined a
unique critical point.

End Algorithm 1

Many details, such as stopping criteria and tolerances, are absent from Algo-
rithm 1, which represents a general description. Such details differ in particular
actual algorithms.

A combination of several techniques is used in state-of-the-art interval global
optimization codes to do step 2b of Algorithm 1.

Algorithm 2 (Range Check and Critical Point Verification)

1. Input a box X and the current best rigorous upper bound φ on the global
minimum.

2. (Feasibility check; for constrained problems only)

(a) (Exit if infeasibility is proven) DO for i = 1 to m:

2The boxes in L are in general inserted in a particular order, depending on the actual
algorithm

26 Chapter 2

i. Compute an enclosure ci(X) for the range of ci over X.

ii. IF 0 6∈ ci(X) THEN discard X and EXIT.

(b) Prove computationally, if possible, that there exists at least one feasi-
ble point in X.

3. (Range check or “midpoint test”)

(a) Compute a lower bound φ(X) on the range of φ over X.

(b) IF φ(X) > φ THEN discard X and EXIT.

4. (Update the upper bound on the minimum.) IF the problem is uncon-
strained or feasibility was proven in step 2b, THEN

(a) Use interval arithmetic to compute an upper bound φ(X) of the ob-
jective function φ over X.

(b) φ← min{φ, φ(X)}.

5. (“monotonicity test”)

(a) Compute an enclosure ∇φ(X) of the range of ∇φ over X. (Note: If
X is “thin”, i.e. if some bound constraints are active over X, then a
reduced gradient can be used; see §2.3 and [32].)

(b) IF 0 6∈ ∇φ(X) THEN discard X and EXIT.

6. (“concavity test”) If the Hessian matrix3 ∇2φ cannot be positive definite
anywhere in X THEN discard X and EXIT.

7. (Quadratic convergence and computational existence / uniqueness) Use
an interval Newton method4 (with the Fritz–John conditions as in §3.5 in
the constrained case) to possibly do one or more of the following:

reduce the size of X;

discard X;

verify that a unique critical point exists in X.

8. (Bisection or geometric tessellation) If step 7 did not result in a sufficient
change in X, then bisect X along a coordinate direction (or otherwise
tessellate X), returning all resulting boxes for subsequent processing.

End Algorithm 2

3or reduced Hessian matrix, as in step 5
4possibly in a subspace, as in steps 5 and 6

Constrained Global Optimization 27

Since techniques for constrained problems are somewhat more involved, step 2,
checking for infeasibility and verifying feasibility, will be explained separately
in §2.1.

Step 3 is called the “midpoint test” because the upper bound φ is often ob-
tained by evaluating φ at the midpoint vector of X, properly taking account
of rounding errors for rigor. Of course, step 5 is called the “monotonicity test
” since φ is monotone over X in the i-th variable if the i-th component of ∇φ
does not vanish over X.

Improved techniques for carrying out step 6, checking non-convexity, are desir-
able. Presently, sufficient conditions, such as checking the sign of the diagonal
entries of an interval evaluation ∇2φ(X), can be used. One method of verify-
ing convexity appears as Theorem 14.1 in [15] and Lemma 2.7.2 in [54]. Also,
Neumaier [49] has shown that every element matrix of an interval matrix A is
positive-definite, provided some point matrix A ∈ A is positive definite and A
is regular according to Definition 3 of §3 below. This result can be sharpened
as follows.

Theorem 1 (Shi, [64, Appendix B]) If A ∈ A is symmetric, A has p negative
eigenvalues and A is regular, then every symmetric point matrix in A has p
negative eigenvalues.

Theorem 1 will allow a sharper concavity test.

Interval global optimization algorithms, viewed abstractly, are similar to branch
and bound algorithms that do not explicitly use interval arithmetic to bound
ranges, such as that in [50, Ch. 6]. Interval global optimization algorithms
differ among themselves in the ordering of the lists L, U and C in step 2c of
Algorithm 1, and in how (and which) steps of Algorithm 2 are carried out.

1.1 Early and Simplified Algorithms

Early algorithms worked only with the list L, without lists U and C. Also,
although the processes in steps 3 through 7 of Algorithm 2 make actual imple-
mentations practical and efficient, they are not an essential part of the branch
and bound structure. In the early but well-known Moore / Skelboe algorithm,
only the list L appears, and the boxes X ∈ L are ordered in order of increasing
φ(X). In step 8 of Algorithm 2, X is bisected along the largest coordinate

28 Chapter 2

direction, and both progeny are placed in order in L. Steps 3 through 7 of
Algorithm 2 are absent. When the algorithm is terminated, the first box in the
list is taken to approximate the global minimizer.

An algorithm attributed to Ichida [21] improves upon the Moore / Skelboe
algorithm by including the midpoint test (step 3 of Algorithm 2) to avoid plac-
ing boxes generated during bisection onto L if they cannot contain optimizers.
Additionally, the algorithm described in [21] contains a method for grouping
together clusters of boxes corresponding to particular minimizers.

Hansen’s algorithms, described in [17], [18] and [19] generally use second-order
information (step 7 of Algorithm 2) and other sophisticated techniques. How-
ever an algorithm sometimes called “Hansen’s algorithm” is a simplified version.
In “Hansen’s algorithm,” L is ordered not in terms of the function, but in or-
der of decreasing diameter (i.e. width of largest coordinate interval) of the X.
Furthermore, in the midpoint test, the entire list L is culled (and not just the
boxes that have just been produced by bisection) whenever a new φ is obtained.
(We note that in Hansen’s actual codes, as in the experiments in [66], the list
is ordered such that the first box is the one with smallest lower bound on φ.
Hansen and Walster claim this is much better than ordering in terms of de-
creasing diameter.) Various modifications of the list ordering, such as that in
[54, §2.2.5.1], have appeared more recently.

None of these simplified methods employs interval-Newton acceleration.

Convergence properties of the Moore / Skelboe, Ichida and Hansen algorithms,
as well as some numerical experiments with Hansen’s algorithm are analyzed
in [44]. A wide-ranging survey that concentrates on these methods (but also
mentions some newer techniques) is the book [52].

1.2 Recent Practical Algorithms

More recent algorithms and practical implementations usually involve interval
Newton methods for computational existence and uniqueness of critical points
and for quadratic convergence properties. However, some successful newer al-
gorithms are derivative-free, and concentrate on use of approximate optimizers,
order in which the list is searched, properties of the inclusion function, or par-
allelization.

Constrained Global Optimization 29

A thorough exposition of background, starting with the elements of interval
arithmetic, and of numerous techniques for interval unconstrained optimiza-
tion along with a substantial number of careful numerical experiments appears
in Ratz [54]. Some of these ideas are implemented in the Pascal-XSC code
described in [15].

Ratz, continuing development of his algorithms, has concentrated on better
choice of coordinate in the bisection process of step 8 of Algorithm 2, and on
splitting strategies , cf. [55]. Regarding bisection strategies, Ratz claims better
success when choosing the coordinate to bisect according to the scaling

∇φ(X)(X−X),

rather than merely bisecting along the longest coordinate direction of X; cf.
[54], pp. 41–42 and [6]. Convergence ofgeneralized bisection based global op-
timization algorithms with this coordinate selection strategy is also proven in
[6]. This scheme is related to the maximal smear scheme introduced in [30].
Box splitting is a process, first discussed by Hansen in relation to the interval
Gauss–Seidel method, by which extended interval arithmetic in the sense of
Kahan is used to obtain two disjoint boxes. If applied wherever possible, too
many boxes are produced, thus slowing the overall branch and bound algorithm.
Coordinate choice in bisection, box-splitting strategies, and the ordering in the
list L can be crucial in an overall global optimization algorithm.

Hansen’s book [19] provides an informal description of many sophisticated tech-
niques and heuristics for use in global optimization algorithms. Many examples
are given, although thorough numerical experiments are absent. Good numer-
ical experiments with an earlier optimization algorithm incorporating many of
the same ideas appear in [66].

In [23] and [24], Jansson and Knüppel have presented a method without deriv-
atives (no gradient test or interval Newton method), but with a sophisticated
use of bisection and local optimization. In particular, a local optimization (to
obtain an approximate optimizer) is performed at certain stages of the process,
and the results are used to update φ. Though heuristic, the algorithm performs
well on many reasonably complicated functions, including non-differentiable
ones, such as maximizing the smallest singular value of a matrix. The report
[24] also contains a collection of test examples, along with numerical results
and three-dimensional graphs of those (numerous) test problems that are two-
variable functions. Jansson [25, §2.5] proposes a variant in which derivatives

30 Chapter 2

are used only in an interval Newton method to verify and sharpen bounds for
approximate optima. This variant is carefully tested on forty test problems in
[26].

In [3] Caprani, Godthaab, and Madsen also propose use of an approximate
minimizer obtained through a local method with floating point arithmetic. In
their algorithm, an approximate local minimizer is found, then a box X is
constructed about this minimizer. An interval Newton method is then applied
to X to determine existence or uniqueness of a critical point. If existence can be
proven, X is expanded as much as possible, subject to success of the interval
Newton method in verifying uniqueness, then X is removed from the region
by cutting the complement of X into remaining boxes to be processed. The
minimizer-inflation technique is related to “ǫ-inflation” as in [57, p. 58] or [41]
used to provide error bounds on approximate solutions to linear and nonlinear
systems. It is illustrated in [3] that the Caprani/Godthaab/Madsen method
parallelizes well.

In [45], basic algorithms for non-differentiable and differentiable objective func-
tions are reviewed, then a sophisticated coarse-grained algorithm for optimiza-
tion on a distributed-memory multicomputer, implemented on a distributed
system of workstations, is explained. In this algorithm, each processor shares
a portion of the list L. The load is dynamically balanced as the computations
proceed. The algorithm was programmed in C++, based on a system for in-
terval arithmetic developed by Leclerc; an encapsulated explanation appears
in [40]. The numerical experiments feature a very difficult parameter-fitting
problem.

In [10] and [11] Eriksson et al. also study parallelization of an unconstrained
global optimization algorithm, implemented on an Intel hypercube. Various
load balancing strategies are compared on a set of six test problems, one of
which was designed specifically to test different parallelization schemes.

In [32], experimental results are reported for a FORTRAN-77 code containing
techniques for the monotonicity test and iteration / verification, as well as use
of a local optimization process for computing φ (“midpoint test ”). The spe-
cial preconditioners preconditioning techniques of [29] and [31] for the interval
Gauss–Seidel method (a type of interval Newton method) in the optimization
context, as well as a technique for handling bound constraints through the
tessellation are studied there5. A more flexible Fortran-90 code utilizing the

5The latter two techniques are more fully explored in [54].

Constrained Global Optimization 31

Method / Midpoint Monotonicity Concavity Interval Paralleli- Use of Local Ref.
Authors Test Test Test Newton zation Minimizer

Moore / [43] and
Skelboe [65]

Ichida yes [21]

“Hansen’s yes, and [52]
algorithm” to cull list

Hansen’s yes yes yes yes [19]
actual

Kearfott ’92 yes yes yes yes [32]

Ratz yes yes yes yes yes [54] and
[15]

Jansson / yes yes yes [24]
Knüppel

Caprani / [3]
Godthaab / yes yes yes yes

Madsen

Hansen / subject [45]
Moore / yes yes yes yes of study
Leclerc

Eriksson yes yes yes subject [11]
of study

Wolfe yes yes yes [67]

Table 1 Summary attributes of various global optimization algorithms

system of [10] and including techniques for constrained problems is presently
under development.

Theoretical and empirical consequences of the order of the interval extension
used to obtain φ(X) are studied in [8] and [37]. However, exhaustive studies
on a practical algorithm do not appear there.

Some (but not all) of the attributes of the algorithms in this section and in
§1.1 are summarized in Table 1. Here, the label “Kearfott ’92” refers to the
code of [32]. “Hansen’s actual” is used to denote the most recent algorithms
of Hansen, described in [19] and forming the basis of the work in [45] and [40].
Blank spaces in the table indicate that the feature is not present.

1.3 Notation

In the remainder of this paper, we will use the following notation. We will
use boldface to denote intervals, lower case to denote scalar quantities, and
upper case to denote vectors and matrices. We will use underscores to denote
lower bounds of intervals and overscores to denote upper bounds of intervals.
For components of vectors, we will use corresponding lower case letters. For
example, we may have:

X = [x1,x2, . . . ,xn]
T ,

32 Chapter 2

where xi = [xi, xi]. The notation X̌ will denote a representative point, usually
in the interval vector X. The magnitude of an interval is defined as |x| =
max {|x|, |x|}.

The width of an interval x is denoted by w(x) = x − x. The width of an
interval vector X, denoted w(X), is defined component-wise. We use w(X) in
the context of ‖w(X)‖ = ‖w(X)‖∞.

The symbol φ(X) denotes an interval extension of φ over X.

Whenever ‖ · ‖ is used, it will mean ‖ · ‖∞.

We will use calligraphic letters such as L, U and C, as above, to denote stacks
and lists of boxes.

Brackets [·] will be used to delimit both intervals and matrices and vectors.
For example, we have the interval [1, 2] and the interval vector [[1, 2], [3, 4]]′.
Meanings should be clear from the context.

The notation int(X) will be used to denote the topological interior of an interval
vector X.

Interval arithmetic will not be reviewed here, as numerous introductions, such
as those in [1], [43], [48], [52] or even [28], exist.

We will also assume familiarity with general concepts of numerical methods for
constrained and unconstrained optimization, such as are found in [13].

2 ON CONSTRAINED OPTIMIZATION
PROBLEMS

The book [52] contains an explanation of fundamental interval means of han-
dling inequality constraints, while [19] contains an in-depth treatment of many
interval techniques for both inequality and equality constraints. However, ex-
tensive numerical results using these techniques have not been published. (See
Table 2; blank spaces mean the feature is absent.)

Handling of simple bound constraints through the tessellation process has been
explored in [32] and [54]. In general, the computational effort for this technique

Constrained Global Optimization 33

Method / Bound Inequality Equality Second Use of approx. Numerical
Authors Constraints Constraints Constraints Order minimizer Experiments

“Hansen’s” unconstrained

Hansen’s (as equality yes yes yes unconstrained
book constraints) only

Opt. ’92 yes yes yes

Ratz yes yes

Jansson / yes variant yes unconstrained
Knüppel in [25, §2.5] only

Caprani / yes unconstrained
Godthaab /

Madsen

Hansen / unconstrained
Moore / only
Leclerc

Eriksson unconstrained

Wolfe yes yes yes yes

Table 2 Summary of handling of constraints in various global optimization
algorithms.

increases exponentially with the number of bound constraints, but this may not
be so for many specific problems. However, bound-constrained problems are
intrinsically hard [51]. Although bound constraints can be handled as inequality
constraints as in [19], it is unclear without published experimentation how such
algorithms behave: it is possible that large numbers of small boxes, clustered
on the boundaries of the constraints, are produced through the n-dimensional
tessellation.

Alternately, inequality constraints can be handled as bound constraints by in-
troduction of slack variables.

We elaborate on these concepts in the remainder of this section.

2.1 Checking Feasibility / Infeasibility

The following computations may be done with the constraints:

using the constraints to delete portions of a region X that are infeasible;

proving feasibility or infeasibility relative to inequality constraints;

proving feasibility or infeasibility relative to equality constraints.

These possibilities are discussed in the remainder of this section.

34 Chapter 2

In [19, §11.6], Hansen proposes heuristics for using inequality constraints to
delete portions of a box X that cannot be feasible. Alternately, if the inequality
constraints are converted into equality constraints first, the optimal precondi-
tioner techniques of [29] and [31] in conjunction with the interval Gauss–Seidel
method or interval Gaussian elimination may be used directly on the underde-
terminedm by n system of constraints. The latter provides a certain theoretical
optimality not present in the heuristics of [19], with a smaller system than with
the entire Fritz–John system; this appears in [36]. However, experiments in
[36] indicate that the scheme reported in this section is usually better.

An algorithm for constructing large boxes within which inequality constraints
of the form g(x) < 0 are rigorously verified appears in [39], along with numerical
experimentation. We have not included this algorithm in our tables, however,
since it is not a general global search algorithm, but a method of dealing with
constraints.

As indicated in step 2a of Algorithm 2, an elementary check for infeasibility
of an entire box X with respect to the equality constraints ci is to verify that
0 6∈ ci(X) for some i. There is a corresponding check if an inequality constraint
d(x) ≤ 0 is used: the region is infeasible if simply d(X) > 0. Similarly, if only
inequality constraints of the form di ≤ 0 are present, feasibility is proven if
di(X) ≤ 0 for each i. In this case, Hansen calls the region certainly feasible.

On the other hand, proving feasibility for problems with equality constraints
ci(x) = 0 (like problem 2.1), although necessary to get useful rigorous upper
bounds φ on the global minimum, is more difficult. In general, unless the num-
ber of constraints m is less than the number of variables n, the problem is
infeasible unless the constraints are linearly dependent. Walster and Hansen
have mentioned work (in private communication) related to handling depen-
dent constraints, but we are unaware of published material in this area. See
[36] for some thoughts on dependent constraints; we will assume independent
constraints and m ≤ n here.

In [67], Wolfe proposes an algorithm, based on a penalty function, for handling
equality constraints. However, that algorithm considers feasibility to be rigor-
ously proven only provided ci(x) ∈ [ǫ, ǫ] for each i and some fixed ǫ. In contrast,
in a method proposed in Hansen [19, §12.3 ff] and in [36], ci(x) = 0 is rigorously
proven. Both these methods are based on applying an interval Newton method
to the system ci(x) = 0, i = 1, . . . ,m with n −m of the variables held fixed.
However, the methods differ in application of the interval Newton method and
in the choice variables to be held fixed. For details and numerical comparisons,
see [36].

Constrained Global Optimization 35

c(x) = 0
❍❍❥

First coordinate is held
fixed at center

❅❅❘

Second coordinate varies❙❙♦

This point is verified

❄

✻

r

r

Center of box

❳❳③

PP✐

Figure 1 Verifying a feasible point with Algorithm 3

The following general algorithm encompasses Hansen’s and our proposed fea-
sibility verification methods of [19] and [36]; the techniques differ in the details
of step 3.

Algorithm 3 (Prove Feasibility for Equality-Constrained Problems)

1. Input an approximation X̌ to a feasible point, obtained through a conven-
tional algorithm such as that of [4].

2. Let C(X) = (c1(X), . . . cn(X))
T

and ∇C(X) represent the equality con-
straints and Jacobi matrix of the equality constraints, respectively (C :
R

n → R
m).

3. Choose coordinates {pk}mk=1 to be varied in the interval Newton method in
such a way that the resulting system is likely to be nonsingular.

4. Evaluate C(X̌) and ∇C(X̂), where X̂ has coordinates x̂i = x̌i if i 6= pk for
any k and x̂i = [x̌i−ǫ, x̌i+ǫ] for i = pk for some ǫ. That is, construct a box
in an m-dimensional subspace that is, in a sense, most nearly perpendicular
to the null space of ∇C(X̌).

5. Let Y be an approximate inverse of the m×m matrix consisting of columns
p1 through pm of the midpoint matrix of ∇C(X̂).

36 Chapter 2

6. Apply an interval Newton method to Y∇C(X̂)(X − X̌) = −C(X̌), obtain-

ing an image X̂new.

7. If the result X̂new ⊆ int(X̂), then the point X̌ is feasible. Find φ(X̌), and
take the upper bound as a rigorous upper bound for a minimum.

End Algorithm 3

Here, the interval Newton method of step 6 may be taken as an operator
N(X̂, F) operating on a function F : R

p → R
p defined on a box X̂, such

that

1. the image N(X, F) is a box in R
p;

2. if N(X, F) is contained in the interior of X, then there is a unique solution
to F (X) = 0 within X;

3. N(X, F) is straightforward to compute with interval arithmetic in an ap-
propriate software environment.

See §3 for advice on interval Newton methods and for pointers to the abundant
literature.

Full experiments on this algorithm, as well as comparisons, are reported in
[36]. The general conclusions are that Algorithm 3 is effective, and that step 3
is effective, provided a good approximation to a feasible point is centered in a box
whose center is at X̌. For a detailed explanation and additional illustrations,
see [36].

2.2 On Equality, Inequality and Bound
Constraints

The book [52] poses the optimization problem analogous to problem 2.1 with
both equality constraints ci(x) = 0 and inequality constraints di(x) ≤ 0, while
[19] contains separate chapters on inequality constrained problems and equality
constrained problems. At first glance, inequality constrained problems seem
easier than equality-constrained ones. This is because feasibility can sometimes
be proven without use of an interval Newton method: We merely bound the

Constrained Global Optimization 37

range of each dj using interval arithmetic, then check that the upper bounds so
obtained are all negative, i.e. by checking dj(X) ≤ 0 for each j. Also, besides
the sophisticated technique in [19, §11.6], similar verification that dj(X) > 0
for each j proves infeasibility over all of X, allowing X to be eliminated from
the global search region. Such techniques should probably be used in practical
algorithms as additional tools to verify feasibility and to eliminate subregions.
However, in such analyses, it is ignored that the inequality constraints can be
active, that is, that they are in effect equality constraints.

Various theoretical results have been published in recent years showing
that global optimization problems containing inequality constraints are NP-
complete in the number of constraints. For example, it is shown in [51]
that quadratic programming problems with one negative eigenvalue are NP-
complete.

The possibility that computational effort can increase exponentially in the num-
ber of constraints becomes apparent if we examine the algorithm for bound-
constrained problems in [32], reviewed in §2.3 below. However, as explained in
§2.3, it is possible for heuristics to reduce the running time for specific problems
below that predicted by the exponential worst-case bounds, without compro-
mising rigor.

2.3 Handling Bound Constraints

In [32] and here, the bounds aij ≤ xij ≤ bij in problem 2.1 are viewed as bound
constraints6. The bound constraints are then handled by separating the region
into all possible subregions of lower dimensions, as is illustrated in Figure 2
for n = 2 These subregions are placed on the list L and processed as usual,
except that reduced gradients and reduced Hessian matrices7 are used in the
interval Newton method on lower-dimensional regions. If all boxes are stored
in L, it is not difficult to see that the total number of boxes of all dimensions
so obtained is 3p, where p is the number of bound constraints. However, if a
good upper bound φ on the global minimum (as can sometimes be obtained
with conventional algorithms such as that of [4]) is available, then many of the
boxes can be rejected during the “peeling” process.

6in contrast to, say, [66], where these bounds are viewed as merely defining a search region
in an unconstrained problem

7i.e. with rows and columns corresponding to variables held fixed deleted

38 Chapter 2

r r

r r

9

8

6

7

3

2 5

41

There is 1 box in R
2, 4 boxes in R

1,

and 4 boxes in R
0.

Figure 2 “Peeling” a box
to produce lower-dimensional
boundary elements

The structure of the algorithm for producing the list of lower-dimensional boxes
can be described simply in recursive form. We have:

Algorithm 4 (“Peeling” the Boundary)

1. Input the present coordinate index i, the box X = (x1, . . . ,xn), the list I of
those coordinate indices for X that have already been considered, and the
list L of boxes that have been already been generated for further processing.

2. IF i 6∈ I THEN

(a) (Process the lower boundary box.)

i. Set all coordinates of X̃ but the i-th to corresponding coordinates
of X. Set the i-th coordinate of X̃ to xi.

ii. Set the index list Inew to I with i appended.

iii. IF i = n

THEN store X̃ in L.
ELSE execute this algorithm with i+1, X̃, and Inew replacing
i, X, and I, respectively.

END IF

(b) (Process the upper boundary box.)

i. Set all coordinates of X̃ but the i-th to corresponding coordinates
of X. Set the i-th coordinate of X̃ to xi.

ii. Set the index list Inew to I with i appended.

Constrained Global Optimization 39

iii. IF i = n

THEN store X̃ in L.
ELSE execute this algorithm with i+1, X̃, and Inew replacing
i, X, and I, respectively.

END IF

(c) (Process the interior box.)

i. Set X̃ to X.

ii. Set the index list Inew to I with i appended.

iii. IF i = n

THEN store X̃ in L.
ELSE execute this algorithm with i+1, X̃, and Inew replacing
i, X, and I, respectively.

END IF

End Algorithm 4

The numbering of the nine boxes of dimensions 2, 1, and 0 in Figure 2 represents
the order they would appear in L if each box generated with i − n in steps
2(a)iii, 2(b)iii, and 2(c)iii of Algorithm 4 were stored. The processing order in
Algorithm 4 can be viewed as traversing a ternary tree, as in Figure 3. The
levels of this tree correspond to the coordinates i, with the root at i = 1 at the
top and the leaves at i = n at the bottom. As drawn in Figure 3, the order the
leaves eventually appear in L is from left to right.

Of course, actual implementations of Algorithm 4 have additional steps to

eliminate the boxes X and X̃ before further processing or storage in L by
checking φ(X) or φ(X̃) and the reduced gradient of φ on X or X̃;

skip coordinates i for which the bounds ai ≤ xi ≤ bi represent the extent
of the search region, and not actual bound constraints for the problem.

These steps have been left out of the presentation of Algorithm 4 for clarity in
the geometric process. However, they could be indispensable in reducing the
number of boxes in L to a practical number. Observe that such steps can prune
the tree in Figure 3 at a high level.

40 Chapter 2

s s s s s s s s s✔
✔
✔
✔
✔
✔❚

❚
❚
❚
❚
❚ ✔

✔
✔
✔
✔
✔❚

❚
❚
❚
❚
❚ ✔

✔
✔
✔
✔
✔❚

❚
❚
❚
❚
❚

✱
✱
✱
✱

✱
✱
✱

✱
✱
✱❧

❧
❧

❧
❧
❧
❧

❧
❧
❧s s s

s

(a1, a2)

(a1, b2)

(a1, [a2, b2])

(b1, a2)

(b1, b2)

(b1, [a2, b2])

([a1, b1], a2)

([a1, b1]), b2)

([a1, b1], [a2, b2])

(a1, [a2, b2]) (b1, [a2, b2]) ([a1, b1], [a2, b2])

([a1, b1], [a2, b2])

1 2 3 4 5 6 7 8 9

✻ ✻ ✻ ✻

Figure 3 “Peeling” the box into lower-dimensional boundary elements

3 ON USE OF INTERVAL NEWTON
METHODS

An interval Newton method is used in step 6 of Algorithm 2, and also must
be used to verify feasibility in step 6 of Algorithm 3. Thus, interval Newton
methods are used in the analysis of nonlinear algebraic systems arising in global
optimization

to reduce the size of regions X, with quadratic convergence of the widths
to zero;

to computationally (but rigorously) prove existence of solutions within X;

to prove that there is a unique solution within X;

to prove that there can be no solutions in X.

The basics of interval Newton methods are described in [1, Ch. 19], [43, Ch. 5
and Ch. 6], [52, §2.9], [19, Ch. 4 and Ch. 8], and numerous papers, with exten-
sive theoretical development reviewed in [48, Ch. 4 and Ch. 5]. Here we will

Constrained Global Optimization 41

concentrate on incorporating interval Newton methods into global optimization
algorithms.

As mentioned in §2.1, an interval Newton method generally is an operator
N(X, F) associated with a function F : Rp → R

p defined on a box X. Although
actual derivations differ, we can intuitively think of interval Newton methods
in terms of bounding the solution set to an interval linear system

A(X − X̌) = −F (X̌). (2.3)

The point X̌ is the midpoint of the box X, an approximation to a solution to
F (X) = 0, or some point that is otherwise appropriately chosen (usually, but
not always, such that X̌ ∈ X). The interval matrix A can be chosen to be a
Lipschitz matrix or a slope matrix for F ; cf. [48] and definitions 1 and 2 in §3.3
below. In particular, an interval evaluation of the Jacobi matrix of F will yield
an A that is a Lipschitz matrix. This is appropriate for many purposes.

The interval Newton method is not applied directly to equation (2.3), but to
the preconditioned equation

YA(X − X̌) = −Y F (X̌), (2.4)

where Y is a p by p floating point matrix making the solution set to equa-
tion (2.4) easier to bound than that of equation 2.3. However, the solution set
to equation (2.3) is in general a subset of the solution set to equation (2.4); cf.
[48, §4.1].

Various ways of bounding the solution set to equation (2.3) or equation (2.4)
appear in the literature. The interval hull, the smallest box or interval vector
containing the solution set, can in principle be computed precisely. However, it
may be impractical to compute the hull in practice, because the computation
is NP complete in the order p of the nonlinear system; cf. [56].

There are three classes of methods in common use to compute interval bounds
on the solution set to equation (2.3) or equation (2.4). These are the Krawczyk
method, the interval Gauss–Seidel method, and interval Gaussian elimination.

42 Chapter 2

Let X̃ represent the bounds obtained on the solution set to equation (2.4).
Then, omitting some technical conditions8 on the interval Newton methods,
we have the following.

1. Let A be a slope matrix for X based at X̌ or a Lipschitz matrix over X.
If X̃ ⊂ int(X) then there exists a solution of F = 0 in X.

2. Let A be a slope matrix for X based at X̌ or a Lipschitz matrix over X.
If X̃ ∩X = ∅ then there are no solutions to F (X) = 0 in X.

3. Let A be a Lipschitz matrix over X. If X̃ ⊂ int(X) then there exists a
unique solution of F = 0 in X.

4. If A is a slope matrix for X based at X̌ or a Lipschitz matrix over X, then
any root of F in X is also in X̃. Furthermore, under certain conditions,
replacing X by X̃ leads to quadratic convergence of the widths of the
components of X to zero. This allows subregions to be rigorously searched
without excessive tessellation.

In addition, a compound algorithm can be used to show uniqueness when A is
merely a slope matrix, and not a Lipschitz matrix. See [58] and the implemen-
tation description and experiments in [35].

Thus, performance of an interval Newton method can have differing goals (ex-
istence, uniqueness, nonexistence, or reduction in the size of X). Also, interval
Newton methods can be applied to different types of systems (general nonlinear
system, Lagrange multiplier or Fritz–John system, etc.) Based on these and
other considerations, different interval Newton methods are constructed. In
summary, the items that can be varied are

choice of method (direct hull computation, interval Gauss–Seidel, Kraw-
czyk method, or interval Gaussian elimination);

choice of preconditioner (if any);

choice of the matrix A (slope matrix or Lipschitz matrix, and how it is
computed);

choice of the base point X̌.

We consider these choices in the context of global optimization algorithms in
the remainder of this section.

8cf. [48] and more recent papers

Constrained Global Optimization 43

3.1 Choice of Method

Algorithms for computation of the smallest interval vector containing the solu-
tion set to equation (2.3) are reviewed in [48, Ch. 6], while Rohn (who developed
much of the theory of hull computation) reviews NP-hardness results in [56].
To our knowledge, computation of the exact interval hull is not used in any
implementations of global optimization algorithms.

The Krawczyk method [38],

K(X, X̌) = X̌ − Y F (X̌) + [I − YA] (X− X̌). (2.5)

appears most frequently in the literature, especially in early work. A good
analysis of the verification and convergence properties of the Krawczyk method
appears in [42], and it appears as the interval Newton method in [43, Ch. 5]. It
is known that the Krawczyk method is not as sharp as the interval Gauss–Seidel
method GS(X, X̌), i.e. that GS(X, X̌) ⊆ K(X, X̌), for a given preconditioner
Y . However, convergence analysis is easier with the Krawczyk method. Fur-
thermore, Rump, as reviewed in [58], has developed a method of both inner
and outer estimations to the solution set of equation (2.3) for the Krawczyk
method, and thus rigorous computational bounds on the overestimation of the
hull by K(X, X̌). Such estimates, and hence the Krawczyk method, are useful
when the widths of the components of X are small.

The interval Gauss–Seidel method shares properties with the classical Gauss–
Seidel method. Its iteration scheme is best described with an algorithm.

Algorithm 5 (Preconditioned interval Gauss–Seidel method)

DO for i = 1 to p.

1. (Update a coordinate) Compute the i-th row Yi of the preconditioner.

2. (Do the step) Let Aj denote the j-th row of A. Compute

x̃i = x̌i −
[

YiF (X̌) +

i−1
∑

j=1

YiAj(x̃j − x̌j)

+

p
∑

j=i+1

YiAj(xj − x̌j)

]/

(YiAi).

44 Chapter 2

3. IF x̃i ∩ xi = ∅,
THEN

EXIT, signaling no solution.

ELSE

Replace x̃i by x̃i ∩ xi.

END IF

END DO

End Algorithm 5

If Algorithm 5 does not terminate in step 3, then we label its output

GS(X, X̌) = X̃ = [x̃1, . . . , x̃p]
T . (2.6)

The analogous interval Jacobi method (each x̃j is replaced by xj) and asyn-
chronous parallel variants (each x̃j is computed separately and made available
for computations for the other j in an unpredictable way) are also worthy of
consideration.

For a fixed preconditioner matrix Y , the image under the Gauss–Seidel method
is at least as narrow (and hence, at least as good) as the image under the
Krawczyk method. Furthermore, a set of optimal preconditioners, in the sense
that the widths of the coordinates of the image are as small as possible, has
been developed; cf. §3.2.

The third method, interval Gaussian elimination,interval Gaussian elimination,
sometimes gives better and sometimes worse results than the Krawczyk method
or the interval Gauss–Seidel method; cf. [48, p. 158ff]. Although similar to the
floating point Gaussian elimination algorithm, the interval Gauss algorithm is
worth stating. In particular, although operations are done on intervals with
non-zero widths during the elimination phase, it is rigorous to replace the el-
ements being eliminated by exactly zero. Also, although the floating point
Gauss algorithm has many variants, all of which are mathematically equivalent
in exact arithmetic, these variants are not all the same when interval arithmetic
is used. For this reason, we present the interval Gauss algorithm useful in our
present context, as in [1, Ch. 15].

Constrained Global Optimization 45

Algorithm 6 (Interval Gaussian Elimination)

1. (Input the matrix and right-hand side)

Input YA = G = [gi,j] and
9 −Y F (X̌) = S = [s1, . . . , sn]

T .

2. (Factorization phase) DO for i = 1 to p:

(a) IF 0 ∈ gi,i THEN EXIT with failure.

(b) DO for j = i+ 1 to p and for k = i+ 1 to p:

gj,k ← gj,k − (gj,i/gi,i)gi,k.

END DO

(c) si ← si − (gj,i/gi,i) bi

END DO

3. (Solution phase)

(a) sp,p ← sp/gp,p.

(b) DO for i = p− 1 to 1 by −1:
si ←

(

si −
∑p

j=i+1 gi,jsj

)/

gi,i

END DO

4. x̃i ← si + x̌i for i = 1 to p.

End Algorithm 6

The main advantage of the interval Gauss algorithm is that starting bounds X0

are not required, except to compute the matrix A. This is a crucial property
used in the method proposed in [20] and [19, §10.6] for bounding Lagrange
multipliers, and hence for applying interval Newton methods to constrained
problems; see §3.5 below.

Pivoting is generally not done in the interval Gauss algorithm, but the precon-
ditioner matrix Y is designed so that G is like an identity matrix; see §3.2.
However, Algorithm 6 can fail when the widths of the elements of A are large,
when the preconditioner matrix Y is ill-conditioned, or when some combination
of these conditions occurs. Even when the Gauss algorithm fails, it may still
be possible to use the partial factorization to reduce some coordinate widths,
provided initial estimates X0 for the coordinate intervals are available.

9Although −Y F (X̌) is a point, S is transformed into an interval vector in this algorithm.

46 Chapter 2

3.2 Choice of Preconditioner

The most commonly seen preconditioner Y in the the Krawczyk, interval
Gauss–Seidel, and interval Gauss algorithms is the approximate inverse of the
matrix formed from the midpoints of the elements of A, termed the inverse
midpoint preconditioner. With this preconditioner, G = YA is10 symmetric
about the identity matrix. In certain contexts [58], this symmetry can be used
to replace interval arithmetic by appropriately rounded floating point arith-
metic. The preconditioner also has certain optimality properties that have
been discussed in the literature in relation to all three methods. It is relatively
simple to compute, its effect is relatively easy to analyze, and it is effective
when the widths of A are small.

In [29], preconditioner rows for the interval Gauss–Seidel method based upon
certain width optimality conditions were proposed. Since their computation
requires solution of linear programming problems, these preconditioners are
termed optimal LP preconditioners. Alternate optimality conditions and refor-
mulation to a smaller LP problem appeared in [31]. The goal in [29] and [31]
was to find Y so that the widths of the components X̃ were minimized, and
thus enable or speed convergence of interval iteration to a point.

As seen in [29], LP preconditioners can be effective provided the structure of
the corresponding LP problems is utilized in their solution. Otherwise, the
cost of solving these problems could overwhelm the advantages of an optimal
optimal preconditioner. It is still uncertain how useful these preconditioners
can be in optimization. They are most advantageous when the relative widths
of elements in different rows of A differ widely.

OptimalLP preconditioners as originally formulated may not be appropriate for
verification. This is because minimization of w(x̃i) may not be consistent with
x̃i ⊂ int(xi). However, it is possible to formulate the LP problem in terms of
maximization of the possibility that x̃i ⊂ int(xi). It is also possible to formulate
optimal preconditioners for interval Gaussian elimination, and even for general
systems11 AX = B. The inverse midpoint preconditioner is applicable to such
systems while some such formulations lead to larger and hence more expensive-
to-solve linear programming problems. Such formulations have not yet been
fully investigated.

10approximately, if Y is an approximate inverse
11The interval Newton equation (2.3) is special because both the right-hand-side and the

unknown X − X̌ approximate the zero vector.

Constrained Global Optimization 47

3.3 Choice of Derivative Matrix

The matrices A for equation (2.3) generally satisfy one of the following two
properties.

Definition 1 ([48, p. 174], etc.) The matrix A is said to be a Lipschitz matrix
for F over X provided, for every X ∈ X and Y ∈ X, F (X)−F (Y) = A(X−Y)
for some A ∈ A.

Generally, uniqueness can be proven with an interval Newton method provided
Y is nonsingular and A is a Lipschitz matrix; cf. [48].

An alternate, weaker property commonly discussed in the literature is the fol-
lowing.

Definition 2 The matrix A is said to be an interval slope matrix for F over X
and centered on the interval vector X̌, provided, for every X ∈ X and X̌ ∈ X̌,
F (X)− F (X̌) = A(X − X̌) for some A ∈ A.

Note that every Lipschitz matrix is a slope matrix, but not visa versa. As
seen below, slope matrices can be computed whose entries are narrower than
computed Lipschitz matrices.

The following concept is also relevant.

Definition 3 An interval matrix A is said to be regular provided every A ∈ A
is nonsingular.

For example, regularity of A is implied by X̃ ⊂ X in equation (2.3) or equa-
tion (2.4). See [58] and [63] for methods in which values or ranges of F , but
only the elements of A, appear in the computational formula.

We will illustrate various choices for A by considering the second-order infor-
mation for the objective function φ(x1, x2) = x4

1/12 + x1(x
3
2/3) + x2

1/2 + x2
2/2,

whose Hessian matrix is

∇2φ(x1, x2) =

[

x2
1 + 1 x2

2

x2
2 2x1x2 + 1

]

. (2.7)

48 Chapter 2

In these examples, F denotes ∇φ, so the derivative matrix A of F corresponds
to the Hessian matrix ∇2φ. We will examine matrices A for φ valid over the
interval vector X = ([−.5, .5], [−.5, .5])T .

Using interval arithmetic to evaluate equation (2.7), we obtain:

[Interval Hessian] =

[

[1, 1.25] [0, .25]
[0, .25] [.5, 1.5]

]

. (2.8)

The interval Hessian matrix is a Lipschitz matrix for F over X. It can thus be
used flexibly in interval Newton algorithms. For example, when it is used to
bound the solution set to equation (2.4) using the Krawczyk, interval Gauss–
Seidel, or interval Gauss algorithms, uniqueness is implied by X̃ ⊂ int(X),
regardless of the choice of base point X̌, as long as X̌ ∈ X. The drawback is
that the widths of the entries of an interval Hessian matrix may be so large
that the resulting image box X̃ is not useful.

In [16] and later in [19, §6.3-6.4], Hansen observes that, when evaluating the
Hessian matrix for interval Newton methods, not all entries need be intervals.
In particular, the j-th component of X in evaluation of ∂2φ(X)/∂xi∂xk in
the i-th row12 of the matrix may be replaced by the j-th component of X̌
for j > k. Theory of uniqueness verification using this scheme has not been
published. The matrix A so obtained is no longer a Lipschitz matrix, so the
general uniqueness theory in [48] is not valid. Nonetheless, such A are slope
matrices, andexistence can be verified. Such matrices are appropriate for (at
least the initial steps of) interval Newton iteration. The drawback is that the
matrix must be recomputed with each new X̌.

Hansen’s technique applied to our example problem with X̌ = [0, 0]T and a
specified ordering13 to ∂φ/∂x2 gives the matrix:

[Hansen Hessian] =

[

[1, 1.25] [0, 0.25]
[0, 0.25] 1

]

. (2.9)

An alternate point-based way of computing matrices A, more well-known than
Hansen’s scheme, is utilization of interval slopes. Simple one-dimensional ex-
amples show that, for X̌ a point, uniqueness is not implied if X̃ ⊂ int(X) when

12Other orderings are also possible; cf. [19, §6.4].
13cf. [19, §6.3-6.4]. In this example, we are holding x1 fixed in computing a2,2.

Constrained Global Optimization 49

A is formed from interval slopes. However, such A are slope matrices in the
sense of Definition 2, so existence is implied. Furthermore, as introduced in
[58], uniqueness can be verified over a large box X by first implying existence
over a small box X̌ centered at a point X̌, then showing that the slope matrix
over a large box X and centered on X̌ is regular.

As described by various authors, slope matrices may be computed by opera-
tor overloading with techniques similar to automatic differentiation. A sharp
scheme, applicable when X is large but subject to roundout error for small X,
appears in [58]. An alternate scheme that can be combined with that of [58]
appears in [48]. With the scheme of [58] applied to the exact gradient vector
∇φ = [x3

1/3 + x1 + x3
2/3, x1x

2
2 + x2]

T and X̌ = X̌ = [0, 0]T , the slope matrix
for our example is:

[Computed slope] =

[

[1, 1.0834] [0, 0.08334]
[0, 0.25] [.75, 1.25]

]

. (2.10)

Actually, Hansen’s technique and automatic computation of slopes can be com-
bined. In particular, if components of X̌ are substituted for components of X as
in [19, §6.4] and an automatic slope computation scheme is used, the resulting
matrix is a slope matrix in the sense of Definition 2. Thus, existence verifi-
cation, as well as uniqueness verification over large boxes with the two-stage
scheme of [58] can proceed with such A.

The matrix A obtained for our example by combining slope computation with
Hansen’s idea is:

[Hansen–slope] =

[

[1, 1.0834] [0, 0.08334]
[0, 0.25] 1

]

. (2.11)

Based on this present state-of-the-art, we have the following recommendations:

Hansen’s idea combined with slopes should be used:

– if A is to be used only for interval iteration over relatively large boxes.

– if existence verification only is desired;

– if uniqueness verification only in as large a boxX as possible is desired
(for example, for deleting subregions in a global search, as in [3]);

– if non-existence verification only is desired.

50 Chapter 2

– any combination of the above.

An interval Jacobi matrix should be used:

– for interval iteration over small boxes where an interval Jacobi matrix
is adequate for convergence, especially if X̌ must change frequently.

– if uniqueness verification is required over small boxes X.

If existence only is required over a small box, such as for checking feasibility in
Algorithm 3 of §2.1, Hansen’s technique combined with slopes is theoretically
sharper than interval Hessian matrices. That is, the Hansen-slope scheme is in
general preferable in ǫ-inflation algorithms that determine existence. However,
depending on the implementation of slopes, the computed slopes may actually
be wider than corresponding interval derivatives14. Also, other considerations,
such as ease of implementation, may enter into consideration.

3.4 Choice of Base Point X̌

Little appears in the literature concerning selection of the point X̌. Centered
forms for bounding the range, satisfying optimality conditions, were given in
[2]. These forms, based on particular choice of point X̌, can be used when
iterating interval Newton methods.

Common choices of X̌ include the center of the box X, a root of F (X) = 0,
or both. Some analysis of the case when X̌ is both a root and the center of
the box appears in [63]. This choice, natural in ǫ-inflation when one wishes
to verify bounds on a solution obtained through a conventional floating-point
method, appears to make verification more likely. An early, abstract analysis
of verification tests in [27] indicates that verification is easier if the root of
F (X) = 0 is near the center of the box. Pictures in [36] also illustrate that it
is wise for X̌ in Algorithm 3 to be a good approximation to a feasible point
(corresponding to a root of F), and for the box X̂ in that algorithm to be
centered on such a feasible point. Nonetheless, additional analysis of both
choosing X̌ to be a root of F and choosing X̌ to be centered in the box X can
be done.

14The divided differences in [58] should not be used for boxes X that are small in relation
to the computational precision.

Constrained Global Optimization 51

A graphical examination of the case F : R1 → R
1 suggests that verification of

existence or non-existence using slopes can sometimes be more effective when
X̌ is chosen so X̌ 6∈ X. Further investigation of this may be useful.

In summary, the present state of knowledge indicates that both roots of F (X) =
0 and X̌ should be centered in X, where possible, if existence or uniqueness
verification is desired.

3.5 The Fritz–John Conditions

In certain circumstances, we wish to simultaneously verify feasibility and local
optimality. For instance, a conventional floating point constrained optimizer
may have been used to obtain an approximate global optimum X̌. We may
then wish to verify uniqueness of a critical point in as large a box X as pos-
sible about X̌, so that X may be excluded from further consideration in the
exhaustive search15. The system of equations to be used in the interval New-
ton method must therefore embody the necessary conditions for constrained
optima. General conditions, not requiring “constraint qualification” assump-
tions, are the Fritz–John conditions.

The Fritz–John conditions have been advocated by Hansen et al in [20] and [19].
Their use is thoroughly explained in those works, although empirical results
are lacking. Here, for convenience, we present the function F and derivative
matrix ∇F corresponding to the Fritz–John conditions for our formulation in
equation (2.1).

The variables in our system are X = (x1, . . . , xn), V = (v1, . . . , vm), and u0,
for a total of n+m+ 1 variables. We will write W = (X,u0, V). The function
F is:

F (W) =

u0∇φ(X) +
∑m

i=1 vi∇ci(X)
c1(X)

...
cm(X)

[

u0 +
∑m

i=1 vi[1, 1 + ǫ]
]

− 1

= 0, (2.12)

The vi are unconstrained and represent Lagrange multipliers for the equality
constraints ci = 0. The last equation is a normalization condition suggested
and justified in [20]; ǫ is on the order of the computational precision.

15This is done in the unconstrained case in [3] and for general nonlinear systems in [35].

52 Chapter 2

By not including the bound constraints aij ≤ xij ≤ bij in this function, we re-
duce the size of the system by 2q. Furthermore, it is more flexible to include the
bound constraints through the process reviewed in §2.3. Thus, equation (2.12)
is applicable for points X when none of the bound constraints are active. When
one or more bound constraints are active, an analogue of equation (2.12) in the
appropriate lower-dimensional subspace is used. In fact, it can be shown that,
if the entire space is used and the bound constraints are included in the Fritz–
John function F , then the Jacobi matrix of F must be singular; cf. [36] for a
precise statement of this fact.

The Jacobi matrix of F , used to form the matrix A for interval Newton meth-
ods, is:

H(W) =

u0∇
2φ(X) +

∑m

i=1
vi∇

2ci(X) ∇φ(X) ∇c1(X) . . . ∇cm(X)

∇c1(X) 0 0 . . . 0
...

...
...

...
...

∇cm(X) 0 0 . . . 0

0 1 [1, 1 + ǫ] . . . [1, 1 + ǫ]

.

(2.13)

If Hansen’s technique as explained in §3.3 is used to evaluate H for the matrix
A in the interval Newton method, then only (guess) point values of u0 and the
vi enter. Thus, if Gaussian elimination is used to solve equation (2.4), initial
bounds on the Lagrange multipliers u0 and vi are not required. This procedure,
first suggested in [20], is recommended by us, although further experimentation
is needed to ascertain what are reasonable guesses for the base points for u0 and
the vi. In verifying points obtained by floating point constrained optimization
software, approximate Lagrange multiplier values may be available along with
the approximate optimizers.

4 APPLICATIONS

Actual successful applications of constrained global optimization codes have to
date been limited by general lack of availability of such codes to engineers and
scientists. A notable exception is the work in [39], in which an algorithm to
determine feasibility of constraints is presented and used in structural design
analysis with composite laminates. There has also been some success at ap-
plying related general nonlinear equation codes or associated techniques. For

Constrained Global Optimization 53

example, Schnepper and Stadtherr [59], [60] have modified the TOMS algo-
rithm INTBIS [30] for efficient analysis of chemical process-based flowsheeting.
K. Okumura, (private communication), tailoring the techniques to the prob-
lem, has applied interval methods for nonlinear systems to analysis of linear
and nonlinear electrical networks. In fact, not only did Okumura achieve rigor,
but the method proved to be orders of magnitude faster than a Monte Carlo
simulation.

In [14], Hager has used techniques in common with interval global optimization
algorithms to determine when certain constraints are violated, for use in robot
sensing and manipulation, etc.

Csendes and Ratz [6, problem Ex-2, §4] have recently applied Ratz’ uncon-
strained global optimization code successfully to a parameter estimation prob-
lem related to respiratory mechanical model identification.

More generally, there has been a steady, and recently increasing interest in
interval nonlinear equations technology and interval computations in general for
robust geometric computations in computer-aided geometric design. An early
review of such techniques is [47]. Computation of the solution of polynomial
systems of equations in this context appears in [62]. Experiments with an
interval algorithm for intersection of curves appear in [61]. A clever application
of interval arithmetic to solution of the nonlinear systems involved in interval
ray tracing, allowing substantial speedup of the process, appears in [9].

Our own examination of the realistic test problems in [12] leads us to believe
that there is much potential for practical application of interval global opti-
mization algorithms in chemical engineering and process design.

5 SUMMARY AND PRESENT WORK

Various researchers have produced codes for verified global optimization. The
books [52] and [19] are devoted to the subject, while Arnold Neumaier is prepar-
ing a third. Additionally, the book [48] treats verified solution of nonlinear
algebraic systems, while several books are devoted to the underlying interval
arithmetic techniques.

While techniques for constrained problems have been published, high-quality
experimental reports appear to exist only for unconstrained optimization. Also,

54 Chapter 2

with the possible exception of the codes of [15] or [54], most verified opti-
mization programs to date have been research codes, or have been written in
non-portable programming languages.

Besides reviewing this work, we have carefully proposed a method for handling
both equality and inequality constraints, and have proposed a variant of a
method of Hansen for rigorously verifying feasibility. We have advocated a
particular structure when handling inequality, equality, and bound constraints.
We have also suggested combining interval slopes with an idea of Hansen for
derivative matrices.

We have been developing a portable Fortran-90 environment to support global
optimization and numerical nonlinear algebra. The environment, described in
[10], is based on the portable FORTRAN-77 package INTLIB of [9]. We intend
to complete and test a comprehensive optimization code in this system. This
code will be based on the ideas in this work and on the principle that the global
algorithm should build on solutions of approximate optimizers that have been
verified.

Acknowledgements

I wish to thank George Corliss, Eldon Hansen, Dietmar Ratz, Vladik Kreinovich
and other researchers of this subject for their encouragement, careful reading,
and suggestions.

REFERENCES

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations , Aca-
demic Press, New York, 1983.

[2] E. Baumann, “Optimal Centered Forms”, BIT , 1988, Vol. 28, No. 1,
pp. 80–87.

[3] O. Caprani, B. Godthaab, and K. Madsen, “Use of a Real-Valued Local
Minimum in Parallel Interval Global Optimization”, Interval Computa-
tions , 1993, No. 2, pp. 71–82.

[4] A. R. Conn, N. Gould, and Ph. L. Toint, LANCELOT: A Fortran Package
for Large-Scale Nonlinear Optimization, Springer-Verlag, New York, 1992.

Constrained Global Optimization 55

[5] T. Csendes, “Nonlinear Parameter Estimation by Global Optimization –
Efficiency and Reliability”, Acta Cybernetica, 1988, Vol. 8, No. 4, pp. 361–
370.

[6] T. Csendes and D. Ratz, Subdivision Direction Selection in Interval Meth-
ods for Global Optimization, preprint, 1994.

[7] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Least Squares , Prentice-Hall, Englewood
Cliffs, NJ, 1983.

[8] Kaisheng Du and R. B. Kearfott, “The Cluster Problem in Global Opti-
mization The Univariate Case”, Computing (Suppl.), 1992, Vol. 9, pp. 117–
127.

[9] W. Enger, “Interval Ray Tracing – A Divide and Conquer Strategy for
Realistic Computer Graphics”, The Visual Computer , 1992, Vol. 9, pp. 91–
104.

[10] J. Eriksson, Parallel Global Optimization using Interval Analysis , Ph.D.
dissertation, University of Ume̊a, Institute of Information Processing, 1991.

[11] J. Eriksson and P. Lindstrœm, “A Parallel Interval Method Implementa-
tion for Global Optimization Using Dynamic Load Balancing”, Reliable
Computing , Vol. 1, No. 1, pp. 77–92.

[12] C. A. Floudas and P. M. Pardalos, A Collection of Test Problems for
Constrained Global Optimization Algorithms , Springer-Verlag, New York,
1990.

[13] P. E. Gill, W. Murray, and M. Wright, Practical Optimization, Academic
Press, New York, 1981.

[14] G. D. Hager, Solving Large Systems of Nonlinear Constraints with Appli-
cation to Data Modeling , preprint, 1993.

[15] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, Numerical Toolbox for
Verified Computing I , Springer-Verlag, New York, 1993.

[16] E. R. Hansen, “Interval Forms of Newton’s Method”, Computing , 1978,
Vol. 20, pp. 153–163.

[17] E. R. Hansen, “Global Optimization Using Interval Analysis: The One-
Dimensional Case”, J. Optim. Theory Appl., 1979, Vol. 29, No. 3, pp. 331-
344.

56 Chapter 2

[18] E. R. Hansen, “Global Optimization Using Interval Analysis: the Multidi-
mensional Case”, Numer. Math., 1980, Vol. 34, No. 3, pp. 247–270.

[19] E. R. Hansen, Global Optimization Using Interval Analysis , Marcel
Dekker, Inc., New York, 1992.

[20] E. R. Hansen and G. W. Walster, “Bounds for Lagrange Multipliers and
Optimal Points”, Comput. Math. Appl., 1993, Vol. 25, No. 10, pp. 59–ff.

[21] K. Ichida and Y. Fujii, “An Interval Arithmetic Method for Global Opti-
mization”, Computing , 1979, Vol. 23, No. 1, pp. 85–97.

[22] C. Jansson, A Global Minimization Method: The One-Dimensional Case,
Technical Report No. 91.2, 1991.

[23] C. Jansson, “A Global Optimization Method Using Interval Arithmetic”,
In: L. Atanassova and J. Herzberger (eds.), Computer Arithmetic and En-
closure Methods. Proc. Third International IMACS-GAMM Symposium on
Computer Arithmetic and Scientific Computing , North–Holland, Amster-
dam, Netherlands, 1992, pp. 259–268.

[24] C. Jansson and O. Knüppel, A Global Minimization Method: The Multi-
Dimensional Case, preprint, 1992.

[25] C. Jansson, “On Self-Validating Methods for Optimization Problems”, In:
J. Herzberger (ed.), Topics in Validated Computations , North-Holland,
Amsterdam, Netherlands, 1994, pp. 381–439.

[26] C. Jansson and O. Knüppel, Numerical Results for a Self-Validating Global
Optimization Method , Technical Report, 1994.

[27] R. B. Kearfott, “Abstract Generalized Bisection and a Cost Bound”,Math.
Comp., 1987, Vol. 49, No. 179, pp. 187–202.

[28] R. B. Kearfott, “Interval Arithmetic Techniques in the Computational So-
lution of Nonlinear Systems of Equations: Introduction, Examples, and
Comparisons”, In: E. L. Allgower and K. Georg (eds.), Computational
Solution of Nonlinear Systems of Equations (Lectures in Applied Mathe-
matics, Vol. 26), American Mathematical Society, Providence, RI, 1990,
pp. 337–358.

[29] R. B. Kearfott, “Preconditioners for the Interval Gauss–Seidel Method”,
SIAM J. Numer. Anal., 1990, Vol. 27, No. 3, pp. 804–822.

[30] R. B. Kearfott and M. Novoa, “INTBIS, A Portable Interval New-
ton/Bisection Package (Algorithm 681)”, ACM Trans. Math. Software,
1990, Vol. 16, No. 2, pp. 152–157.

Constrained Global Optimization 57

[31] R. B. Kearfott, C. Y. Hu, and M. Novoa III, “A Review of Precondition-
ers for the Interval Gauss–Seidel Method”, Interval Computations , 1991,
No. 1, pp. 59–85.

[32] R. B. Kearfott, “An Interval Branch and Bound Algorithm for Bound Con-
strained Optimization Problems”, Journal of Global Optimization, 1992,
Vol. 2, pp. 259–280.

[33] R. B. Kearfott, M. Dawande, K.-S. Du, and C.-Y. Hu, “Algorithm 737:
INTLIB: A Portable FORTRAN 77 Interval Standard Function Library”
ACM Trans. Math. Software, 1994, Vol. 20, No. 4, pp. 447–459.

[34] R. B. Kearfott, “A Fortran 90 Environment for Research and Prototyp-
ing of Enclosure Algorithms for Constrained and Unconstrained Nonlinear
Equations”, ACM Trans. Math. Software, 1995, Vol. 21, No. 1, pp. 63–78.

[35] R. B. Kearfott, Empirical Evaluation of Innovations in Interval Branch
and Bound Algorithms for Nonlinear Algebraic Systems , preprint, 1994.

[36] R. B. Kearfott, On Verifying Feasibility in Equality Constrained Optimiza-
tion Problems , preprint, 1994.

[37] R. B. Kearfott and K. Du, “The Cluster Problem in Multivariate Global
Optimization”, Journal of Global Optimization, 1994, Vol. 5, pp. 253–265.

[38] R. Krawczyk, “Newton-Algorithmen zur Bestimmung von Nullstellen mit
Fehlershranken”, Computing , 1969, Vol. 4, pp. 187–201.

[39] B. P. Kristinsdottir, Z. B. Zabinsky, T. Csendes, M. E. Tuttle, “Methodolo-
gies for Tolerance Intervals”, Interval Computations , 1993, No. 3, pp. 133–
147.

[40] A. Leclerc, “Parallel Interval Global Optimization in C++”, Interval Com-
putations , 1993, No. 3, pp. 148–163.

[41] G. Mayer, Epsilon–Inflation in Verification Algorithms , preprint, 1993.

[42] R. E. Moore, “A Test for Existence of Solutions to Nonlinear Systems”,
SIAM J. Numer. Anal., 1977, Vol. 14, No. 4, pp. 611–615.

[43] R. E. Moore, Methods and Applications of Interval Analysis , SIAM,
Philadelphia, 1979.

[44] R. E. Moore and H. Ratschek, “Inclusion Functions and Global Optimiza-
tion II”, Math. Prog., 1988, Vol. 41, No. 3, pp. 341–356.

58 Chapter 2

[45] R. E. Moore, E. Hansen, and A. Leclerc, “Rigorous Methods for Paral-
lel Global Optimization”, In: A. Floudas and P. Pardalos (eds.), Recent
Advances in Global Optimization Princeton Univ. Press, Princeton, N.J.,
1992, pp. 321–342.

[46] J. J. Moré and S. J. Wright, Optimization Software Guide, SIAM, Philadel-
phia, 1993.

[47] S. P. Mudur and P. A. Koparkar, “Interval Methods for Processing Geo-
metric Objects”, IEEE Comput. Graphics and Appl., 1984, Vol. 4, No. 2,
pp. 7–17.

[48] A. Neumaier, Interval Methods for Systems of Equations , Cambridge Uni-
versity Press, Cambridge, England, 1990.

[49] A. Neumaier, Second-Order Sufficient Optimality Conditions for Local and
Global Nonlinear Programming , preprint, 1994.

[50] P. M. Pardalos and J. B. Rosen, Constrained Global Optimization: Algo-
rithms and Applications , Springer-Verlag, New York, 1987.

[51] P. M. Pardalos and S. A. Vavasis, “Quadratic Programming with One
Negative Eigenvalue is NP-Hard”, Journal of Global Optimization, 1992,
Vol. 1, No. 1.

[52] H. Ratschek and J. Rokne, New Computer Methods for Global Optimiza-
tion, Wiley, New York, 1988.

[53] H. Ratschek and R. L. Voller, “Global Optimization over Unbounded Do-
mains”, SIAM J. Control Optim., 1990, Vol. 28, No. 3, pp. 528–539.

[54] D. Ratz, Automatische Ergebnisverifikation bei globalen Optimierungspro-
blemen, Ph.D. dissertation, Universität Karlsruhe, 1992.

[55] D. Ratz, “Box-Splitting Strategies for the Interval Gauss–Seidel Step in a
Global Optimization Method”, Computing , 1994, Vol. 53, pp. 337–354.

[56] J. Rohn, NP-Hardness Results for Linear Algebraic Problems with Interval
Data, preprint, 1994.

[57] S. M. Rump, Kleine Fehlerschranken bei Matrixproblemen, Ph.D. disser-
tation, Universität Karlsruhe, 1980.

[58] S. M. Rump, “Verification Methods for Dense and Sparse Systems of Equa-
tions”, In: J. Herzberger (ed.), Topics in Validated Computations , North–
Holland, Amsterdam, 1994, pp. 63–135.

Constrained Global Optimization 59

[59] C. A. Schnepper, Large Grained Parallelism in Equation-Based Flowsheet-
ing Using Interval Newton / Generalized Bisection Techniques , Ph.D. dis-
sertation, University of Illinois, Urbana, Department of Chemical Engi-
neering, 1992.

[60] C. A. Schnepper and M. A. Stadtherr, “Application of a Parallel Inter-
val Newton/Generalized Bisection Algorithm to Equation-Based Chemical
Process Flowsheeting”, Interval Computations , 1993, No. 4, pp. 40–64.

[61] T. W. Sederberg and S. R. Parry, “Comparison of Three Curve Intersection
Algorithms”, Comput. Aided Des., 1986, Vol. 18, No. 1, pp. 58–63.

[62] E. C. Sherbrooke and N. M. Patrikalakis, Computation of the Solutions of
Nonlinear Polynomial Systems , preprint, 1993.

[63] X. Shi and R. B. Kearfott, Some Results on the Regularity of an Interval
Matrix , preprint, 1994.

[64] X. Shi, Intermediate Expression Preconditioning and Verification for Rig-
orous Solution of Nonlinear Problems , Ph.D. dissertation, University of
Southwestern Louisiana, Department of Mathematics, August 1995.

[65] S. Skelboe, “Computation of Rational Interval Functions”, BIT , 1974,
Vol. 14, pp. 87–95.

[66] G. W. Walster, E. R. Hansen, and S. Sengupta, “Test Results for a Global
Optimization Algorithm”, In: P. T. Boggs, R. H. Byrd, and R. B. Schnabel
(eds.), Numerical Optimization 1984 , SIAM, Philadelphia, 1985, pp. 272–
287.

[67] M. A. Wolfe, “An Interval Algorithm for Constrained Global Optimiza-
tion”, J. Comput. Appl. Math., 1994, Vol. 50, pp. 605–612.

