
1
APPLICATIONS OF INTERVAL

COMPUTATIONS: AN

INTRODUCTION

R. Baker Kearfott* and Vladik Kreinovich**

*Department of Mathematics, University of Southwestern Louisiana,

U.S.L. Box 4-1010, Lafayette, LA 70504-1010, USA, email: rbk@usl.edu

**Department of Computer Science, University of Texas at El Paso,

El Paso, TX 79968, email vladik@cs.utep.edu

ABSTRACT

The main goal of this introduction is to make the book more accessible to readers

who are not familiar with interval computations: to beginning graduate students, to

researchers from related fields, etc. With this goal in mind, this introduction describes

the basic ideas behind interval computations and behind the applications of interval

computations that are surveyed in the book.

1 WHAT ARE INTERVAL
COMPUTATIONS?

Most Real-Life Application Problems Lead to

(Constrained or Unconstrained) Global Optimization

In a typical real-life application problem, we need to find an alternative x that
satisfies given constraints and that optimizes the value of a given characteristic
y = f(x) (the optimized function f(x) is usually called an objective function).
For example:

in data processing , we must find a model x that best fits the known data;
in this case, f(x) describes how well x fits;

1

2 Chapter 1

in control, we must find the control strategy x that optimizes the given
criterion f(x) (e.g., smoothness of the resulting trajectory);

in decision making , we must find an alternative x from a given set X of
possible alternatives that guarantees the best outcome f(x).

From the mathematical viewpoint, all these real-life application problems can
be described as (constrained and unconstrained) global optimization problems.

In Some Cases, We Must Solve Systems of Equations
and/or Inequalities

In some real-life problems, there are so many constraints on the problem that
even finding a single solution x that satisfies all these constraints is a difficult
task. This often happens in design problems; e.g., if we want to design a
spacecraft that can fulfill the task of taking photos of a distant planet under
restrictions on weight and cost. For these problems, there is no question of a
choice between several possible solutions (we are lucky if we have one), and
therefore, it makes no practical sense to choose an objective function for this
choice. Therefore, such problems are formulated as the problems of satisfying
given constraints. Each of these constraints is either an inequality (e.g., “total
cost ≤ a given amount”), or an equality (e.g., “at a given moment of time,
the position of the spacecraft must be exactly a given number of miles above
the explored planet”). Therefore, in mathematical terms, these problems are
formulated as solution of a system of equations and/or inequalities.

In other cases (e.g., in economic problems), we know the constraints well, but
the objective is only informally formulated (e.g., “welfare of the nation”). In
these cases, it is difficult to formulate the objective function in precise math-
ematical terms; therefore, it makes sense to provide the decision-makers with
the entire set of the alternatives x that satisfy all given constraints, so that
these decision-makers will make the final decision. In such problems, we also
need to solve a system of equations and/or inequalities.

Applications of Interval Computations: An Introduction 3

Numerical Algorithms Usually Result in Approximate
Solutions

There exist many numerical algorithms for solving optimization problems (see,
e.g., [50]). Algorithms also exist for solving systems of equations and inequali-
ties.

The majority of these algorithms are iterative, so, when we stop after a certain
number of steps, we only get an approximation x̃ to the desired solution x.

For Many Practical Cases, We Need Guaranteed

Estimates of the Solution’s Accuracy

A natural question is: how good is the approximate solution x? That is, how
close is the approximate solution to the desired solution x?

In many practical problems, we need a guaranteed solution, i.e., a solution that
is guaranteed to be sufficiently close to an optimum (i.e., for which the distance
ρ(x̃, x) between x and x̃ does not exceed a certain given number ε). To get
such a guarantee, we definitely need to estimate the closeness ρ(x̃, x).

Traditional Error Estimating Techniques of Numerical

Mathematics Do Not Always Lead to Satisfactory
Estimates

In the majority of traditional numerical methods, at each step of the iteration
process, we get a number (or, a sequence of numbers) that represents an increas-
ingly better approximation to the solution. After we compute this approximate
solution, we use some estimates (e.g., estimates based on Lipschitz constants)
to describe how close x̃ is to x. The resulting method does not always lead to
good estimates:

For some numerical algorithms, no methods are known yet for estimating
the distance ρ(x̃, x). Designing such an estimation technique for each new
algorithm is usually a very complicated problem. Heuristic algorithms are
constantly appearing, and there are simply not enough researchers in the
numerical analysis community to find estimates for all of them.

4 Chapter 1

Error estimates of numerical mathematics are usually overestimating. One
of the reasons for that is that these methods are usually based only on
the final result x̃ of the computations. We could get better estimates if
we could use more information about the behavior of the function f(x).
To get this information, we either need to do more numerical experiments
with the function f , or we can use the values that have been computed
during the previous computation steps. In both cases, we need extra com-
putation time, and this computation time is added to the running time of
the numerical algorithm itself, which is often already large.

An Alternative Error Estimation Approach – A

Natural Idea

An ideal situation would be if we could estimate the errors of the result not after
the iteration process (thus, adding time), but simultaneously with the iteration
process. This is the main idea behind the interval computations methodology
originally proposed by R. E. Moore [13, 14, 15].

This idea will help us solve the above-mentioned problems:

First, it will enable us to estimate errors for the approximate solution while
computing the solution itself, thus saving computation time.

Second, since the error estimation will take place throughout the entire
process of computing x̃, we will be able to use intermediate results in this
error estimation and therefore, hopefully, come up with better estimation
results (i.e., results that are less overestimating).

Finally, this idea will enable us to easily find estimates for new algorithms:
Indeed, it is difficult to compute an error estimate for the result of a lengthy
computation. However, each lengthy computation consists of a sequence of
elementary steps (+, −, ·, /, ...). Thus, if we trace this error step-by-step,
then this complicated problem is reduced to the problems of estimating
the error of a sum (product, etc.) of two previous quantities, when we
already know the errors in each quantity.

Why “Interval”?

If we follow the idea described above, then on each computation step, instead
of a single (approximate) number r̃, we will compute r̃ and an upper bound

Applications of Interval Computations: An Introduction 5

∆ for the error of this approximation. In other words, after each computation
step, we will get a pair (r̃,∆).

If we know x̃ and ∆, this means that the actual value r of the corresponding
quantity can take any value from r̃ − ∆ to r̃ + ∆. In other words, this pair
means that instead of the (ideal) single value of r, there is a set of possible
values of r, and this set is an interval r = [r, r], where r = r̃−∆ and r = r̃+∆.

Because of this, the above idea is called interval computations.

Basic Formulas of Interval Arithmetic

For intervals, the above-mentioned step-by-step process works as follows: at
each elementary computation step, we perform one of the arithmetic operations
c := a⊙b, where the two values a and b have already estimated on the previous
steps of this algorithm. Since the values a and b have already been estimated
by our algorithm, this means that we already have the intervals [a, a] and [b, b]
of possible values of a and b. Since we know that a ∈ [a, a] and b ∈ [b, b], we
can conclude that c belongs to the set of all possible values of a⊙ b for such a
and b, i.e., to the set

{a⊙ b|a ∈ [a, a], andb ∈ [b, b]}.

Example. If ⊙ = +, and if we know that a ∈ [0.9, 1.1] and b ∈ [2.9, 3.1], then
we can conclude that

a+ b ∈ {a+ b|a ∈ [0.9, 1.1]andb ∈ [2.9, 3.1]}.

One can easily see that this set is the interval [3.8, 4.2].

In general, the new set (of possible values of c) is called the result of applying
the operation ⊙ to intervals [a, a] and [b, b], and it is denoted by

[a, a]⊙ [b, b].

For basic arithmetic operations, it is easy to find explicit expressions for the
resulting set:

6 Chapter 1

[a, a] + [b, b] = [a+ b, a+ b];

[a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] =
[min(a · b, a · b, a · b, a · b),max(a · b, a · b, a · b, a · b)];
[b, b]−1 = [1/b, 1/b] if 0 6∈ [b, b];

[a, a]/[b, b] = [a, a] · [b, b]−1.

These operations are called interval arithmetic. To these operations, we must
add interval analogues of standard functions (exp, sin, max, etc).

For iterative algorithms, we can also take into consideration the fact that, in
these algorithms, we repeatedly compute estimates for one and the same quan-
tity. Usually, we use a previous estimate x(k) to compute the next (usually,
better) estimate x(k+1). If we use interval operations, then on these two suc-
cessive steps, we get intervals x(k) and x(k+1). Since both intervals contain the
desired value x, we can conclude that x belongs to the intersection of these
intervals. Therefore, as an interval that contains x, on the next step of interval
computations, we can take not the interval x(k+1), but the (usually smaller)
interval x(k+1) ∩ x(k+1).

These Formulas Must be Modified to Take Roundoff
Errors into Consideration

The formulas of interval arithmetic are only valid for idealized computers, in
which all arithmetic operations are performed exactly. Real-life computers
truncate or round the result of multiplication and division, thus adding addi-
tional roundoff errors. To take these errors into consideration, we must modify
the above formulas by using the so-called directed roundings , i.e.:

a rounding φ−(r) that always returns a lower bound φ−(r) ≤ r, such that
φ−(r) ≤ r is a machine number; and

a rounding φ+(r) that always returns an upper bound φ+(r) ≥ r, such
that φ+(r) ≤ r is a machine number.

For example, the modified formula for [b, b]−1 is (for 0 6∈ [b, b]):

[b, b]−1 = [φ−(1/b), φ+(1/b)].

Applications of Interval Computations: An Introduction 7

This Methodology can Also Take into Consideration
Uncertainty in the Input Data

In many real-life situations, the input data come from measurements. Mea-
surements are not 100% precise. Therefore, if we have made the measurement
with an accuracy ∆, and obtain the measurement result ỹ, this means that the
actual value y of the measured quantity can take any value from the interval
y = [ỹ−∆, ỹ+∆]. The desired solution x depends on the exact value of y from
this interval. Hence, it makes sense to produce the set of all possible solutions
x that correspond to all possible values y ∈ y.

To generate this estimate, we can start with the intervals for input data (instead
of the precise values), and then follow interval computations step-by-step.

Brief Summary: The Power of Interval Computations

The power of interval arithmetic comes from the following facts:

1. The elementary operations and standard functions (such as sin, cos, and
exp, found in standard Fortran) can be computed for intervals by using
simple formulas and subroutines; and

2. directed roundings can be used, so that the images of these operations (e.g.
[3.8, 4.2] in the preceding example) rigorously contain the exact result of
the (ideal) computations.

These facts allow

rigorous enclosure of roundoff error, truncation error, and errors in data;

computation of rigorous bounds on the ranges of functions.

Naive and Sophisticated Interval Computations

Interval computations were first applied (in the 1960’s) naively, that is, to
existing numerical algorithms. In some cases, reasonable estimates appeared
as a result. In other cases, the resulting intervals were too wide to be useful.
These overestimates made many researchers and practitioners reluctant to use

8 Chapter 1

interval methods. Many researchers, not familiar with the field, are still under
the impression that interval computations are not a useful tool.

However, in the last three decades, many sophisticated ideas and algorithm
modifications have been proposed that enable replacing the excessively wide
intervals of naive interval computations with reasonably narrow ones. In some
cases, radically new algorithms emerged that were specifically tailored for in-
terval computations. For a general survey of basic modern interval techniques,
see, e.g., [6]; basic interval optimization techniques are described in [7].

As a result of these improvements, modern interval computations have been
successfully applied to many real-life problems.

2 INTERNATIONAL WORKSHOP ON

APPLICATIONS OF INTERVAL
COMPUTATIONS: HOW THIS BOOK

ORIGINATED

To promote real-life applications of interval computations, an International
Workshop on Applications of Interval Computations (APIC’95) was organized
in El Paso, Texas, on February 23–25, 1995. For this workshop, 80 researchers
from 15 countries (Austria, Brazil, Canada, China, Czech Republic, Denmark,
Finland, France, Germany, Mexico, Poland, Russia, Spain, Ukraine, and the
USA) submitted papers describing numerous applications of interval computa-
tions:

To Engineering:

• to manufacturing, including:

• quality control;

• detection of defects in computer chips;

• flexible manufacturing;

• to automatic control, including:

• control of airplane engines;

• control of electric power plants;

• to robotics;

Applications of Interval Computations: An Introduction 9

• to airplane inertial navigation;

• to civil engineering, including traffic control.

To Ergonomics and Social Sciences:

• to learning curves (that describe how people learn);

• to project management;

• to service systems;

• to sociology.

To Physics:

• to laser beams;

• to particle accelerators;

• to astrophysics (planet atmospheres);

• to image processing in radioastronomy.

To Geology and Geophysics.

To Chemistry , including:

• to spectral analysis.

To Computer Science and Engineering:

• to expert systems;

• to communication networks, especially computer networks.

To Economics:

• to planning;

• to banking.

Extended abstracts of these presentations appeared in [12]. The majority of
these papers described specific applications. (Technical details of different spe-
cific applications will also appear in the special issue of the international journal
Reliable Computing.)

In addition to the papers describing technical details of specific applications,
we also had several general survey papers, of general interest to the public. It
is these surveys that we present in this book.

This book contains surveys of the applications of interval computations, i.e.,
applications of numerical methods with automatic result verification.

10 Chapter 1

3 GENERAL OPTIMIZATION PROBLEMS

A General Survey

Interval arithmetic is a convenient and effective means of obtaining informa-
tion used in the place of Lipschitz constants. Such information, combined with
bounds on the ranges of functions that interval arithmetic supplies, is is widely
recognized as valuable in algorithms for global optimization. In this book, a
general survey of such algorithms, titled “A Review of Techniques in the Ver-
ified Solution of Constrained Global Optimization Problems” [10] is given by
Kearfott. In this survey, Kearfott:

reviews the literature on the subject (including several books);

outlines the basic techniques (including some of his own experimental
ones); and

gives advice on the use of different techniques.

Optimization Techniques Based on Constraint
Propagation

Traditionally, before applying numerical techniques to a problem, we analyze
it to formulate a compact and understandable description. Namely:

First, we describe all the physical properties characterizing the object, and
all the equations and inequalities that describe relations between these
properties.

Usually, some of these variables can be expressed in terms of the others.
As a result, we can express these variables (called dependent) in terms of
the remaining few independent variables. We can then reformulate all the
restrictions in terms of these independent variables.

Thus, we obtain a constrained optimization problem f(x) → max with few
variables x = (x1, ..., xn) and with (often rather complicated) objective func-
tion and constraints. (They are complicated because they come from repeated
substitution of expressions into other ones, and each such substitution increases
the complexity of the resulting expression.)

Applications of Interval Computations: An Introduction 11

This reduction is useful, because the running time of existing global optimiza-
tion techniques grows rapidly with the number of variables, so, the fewer vari-
ables we have, the faster we can find the optimum.

The reduction itself, however, is time-consuming. It makes sense if we have
many similar problems. In this case, we do this reduction once, for a generic
problem, and then use the results of this reduction to save time on all these
problems.

There are fields, however, such as robotics and computer-aided geometric de-
sign, in which preliminary reduction is not possible. In problems so arising,
many variables describe the system: e.g.:

To describe the state of a robot, we need to know the coordinates and
velocities of all its joints, as well as the coordinates of all the points of the
geometric environment in which the robot currently operates.

To characterize a design, we also usually need many design parameters.

Not all of these characteristics are independent: the lengths of the joints restrict
their respective positions; design demands impose heavy restrictions on the
design parameters so that only few of them remain independent, etc. So, in
all these cases, we can apply reduction to get an optimization problem with
fewer variables. However, we cannot make these reductions once and forever,
because the problems are constantly changing:

For a manufacturing robot, the problem drastically changes if a new part
is added.

For a design problem, the reduction changes every time we add or delete
one of the design requirements. (Such change in design requirements is
typical for a design process.)

In these cases, we should solve unreduced optimization problems, i.e., problems
in which there are many different variables, but also many constraints that
in effect leave only few of the variables independent. Because of the large
number of variables, general optimization techniques do not behave well for
such problems, so we need new methods.

The corresponding technique is called constraint propagation. In this tech-
nique, relationships among intermediate quantities in arithmetic expressions in

12 Chapter 1

constraints are used recursively to compute ever-narrower bounds on solution
variables.

It turns out that constraint propagation can be successfully applied not only
to the above-mentioned problems like robotics, in which symbolic reduction
is not practical, but also to general optimization and equation-solving prob-
lems. Often, even if there is a way to reduce the number of constraints, it is
actually advantageous to put in more constraints (but make these constraints
simpler) and then apply constraint propagation techniques. Thus, constraint
propagation is a new powerful general optimization tool.

Several authors have applied the technique in global optimization and nonlinear
equation systems codes and software. It turns out that the

In the survey “Solving Optimization Problems with Help of the UniCalc Solver”
[21], presented in this book, Semenov describes an integrated interactive envi-
ronment, available commercially, that uses so-called sub-definite programming
(a generalization of interval computations to sets more general than intervals)
to solve various types of optimization problems.

Two Surveys of Specific Techniques

In addition to the general surveys of different interval optimization techniques,
the book also contains two surveys of interval optimization techniques tailored
to problems in two specific fields: manufacturing (Hadjihassan et al. [5]) and
quantum mechanics (Fefferman and Seco [39]).

Applications to Manufacturing

In “Quality Improvement via The Optimization Of Tolerance Intervals Dur-
ing The Design Stage” [5], Hadjihassan et al. use the fundamental numerical
analysis considerations described above in manufacturing design. Uncertainties
in the input data are encompassed by describing them as intervals. Namely,
in [5], Hadjihassan, Walter and Pronzato use a combination of interval and
non-interval techniques to solve the following real-life optimization problem:
In mass manufacturing, we can usually only reproduce the parameters of the
manufactured objects with a certain accuracy δ (typically, 5% or 10%). As
a result, when we fix the nominal values xi of these parameters, we can only
guarantee that the actual values of the parameters of the manufactured objects
are inside the interval [xi − δ · xi, xi + δ · xi]. Hence, even if we choose nominal

Applications of Interval Computations: An Introduction 13

design parameters x = (x1, ..., xn) that guarantee the desired value y∗ of the
performance characteristic y = η(x1, ..., xn), the actual values of y may differ
from y∗. The quality f(x) of a design can be characterized, crudely speaking,
by the worst case deviation of y from y∗. In Hadjihassan et al. [5], interval
computations help to solve the problem of finding the optimal (best quality)
design, i.e., a design x for which f(x) is minimum.

Applications to Quantum Mechanics

Many optimization problems occur in fundamental physics. Actually, funda-
mental physical theories are usually formulated not in terms of differential
equations (as in Newton’s time), but in terms of an appropriate variational
principle: The characteristics x of the particles and fields must be chosen to
optimize the value of an objective function S(x) (called action). This use of op-
timization is not simply a mathematical trick: it has a fundamental justification
in quantum mechanics (see, e.g., [4]).

Because of the optimization formulation of fundamental physical theories, nu-
merical optimization techniques, especially interval-type techniques that pro-
vide automatic verification, appear to be of great use to physicists.

The majority of unsolved fundamental problems in physics, however, are mainly
related to areas such as quantum field theory, (quantum) cosmology, etc, for
which the equations are not yet confidently known. Since we are not sure
about the equations anyway, there is not much need for a guaranteed solution.
Therefore, physicists use heuristic techniques, and additional computational
efforts needed to estimate the accuracy do not seem to be justified.

There is, however, a class of fundamental problems where the corresponding
optimization criterion (and related equations) have been known for over 70
years, and the main problems are computational: these are the problems of
non-relativistic quantum mechanics. The fundamental equation was described
by Schroedinger as early as 1924; this equation describes all the properties
of the simplest atoms (hydrogen and helium) with such a good accuracy that
physicists were convinced that what was previously known as chemistry would
be replaced by fundamental quantum physics. This did not happen because,
to describe an atom with n electrons, we need to find a function of 3n variables
(by solving an optimization problem or an equivalent differential equation).
Even if we take 2 possible values of each of these coordinates, we still need
23n values only to describe function. For realistic n, this problem is clearly
computationally intractable.

14 Chapter 1

To solve this problem, several approximate equations and optimization formu-
lations have been proposed:

Some of them are computationally easy, but lead to very crude (and thus
practically useless) estimates.

Other approximate equations lead to better estimates, but are still rel-
atively computationally complicated. One such approximation, called
Thomas–Fermi theory, is considered in the survey “Interval Arithmetic
in Quantum Mechanics” [39] by Fefferman and Seco, that is presented in
the book.

We are interested in the characteristics of the atoms with large n (because
for small n, we can simply solve the exact equations). It is known that for
large very n, these characteristics tend to behave in a regular fashion, so, to
get a good estimate, we can expand the values of the characteristics into an
asymptotic series in 1/n, and take only a few terms in this expansion. Hence,
we need to find asymptotic formulas for n→∞.

Several heuristic optimization methods have been proposed to find the asymp-
totics of the optimum in this problem. These methods, however, are known to
produce good results for some physical problems, but poor estimates for oth-
ers. Therefore, there is a real need to apply techniques with automatic result
verification, and thus get guaranteed estimates on the asymptotics.

Such estimates are obtained in a survey [39] by Fefferman and Seco. Their
contribution is thus an example of a computer-assisted proof outside of general
global optimization algorithms. Fefferman and Seco explicitly discuss the role
of interval arithmetic in establishment of an inequality related to a precise
asymptotic formula for the ground state of a non-relativistic atom.

4 GENERAL SYSTEMS OF EQUATIONS

AND INEQUALITIES

In this book, a survey of constraint propagation techniques for solving such
systems is presented. In this technique, sometimes implemented in languages
such as Prolog, relationships among intermediate quantities in arithmetic ex-
pressions in constraints are used recursively to compute ever-narrower bounds

Applications of Interval Computations: An Introduction 15

on solution variables. As we have already mentioned, constraint propagation
is increasingly popular in recent years in fields such as robotics and computer-
aided geometric design. Systems of equations that it allows us to solve can tell,
e.g., whether there is an intersection or non-intersection, e.g.:

whether after a planned movement the robot will hit the obstacle, or move
safely;

whether a cutting instrument of a manufacturing robot will actually start
cutting the desired part;

whether in a computer design all components of the car’s design will ac-
tually fit into the car frame (intersection in this case will mean that they
won’t), etc.

Several authors have applied this technique in general global optimization and
nonlinear equation systems codes and software.

This volume contains descriptions of two software systems that allow such com-
putations. We have already mentioned a survey by Semenov [21]. In “Interval
Computations on the Spreadsheet” [7], Hyvönen and De Pascale explain an
extension of Microsoft Excel that allows interval computations, and constraint
propagation in particular.

5 LINEAR INTERVAL PROBLEMS

Why Linear Problems?

In many real-life situations, the general problem (outlined in the beginning of
this introduction) can be simplified. A typical situation in which simplification
is possible is when we know that the components x1, .., xn of the desired
solution x are relatively small. Then, we can expand all the terms in all the
equations that determine x into power series in xi, and neglect quadratic and
higher order terms.

As a result, we get a problem with:

16 Chapter 1

a linear objective function y = f(x) =
∑

cjxj , and

linear constraints: i.e.,

• linear equalities
∑

aijxj = bj , and/or

• linear inequalities
∑

aijxj ≥ bi.

This problem is called a linearization of the original non-linear problem.

In other words, in many real-life situations, we must solve linear problems.
If all the coefficients aij , bi, and cj of the corresponding linear functions are
precisely known, then we have a linear programming problem for which many
efficient algorithms are known.

If we do not know the objective functions, then, as we have mentioned, we must
describe the set X of all the vectors x that satisfy the given linear constraints.
This description can also be given by linear programming.

Interval Linear Problems

In many real-life problems, the only source of the values of the coefficients aij
and bi is measurement. Since measurements are never absolutely precise, as
a result of these measurements, we only get intervals aij and bj that contain
the (unknown) values of these coefficients. In this case, we are interested in
describing the set X of all the vectors x that satisfy the given linear constraints,
for some aij ∈ aij and bj ∈ bj .

How to Describe the Solution of an Interval Linear
Problem

For symmetric and non-symmetric aij , the set X described above is character-
ized in the paper “The Shape of the Symmetric Solution Set” [1] by Alefeld,
Kreinovich, and Mayer, presented in this book. Namely, this set is an an inter-
section of half-spaces (sets described by linear inequalities) and quadrics (i.e.,
sets defined by quadratic inequalities).

General Interval Linear Problems are Hard to Solve

The description of a solution of an interval linear problem provided in Alefeld
et al. [1] is computationally complicated. A natural question is: is it really a

Applications of Interval Computations: An Introduction 17

hard problem and no easy algorithm is possible, or there is a simple algorithm,
but we simply have not found it yet?

The answer to this question is given in a paper by Rohn “Linear Interval Equa-
tions: Computing Enclosures with Bounded Relative Or Absolute Overesti-
mation is NP-Hard” [19], presented in the book. Namely, Rohn shows that,
crudely speaking, there is no feasible (polynomial time) algorithm that com-
putes bounds on the solution sets X to all interval linear systems with overes-
timation less than δ, for any δ > 0.

Existing Algorithms Can Often Solve Interval Linear

Problems Efficiently

This general negative result means that, for every algorithm for solving interval
linear problems, there are hard cases in which this algorithm either runs too
long, or results in a drastic overestimation of X.

In practice, several (heuristic) methods such as interval Gaussian elimination
or the interval Gauss–Seidel method work well for many real-life systems. In
particular, they work well when the widths of the coefficient intervals are small,
and also in many other cases.

Applications to Economics

One case where linear models naturally appear is economics. Namely, the
dependency y = f(x1, ..., xn) of the amount y of goods produced in an economic
sector on the amounts of goods xi used in production in this production can
be described (with a reasonably good accuracy) by a linear function. The
corresponding linear model was first proposed by the Nobel laureate economist
W. Leontief, and is therefore called a Leontief model. A typical problem here
is to determine the desired amounts of production for each sector so that all
consumer demands are satisfied, and there is no unnecessary production (i.e.,
all goods are either directly consumed, or used in production of other goods
in the chain that leads to consumption). In his pioneering research, Leontief
assumed that the coefficients are known precisely. In this case, we have a linear
programming problem, that is (in principle) feasible.

In real life, however, the only way to determine the coefficients is from the
empirical data. Empirical economic data is not precise. Therefore, instead of

18 Chapter 1

precise values for the coefficients, we have intervals of possible values. Thus, in
real life, Leontief’s problem leads to an interval linear system.

Luckily, in spite of the general computational complexity result, specific interval
linear systems stemming from these economic problems are feasible. In this
book, a survey of corresponding methods and applications is given by Jerrell
in “Applications of Interval Computations to Regional Economic Input-Output
Models” [9]. As a case study, Jerrell obtains meaningful bounds for the impact
of Northern Arizona University on the economy of Coconino County, Arizona,
and on the state of Arizona in general.

6 INTERVAL COMPUTATIONS CAN
ALSO HANDLE POSSIBLE

ADDITIONAL INFORMATION ABOUT
THE INPUT DATA

We have already mentioned that interval computations can naturally handle
situations in which, instead of the exact values of the input parameters p,
intervals p of possible values of these parameters are known.

In many real-life cases, in addition to these intervals, we have additional infor-
mation about p:

In some cases, we know not only the interval of possible values of p, but
we also have some information about the probabilities of different values.
If we know all the probabilities for all possible values of all parameters,
then we can apply traditional statistical techniques. However, if we only
know some probabilities for some of the parameters, and only interval
information for the others, we need a special technique for combining these
two types of information. In this book, a survey of such techniques and
their applications is given by Berleant “Automatically Verified Arithmetic
on Probability Distributions and Intervals” [4].

In some cases, in addition to the interval in which the value of p is guar-
anteed to lie, we have experts who produce narrower intervals to which,
they claim, the actual values “most certainly” belong. In this case, in
addition to the interval of “definitely possible” values of x (produced by
interval computation techniques), it is desirable to supply the user with

Applications of Interval Computations: An Introduction 19

narrower intervals that result from the experts’ narrower input intervals.
(These new intervals will be correct enclosures if the experts did not err in
their estimates.) In this book, this problem is described and analyzed in
a survey “Nested Intervals and Sets: Concepts, Relations to Fuzzy Sets,
and Applications” [16] by Nguyen and Kreinovich. It turns out that the
resulting formalism is very close to the formulas proposed in so-called fuzzy
logic (often without rigorous justification). Namely, to get these formulas,
as a “fuzzy truth value” µ(A) of a statement A, we must take, crudely
speaking, the ratio µ(A) = N(A)/N of those experts (N(A)) who believe
A to be true to the total number N of the experts asked. Thus, this ver-
sion of interval computation leads to a new justification of the formulas of
fuzzy logic.

Two other surveys from this book describe further modifications of this
idea:

• The first modification is described by Kohout and Bandler in
“Fuzzy Interval Inference Utilizing the Checklist Paradigm and BK-
Relational Products” [11]. This modification is based on the fact that
we can only ask so many questions to the experts. In particular, if
we have, say, n statements A1, ..., An of interest, then we can ask
an expert’s opinion about these n statements, maybe about some of
their logical combinations (of the type A1&A2), but not about all
> 2n possible logical combinations of these statements. As a result,
there may be some statements Ai and Aj for which we only know
the truth values µ(Ai) and µ(Aj), but not µ(Ai&Aj). Suppose that
we are interested in knowing the degree of belief in Ai&Aj . If, e.g.,
µ(Ai) = µ(Aj) = 0.5. Then there are two possibilities:

∗ It could be that the same experts believe in Ai as in Aj . In this
case, µ(Ai&Aj) = µ(Ai) = 0.5.

∗ It can also be that the experts who believe in Ai are exactly those
who do not believe in Aj . In this case, µ(Ai&Aj) = 0.

In general, for a given µ(Ai) and µ(Aj), we have an interval of possible
values of µ(Ai&Aj). If we already have intervals of possible values for
µ(A) and µ(B), then we need an interval operation to compute the
interval of possible values of µ(A&B). Here, interval computations
come in handy. As a case study, Kohout and Bandler describes an
implementation of this idea in an expert medical system Clinaid.

• Another modification is described by Rocha et al. in “Computing
Uncertainty in Interval Based Sets” [18]. The underlying idea is that
experts are often inconsistent. Therefore, instead of a single small

20 Chapter 1

interval of possible values, we get several (often non-intersecting) in-
tervals that supposedly describe the same quantity. Some intervals
are supported by more experts, some by less. To describe the degree of
support for each interval x, we can use a ratio N(x)/N similar to that
described above. Since each expert selects some interval, these ratios
add up to 1 and can thus be mathematically interpreted as (subjec-
tive) probabilities. Therefore, to describe the expert’s opinions, we
must have a probability distribution on the set of all intervals. An
interval is a particular case of this distribution, when only one proba-
bility is different from 0. In Rocha et al. [18], standard operations of
interval arithmetic are extended to these new objects. Applications
to knowledge representation in expert systems are described.

7 SOFTWARE AND HARDWARE

SUPPORT FOR INTERVAL
COMPUTATIONS

If interval methods are so good, why aren’t they widely applied? One of the
main reasons is lack of easily available software. Now, people rarely program
“from scratch”: they try to use existing software as much as possible. Therefore,
to make interval computations usable, the computations must be supported by
software packages.

This brings us to the next issue: a software package will not be used if it is
not sufficiently fast. Everyone is interested in buying a faster computer, and
“a faster computer” means that computer on which typical “benchmarking”
programs run faster. The bulk of existing software does not use intervals at
all; therefore, when designing new computers, computer engineers try to speed
up the operations with numbers that are most frequently used in the usual
programs. As a result, operations with numbers are fast, while elementary
operations with intervals (that form the basis for interval computations) are
much slower. Because of that, experts in interval computations have urged the
development of faster, hardware-oriented systems for interval computations.

In their survey “Software and Hardware Techniques for Accurate, Self-
Validating Arithmetic” [20], Schulte and Swartzlander review some of the avail-
able programming language extensions, packages and problem solving environ-
ments for interval computations. They then discuss hardware design alterna-

Applications of Interval Computations: An Introduction 21

tives, and propose a specific hardware design and software interface for variable
precision interval arithmetic.

Finally, in “Stimulating Hardware and Software Support for Interval Arith-
metic” [22], Walster presents his view of why many hardware and software
vendors do not presently provide interval computations as integral parts of
their products. He then discusses steps the community of interval computa-
tions experts should take to make such capabilities more widely available.

Acknowledgements

This work was supported in part by the National Science Foundation (NSF),
through grants CCR-9203730, CDA-9015006, and EEC-9322370, and by the
National Aeronautics and Space Administration (NASA), through grant No.
NAG 9-757.

REFERENCES

[1] G. Alefeld, V. Kreinovich, and G. Mayer, “The Shape of the Symmetric
Solution Set,” This Volume.

[2] D. Berleant, “Automatically Verified Arithmetic on Probability Distribu-
tions and Intervals”, This Volume.

[3] C. L. Fefferman and L. A. Seco, “Interval Arithmetic in Quantum Me-
chanics”, This Volume.

[4] R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures
On Physics, Addison-Wesley, Redwood City, CA, 1989.

[5] S. Hadjihassan, E. Walter, and L. Pronzato, “Quality Improvement via
The Optimization Of Tolerance Intervals During The Design Stage,” This
Volume.

[6] R. Hammer, M. Hocks, U. Kulisch, D. Ratz, Numerical toolbox for verified
computing. I. Basic numerical problems, Springer Verlag, Heidelberg, N.Y.,
1993.

[7] E. R. Hansen, Global optimization using interval analysis, Marcel Dekker,
N.Y., 1992.

22 Chapter 1

[8] E. Hyvönen and S. De Pascale, “Interval Computations on the Spread-
sheet”, This Volume.

[9] M. E. Jerrell, “Applications of Interval Computations to Regional Eco-
nomic Input-Output Models,” This Volume.

[10] R. B. Kearfott, “A Review of Techniques in the Verified Solution of Con-
strained Global Optimization Problems,” This Volume.

[11] L. J. Kohout and W. Bandler, “Fuzzy Interval Inference Utilizing the
Checklist Paradigm and BK-Relational Products”, This Volume.

[12] V. Kreinovich (ed.), Reliable Computing, 1995, Supplement (Extended Ab-
stracts of APIC’95: International Workshop on Applications of Interval
Computations, El Paso, TX, Febr. 23–25, 1995).

[13] R. E. Moore, Automatic error analysis in digital computation, Lockheed
Missiles and Space Co. Technical Report LMSD-48421, Palo Alto, CA,
1959.

[14] R. E. Moore and C. T. Yang, Interval analysis, Lockheed Missiles and
Space Co. Technical Report LMSD-285875, Palo Alto, CA, 1959.

[15] R. E. Moore, Interval analysis, Prentice Hall, Englewood Cliffs, NJ, 1966.

[16] H. T. Nguyen and V. Kreinovich, “Nested Intervals and Sets: Concepts,
Relations to Fuzzy Sets, and Applications”, This Volume.

[17] P. M. Pardalos and J. B. Rosen, Constrained Global Optimization: Algo-
rithms and Applications , Springer-Verlag, New York, 1987.

[18] L. M. Rocha, V. Kreinovich, and R. B. Kearfott, “Computing Uncertainty
in Interval Based Sets”, This Volume.

[19] J. Rohn, “Linear Interval Equations: Computing Enclosures with Bounded
Relative Or Absolute Overestimation is NP-Hard,” This Volume.

[20] M. J. Schulte and E. E. Swartzlander, Jr., “Software and Hardware Tech-
niques for Accurate, Self-Validating Arithmetic,” This Volume.

[21] A. L. Semenov, “Solving Optimization Problems with Help of the UniCalc
Solver,” This Volume.

[22] G. W. Walster, “Stimulating Hardware and Software Support for Interval
Arithmetic,” This Volume.

